RESUMO
Excessive intake of estrogen poses significant health risks to the human body; hence, there is a necessity to develop rapid detection methods to monitor its levels of addition. Gold nanoparticles (AuNPs), commonly utilized as colorimetric signal labels, find extensive application in lateral flow immunoassay (LFIA). However, the detection sensitivity of traditional AuNPs-LFIA is typically constrained by low molar extinction coefficients and reliance on a single signal. Herein, in this work, unique spark-type AuCuPt nanoflowers modified with tannic acid (AuCuPt@TA) were precisely designed by reasonable layer-by-layer element composition and green modification. The obtained AuCuPt displays robust broadband absorption spanning the visible to near-infrared spectrum, showcasing a notable molar extinction coefficient of 2.38 × 1012 M-1 cm-1 and a photothermal conversion efficiency of 48.5%. Based on this, selecting estriol (E3) as a model analyte, colorimetric/photothermal dual-signal LFIA (CLFIA and PLFIA) was developed. Limits of detection (LOD) of the CLFIA and PLFIA were achieved at 0.033 ng mL-1 and 0.021 ng mL-1, respectively, which represent a 9.3- and 14.6-fold improvement compared to the visual LOD of AuNPs-LFIA. Moreover, the application feasibility of the immunoassay was further evaluated in the milk and pork with satisfactory recoveries ranging from 86.21% to 117.91%. Thus, this work has enhanced the performance of LFIA for E3 detection and exhibited enormous potential for other sensing platform construction.
Assuntos
Ligas , Estriol , Ouro , Nanopartículas Metálicas , Imunoensaio/métodos , Nanopartículas Metálicas/química , Ouro/química , Estriol/análise , Ligas/química , Animais , Colorimetria , Limite de Detecção , Taninos/química , Taninos/análiseRESUMO
"Signal-off" nanozyme sensing platforms are usually employed to detect analytes (e.g., ascorbic acid (AA) and alkaline phosphatase (ALP)), which are mostly based on oxidase (OXD) nanozymes. However, their drawbacks, like dissolved oxygen-dependent catalysis capability, relatively low enzyme activity, limited amount, and kind, may not favor sensing platforms' optimization. Meanwhile, with the need for sustainable development, a reusable "signal-off" sensing platform is essential for cutting down the cost of the assay, but it is rarely developed in previous studies. Magnetic peroxidase (POD) nanozymes potentially make up the deficiencies and become reusable and better "signal-off" sensing platforms. As a proof of concept, we first construct Fe3O4@polydopamine-supported Pt/Ru alloy nanoparticles (IOP@Pt/Ru) without stabilizers. IOP@Pt/Ru shows high POD activity with Vmax of 83.24 × 10-8 M·s-1 for 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation. Meanwhile, its oxidation rate for TMB is slower than the reduction of oxidized TMB by reducers, favorable for a more significant detection signal. On the other hand, IOP@Pt/Ru possesses great magnet-responsive capability, making itself be recycled and reused for at least 15-round catalysis. When applying IOP@Pt/Ru for AA (ALP) detection, it performs better detectable adaptability, with a linear range of 0.01-0.2 mM (0.1-100 U/L) and a limit of detection of 0.01 mM (0.05 U/L), superior to most of OXD nanozyme-based ALP sensing platform. Finally, IOP@Pt/Ru's reusable assay was demonstrated in real blood samples for ALP assay, which has never been explored in previous studies. Overall, this study develops a reusable "signal-off" nanozyme sensing platform with superior assay capabilities than traditional OXD nanozymes, paves a new way to optimize nanozyme-based "signal-off" sensing platforms, and provides an idea for constructing inexpensive and sustainable sensing platforms.
Assuntos
Ligas , Peroxidase , Platina , Platina/química , Ligas/química , Peroxidase/química , Peroxidase/metabolismo , Benzidinas/química , Limite de Detecção , Oxirredução , Polímeros/química , Humanos , Catálise , Técnicas Biossensoriais/métodos , Ácido Ascórbico/análise , Ácido Ascórbico/química , IndóisRESUMO
Single-atom nanozymes (SAzymes) are emerging natural enzyme mimics and have attracted much attention in the biomedical field. SAzymes with MetalâNx sites designed on carbon matrixes are currently the mainstream in research. It is of great significance to further expand the types of SAzymes to enrich the nanozyme library. Single-atom alloys (SAAs) are a material in which single-atom metal sites are dispersed onto another active metal matrix, and currently, there is limited research on their enzyme-like catalytic performance. In this work, a biodegradable Pt1Pd SAA is fabricated via a simple galvanic replacement strategy, and for the first time reveals its intrinsic enzyme-like catalytic performance including catalase-, oxidase-, and peroxidase-like activities, as well as its photodynamic effect. Experimental characterizations demonstrate that the introduction of single-atom Pt sites contributes to enhancing the affinity of Pt1Pd single-atom alloy nanozyme (SAAzyme) toward substrates, thus exhibiting boosted catalytic efficiency. In vitro and in vivo experiments demonstrate that Pt1Pd SAAzyme exhibits a photo-controlled therapeutic effect, with a tumor inhibition rate of up to 100%. This work provides vital guidance for opening the research direction of SAAs in enzyme-like catalysis.
Assuntos
Ligas , Ligas/química , Animais , Platina/química , Humanos , Catálise , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos , Fototerapia/métodosRESUMO
In this work, a highly sensitive and selective method for detecting folic acid (FA) was developed using D-penicillamine (DPA) stabilized Ag/Cu alloy nanoclusters (DPA@Ag/Cu NCs). The yellow emission of DPA@Ag/Cu NCs was found to be quenched upon the addition of FA to the system. The fluorescence intensity quenching value demonstrated a linear relationship with FA concentrations ranging from 0.01 to 1200â µM, with a limit of detection (LOD) of 5.3â nM. Furthermore, the detection mechanism was investigated through various characterization analyses, including high resolution transmission electron microscopy, fluorescence spectra, ultraviolet-visible absorption spectra, and fluorescence lifetime. The results indicated that the fluorescence quenching induced by FA was a result of electron transfer from FA to the ligands of DPA@Ag/Cu NCs. The selectivity of the FA sensor was also evaluated, showing that common amino acids and inorganic ions had minimal impact on the detection of FA. Moreover, the standard addition method was successfully applied to detect FA in human serum, chewable tablets and FA tablets with promising results. The use of DPA@Ag/Cu NCs demonstrates significant potential for detecting FA in complex biological samples.
Assuntos
Ligas , Cobre , Corantes Fluorescentes , Ácido Fólico , Penicilamina , Prata , Espectrometria de Fluorescência , Penicilamina/análise , Penicilamina/química , Penicilamina/sangue , Cobre/química , Ácido Fólico/análise , Ácido Fólico/química , Ácido Fólico/sangue , Prata/química , Humanos , Ligas/química , Corantes Fluorescentes/química , Limite de Detecção , Nanopartículas Metálicas/química , Comprimidos/análiseRESUMO
Magnesium-based biodegradable metal bone implants exhibit superior mechanical properties compared to biodegradable polymers for orthopedic and cardiovascular stents. In this study, MgZZC-x (x = 1, 1.2) alloys were screened by in vitro biocompatibility tests in three simulated body fluids under nontoxic conditions. The MgZZC-1 alloys with better biocompatibility were selected to predict the days required for complete degradation. The evolution of degradation products was analyzed, and the mechanism of formation of the product film was inferred. A degradation kinetic model was established to investigate the effect of MEM components on the degradation of the alloys. The results demonstrate that the proteins in MEM can greatly retard the degradation progress by attaching to the surface of MgZZC-1 alloys, which are predicted to degrade completely within 341 days. The carbonate and phosphate buffers were adjusted to pH in MEM solution, delaying the degradation of magnesium alloys. This process in MEM more accurately reflects the actual degradation in the body and is superior to that in Hanks and SBF solutions. This study will promote the application of biodegradable materials in clinical medicine.
Assuntos
Ligas , Materiais Biocompatíveis , Líquidos Corporais , Magnésio , Ligas/química , Líquidos Corporais/química , Magnésio/química , Materiais Biocompatíveis/química , Concentração de Íons de Hidrogênio , Cinética , HumanosRESUMO
In this work, a trimetallic (Ni/Co/Zn) organic framework (tMOF), synthesized by a solvothermal method, was calcinated at 400 and 600 °C and the final products were used as a support for lipase immobilization. The material annealed at 400 °C (Ni-Co-Zn@400) had an improved surface area (66.01 m2/g) and pore volume (0.194 cm3/g), which showed the highest enzyme loading capacity (301 mg/g) with a specific activity of 0.196 U/mg, and could protect the enzyme against thermal denaturation at 65 °C. The optimal pH and temperature for the lipase were 8.0 and 45 °C but could tolerate pH levels 7.0-8.0 and temperatures 40-60 °C. Moreover, the immobilized enzyme (Ni-Co-Zn@Lipase, Ni-Co-Zn@400@Lipase, or Ni-Co-Zn@600@Lipase) could be recovered and reused for over seven cycles maintaining 80, 90, and 11% of its original activity and maintained a residual activity >90% after 40 storage days. The remarkable thermostability and storage stability of the immobilized lipase suggest that the rigid structure of the support acted as a protective shield against denaturation, while the improved pH tolerance toward the alkaline range indicates a shift in the ionization state attributed to unequal partitioning of hydroxyl and hydrogen ions within the microenvironment of the active site, suggesting that acidic residues may have been involved in forming an enzyme-support bond. The high enzyme loading capacity, specific activity, encouraging stability, and high recoverability of the tMOF@Lipase indicate that a multimetallic MOF could be a better platform for efficient enzyme immobilization.
Assuntos
Enzimas Imobilizadas , Lipase , Nanocompostos , Zinco , Lipase/química , Lipase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanocompostos/química , Concentração de Íons de Hidrogênio , Zinco/química , Estabilidade Enzimática , Temperatura , Cobalto/química , Níquel/química , Ligas/química , Estruturas Metalorgânicas/químicaRESUMO
Orthopedic and dental implants made from Ti6Al4V are widely used due to their excellent mechanical properties and biocompatibility. However, the long-term performance of these implants can be compromised by bacterial infections. This study explores the development of hierarchically textured surfaces with enhanced bactericidal properties to address such challenges. Hierarchical surface structures were developed by combining microscale features produced by a microsecond laser and superimposed submicron features produced using a femtosecond laser. Microscale patterns were produced by the pulsed laser surface melting process, whereas submicrometer laser-induced periodic surface structures were created on top of them by femtosecond laser processing. Escherichia coli bacterial cells were cultured on the textured surface. After 24 h, a staining analysis was performed using SYTO9 and PI dyes to investigate the samples with a confocal microscope for live dead assays. Results showed bacterial colony formation onto the microscale surface textures with live bacterial cells, whereas the hierarchical surface textures display segregated and physically damaged bacterial cell attachments on surfaces. The hierarchical surface textures showed â¼98% dead bacterial cells due to the combined effect of its multiscale surface features and oxide formation during the laser processing steps. The efficacy of hierarchical surface textures in enhancing the antibacterial behavior of Ti6Al4V implants is evident from the conducted research. Such laser-based surface treatments can find potential applications in different industrial sectors.
Assuntos
Ligas , Antibacterianos , Escherichia coli , Lasers , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Ligas/química , Ligas/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
This paper deals with the combined effects of immune response and osseointegration because of the lack of comprehensive studies on this topic. An antibacterial Ti surface was considered because of the high risk of infection for titanium bone implants. A chemically treated Ti6Al4 V alloy [Ti64(Sr-Ag)] with a microporous and Sr-Ag doped surface was compared to a polished version (Ti64) regarding protein adsorption (albumin and fibronectin) and osteoimmunomodulation. Characterization via fluorescence microscopy and zeta potential showed a continuous fibronectin layer on Ti64(Sr-Ag), even with preadsorbed albumin, while it remained filamentous on Ti64. Macrophages (differentiated from THP-1 monocytes) were cultured on both surfaces, with viability and cytokine release analyzed. Differently from Ti64, Ti64(Sr-Ag) promoted early anti-inflammatory responses and significant downregulation of VEGF. Ti64(Sr-Ag) also enhanced human bone marrow mesenchymal cell differentiation toward osteoblasts, when a macrophage-conditioned medium was used, influencing ALP production. Surface properties in relation to protein adsorption and osteoimmunomodulation were discussed.
Assuntos
Ligas , Macrófagos , Propriedades de Superfície , Titânio , Titânio/química , Ligas/química , Ligas/farmacologia , Adsorção , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologiaRESUMO
High entropy alloys and amorphous metallic alloys represent two distinct classes of advanced alloy materials, each with unique structural characteristics. Their emergence has garnered considerable interest across the materials science and engineering communities, driven by their promising properties, including exceptional strength. However, their extensive compositional diversity poses substantial challenges for systematic exploration, as traditional experimental approaches and high-throughput calculations struggle to efficiently navigate this vast space. While the recent development in data-driven materials discovery could potentially help, such efforts are hindered by the scarcity of comprehensive data and the lack of robust predictive tools that can effectively link alloy composition with specific properties. To address these challenges, we have deployed a machine-learning-based workflow for feature selection and statistical analysis to afford predictive models that accelerate the data-driven discovery and optimization of these advanced materials. Our methodology is validated through two case studies: (i) a regression analysis of the bulk modulus, and (ii) a classification analysis based on glass-forming ability. The Bayesian-optimized regression model trained for the prediction of bulk modulus achieved an R2 of 0.969, an mean absolute error (MAE) of 3.958 GPa, and an root mean square error (RMSE) of 5.411 GPa, while our classification model for predicting glass-forming ability achieved an F1-score of 0.91, an area-under-the-curve of the receiver-operating-characteristic curve of 0.98, and an accuracy of 0.91. Furthermore, by leveraging a wide array of chemical data from diverse literature sources, we have successfully predicted a broad range of properties. This success underscores the efficacy of our modeling approach and emphasizes the importance of a comprehensive feature analysis and judicious feature selection strategy over a mere reliance on complex modeling techniques.
Assuntos
Ligas , Entropia , Aprendizado de Máquina , Ligas/química , Teorema de Bayes , Modelos QuímicosRESUMO
Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H+, contributing to more than 35.6% of H2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.
Assuntos
Boroidretos , Boro , Ferro , Ferro/química , Boroidretos/química , Boro/química , Cromo/química , Elétrons , Ligas/químicaRESUMO
The development of cost-effective and highly efficient electrocatalysts is critical to help electrochemical non-enzymatic sensors achieve high performance. Here, a new class of catalyst, Ru single atoms confined on Cu nanotubes as a single-atom alloy (Ru1Cu NTs), with a unique electronic structure and property, was developed to construct a novel electrochemical non-enzymatic glucose sensor for the first time. The Ru1Cu NTs with a diameter of about 24.0 nm showed a much lower oxidation potential (0.38 V) and 9.0-fold higher response (66.5 µA) current than Cu nanowires (Cu NWs, oxidation potential 0.47 V and current 7.4 µA) for glucose electrocatalysis. Moreover, as an electrochemical non-enzymatic glucose sensor, Ru1Cu NTs not only exhibited twofold higher sensitivity (54.9 µA mM-1 cm-2) and wider linear range (0.5-8 mM) than Cu NWs, but also showed a low detection limit (5.0 µM), excellent selectivity, and great stability. According to theoretical calculation results, the outstanding catalytic and sensing performance of Ru1Cu NTs could be ascribed to the upshift of the d-band center that helped promote glucose adsorption. This work presents a new avenue for developing highly active catalysts for electrochemical non-enzymatic sensors.
Assuntos
Ligas , Cobre , Técnicas Eletroquímicas , Glucose , Nanotubos , Rutênio , Cobre/química , Nanotubos/química , Técnicas Eletroquímicas/métodos , Glucose/análise , Ligas/química , Rutênio/química , Limite de Detecção , Catálise , Técnicas Biossensoriais/métodos , OxirreduçãoRESUMO
Entropy is a universal concept across the physics of mixtures. While the role of entropy in other multicomponent materials has been appreciated, its effects in polymers and plastics have not. In this work, it is demonstrated that the seemingly small mixing entropy contributes to the miscibility and performance of polymer alloys. Experimental and modeling studies on over 30 polymer pairs reveal a strong correlation between entropy, morphology, and mechanical properties, while elucidating the mechanism behind: in polymer blends with weak interactions, entropy leads to homogeneously dispersed nanosized domains stabilized by highly entangled chains. This unique microstructure promotes uniform plastic deformation at the interface, thus improving the toughness of conventional brittle polymers by 1-2 orders of magnitude without sacrificing other properties, analogous to high-entropy metallic alloys. The proposed strategy also applies to ternary polymer systems and copolymers, offering a new pathway toward the development of sustainable polymers.
Assuntos
Ligas , Polímeros , Entropia , Polímeros/química , Ligas/química , PlásticosRESUMO
Fe was selected as an alloying element for the first time to prepare a new antibacterial titanium alloy based on micro-area potential difference (MAPD) antibacterial mechanism. The microstructure, the corrosion resistance, the mechanical properties, the antibacterial properties and the cell biocompatibility have been investigated in detail by optical microscopy, scanning electron microscopy, electrochemical testing, mechanical property test, plate count method and cell toxicity measurement. It was demonstrated that heat treatment had a significant on the compressive mechanical properties and the antibacterial properties. Ti-xFe (x = 3,5 and 9) alloys after 850 °C/3 h + 550 °C/62 h heat treatment exhibited strong antimicrobial properties with an antibacterial rate of more than 90% due to the MAPD caused by the redistribution of Fe element during the aging process. In addition, the Fe content and the heat treatment process had a significant influence on the mechanical properties of Ti-xFe alloy but had nearly no effect on the corrosion resistance. All Ti-xFe alloys showed non-toxicity to the MC3T3 cell line in comparison with cp-Ti, indicating that the microzone potential difference had no adverse effect on the corrosion resistance, cell proliferation, adhesion, and spreading. Strong antibacterial properties, good cell compatibility and good corrosion resistance demonstrated that Ti-xFe alloy might be a candidate titanium alloy for medical applications.
Assuntos
Ligas , Titânio , Titânio/farmacologia , Titânio/química , Ligas/farmacologia , Ligas/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Ferro/farmacologia , Corrosão , Teste de MateriaisRESUMO
BACKGROUND: Manually bent, standard-of-care, Ti-6Al-4V, mandibular graft fixation devices are associated with a significant post-operative failure rate. These failures require the patient to endure stressful and expensive re-operation. The approach recommended in this report demonstrates the optimization of graft fixation device mechanical properties via "stiffness-matching" by varying the fixation device's location, shape, and material composition through simulation of the device's post-operative performance. This provides information during pre-operative planning that may avoid future device failure. Optimized performance may combine translation of all loading into compression of the bone graft with the adjacent bone segments and elimination or minimization of post-healing interruption of normal stress-strain (loading) trajectories. RESULTS: This study reports a sheep mandibular graft model where four animals received virtually optimized, experimental nickel-titanium (NiTi) fixation plates fabricated using laser beam powder bed fusion (LPBF) additive manufacturing (AM). The last animal, our control, received a standard-of-care, manually bent, Ti-6Al-4V (aka Ti64) fixation plate. A 17.5-mm mandibular graft healed completely in all four animals receiving the experimental device. Experimental NiTi-implanted sheep experienced mandibular bone healing and restoration. The Ti64 plate, in the control animal, fractured and dislocated shortly after being implanted. CONCLUSION: The use of stiffness-matched implants, by means of plate material (NiTi) and geometry (porosity) enhanced bone healing and promoted better load transfer to the healed bone when compared to the bulk Ti64 found in the fixation plate that the Control animal received. The design technique and screw orientation and depth planning improved throughout the study leading to more rapid healing. The large animal model reported here provides data useful for a follow-on clinical trial.
Assuntos
Mandíbula , Impressão Tridimensional , Titânio , Animais , Titânio/química , Ovinos , Mandíbula/cirurgia , Ligas/química , Fenômenos Mecânicos , Níquel/química , Transplante Ósseo , Teste de Materiais , Fenômenos BiomecânicosRESUMO
Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.
Assuntos
Madeira/química , Ligas/química , Parede Celular/química , Celulose/química , Temperatura Alta , Lignina/química , Lignina/isolamento & purificação , Metais/química , Peso Molecular , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Hidróxido de Sódio/química , Sulfitos/química , Resistência à Tração , Madeira/classificaçãoRESUMO
Vascularization plays a significant role in promoting the expedited process of bone regeneration while also enhancing the stability and viability of artificial bone implants. Although titanium alloy scaffolds were designed to mimic the porous structure of human bone tissues to facilitate vascularization in bone repair, their biological inertness restricted their broader utilization. The unique attribute of Metal-organic framework (MOF) MIL-53(Fe), known as "breathing", can facilitate the efficient adsorption of extracellular matrix proteins and thus provide the possibility for efficient interaction between scaffolds and cell adhesion molecules, which helps improve the bioactivity of the titanium alloy scaffolds. In this study, MIL-53(Fe) was synthesized in situ on the scaffold after hydrothermal treatment. The MIL-53(Fe) endowed the scaffold with superior protein absorption ability and preferable biocompatibility. The scaffolds have been shown to possess favorable osteogenesis and angiogenesis inducibility. It was indicated that MIL-53(Fe) modulated the mechanotransduction process of endothelial cells and induced increased cell stiffness by promoting the adsorption of adhesion-mediating extracellular matrix proteins to the scaffold, such as laminin, fibronectin, and perlecan et al., which contributed to the activation of the endothelial tip cell phenotype at sprouting angiogenesis. Therefore, this study effectively leveraged the intrinsic "breathing" properties of MIL-53 (Fe) to enhance the interaction between titanium alloy scaffolds and vascular endothelial cells, thereby facilitating the vascularization inducibility of the scaffold, particularly during the sprouting angiogenesis phase. This study indicates that MIL-53(Fe) coating represents a promising strategy to facilitate accelerated and sufficient vascularization and uncovers the scaffold-vessel interaction from a biomechanical perspective.
Assuntos
Neovascularização Fisiológica , Alicerces Teciduais , Titânio , Titânio/química , Humanos , Alicerces Teciduais/química , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Ligas/química , Células Endoteliais da Veia Umbilical Humana , Próteses e Implantes , Mecanotransdução Celular , Adesão Celular/efeitos dos fármacos , Engenharia Tecidual/métodosRESUMO
BACKGROUND: New versions of the polyester polymer alloy (PEPA) membrane have appeared over the years, with increases in both the pore size and the amount of polyvinylpyrrolidone (PVP) to optimize hydrophilicity performance. This study aimed to assess the efficacy of the most recently developed PEPA dialyzer, the FDY series, in hemodialysis (HD) modality in terms of uremic toxin removal and albumin loss and to compare it with that of several high-flux dialyzers currently used in HD and post-dilution hemodiafiltration (HDF) treatments. METHODS: A prospective study was carried out in 21 patients. All patients underwent six dialysis sessions with the same routine dialysis parameters; only the dialyzer and/or the dialysis modality varied: FX80 in HD, FDY 180 in HD, Clearum HS17 in HDF, Elisio 19H in HDF, Vitapes 180 in HDF, and FX80 in post-dilution HDF. The reduction ratios (RR) of urea, creatinine, ß2-microglobulin, myoglobin, κFLC, prolactin, α1-microglobulin, α1-acid glycoprotein, λFLC, and albumin were compared intraindividually. Dialysate albumin loss was also measured. RESULTS: Both membranes FDY and FX80 are high-flux dialyzers and are applied here in high-flux HD. The average RR of ß2-microglobulin was slightly lower in the two HD treatments than in the HDF treatments. Comparison of dialysis treatments revealed that the PEPA FDY dialyzer in the HD modality was more effective than the FX80 dialyzer in high-flux HD and was as effective as post-dilution HDF, especially in terms of myoglobin, κFLC, prolactin, α1-microglobulin, and λFLC RRs. The FDY treatments obtained similar albumin RR in blood and slightly higher dialysate albumin loss, although the values were clinically acceptable. CONCLUSIONS: The most recently developed PEPA dialyzers in the HD modality were as effective as all treatments in the HDF modality and were clearly superior to high-flux helixone HD treatment. These results confirm that this dialyzer should be categorized within the medium cut-off (MCO) membrane classification.
Assuntos
Membranas Artificiais , Poliésteres , Diálise Renal , Humanos , Masculino , Diálise Renal/instrumentação , Diálise Renal/métodos , Pessoa de Meia-Idade , Feminino , Idoso , Estudos Prospectivos , Poliésteres/química , Ligas/química , Idoso de 80 Anos ou mais , Hemodiafiltração/instrumentação , Hemodiafiltração/métodos , Adulto , Polímeros/químicaRESUMO
This study examined the effects of liquid nitrogen vapor on osteogenesis in the rabbit femur. Cryotweezers made of porous nickel titanium alloy (nitinol or NiTi) obtained by self-propagating high temperature synthesis were used in this experiment. The porous structure of the cryotweezers allows them to hold up to 10 g of liquid nitrogen after being immersed for 2 min, which completely evaporates after 160 s. To study the effects of liquid nitrogen evaporation on osteogenesis, a rabbit femur was perforated. The formed holes were subjected to cryotherapy with varying exposure times. It was found that a 3 s exposure time stimulates osteogenesis, which was manifested in a greater number of osteoblasts in the regenerate compared to the control sample without liquid nitrogen. It was observed that increasing the exposure to 6, 9 or 12 s had a destructive effect, to varying degrees. The most severe damage was exerted by a 12 s exposure, which resulted in the formation of osteonecrosis areas. In the samples exposed to 6 and 9 s of cryotherapy, destruction of the cytoplasm of osteocytes and osteoclasts was observed.
Assuntos
Ligas , Crioterapia , Fêmur , Níquel , Osteogênese , Titânio , Animais , Coelhos , Crioterapia/métodos , Níquel/química , Porosidade , Fêmur/efeitos dos fármacos , Titânio/química , Ligas/química , Osteogênese/efeitos dos fármacos , Nitrogênio , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteonecrose/terapia , Masculino , Osteoclastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteócitos/citologiaRESUMO
Surface modification of titanium and its alloys has been seriously considered by researchers to improve their biological behaviors, in the past few decades. In present research, hydroxyapatite (HA) based composite coatings with different concentrations of 0, 2, 4, and 6 wt% of silver (Ag) nanoparticles were electrophoretically deposited (EPD) on anodized and non-anodized Ti6Al4V, using a direct current at a voltage of 30 V for 10 min at room temperature. The specimens were then characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The cell adhesion images and cell viability results showed that HA-Ag composite coatings significantly promoted the biocompatibility of samples compared with the non-anodized and anodized Ti6Al4V. The viabilities of Mg-63 cells on HA-4%Ag coating and bi-layer coating (HA-4%Ag on anodized specimen) were approximately 91% and they were considered as the best coatings in term of biocompatibility. On the other hand, the antibacterial assessments demonstrated that HA-6%Ag coating had the best antibacterial performance compared with other samples. Furthermore, Tafel polarization curves indicated that corrosion resistance of the bi-layer coating was higher than those of the other specimens. The polarization resistance of this coating was about 7 times more than that of theTi6Al4V alloy.
Assuntos
Durapatita , Nanopartículas Metálicas , Durapatita/química , Titânio/química , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Materiais Revestidos Biocompatíveis/química , Corrosão , Difração de Raios X , Ligas/química , AntibacterianosRESUMO
This study aimed to investigate adhesive shear bond strength (SBS) on an ultrafine-grained niobium alloy (UFG-Nb) that is a potential dental implant material. SBS of three adhesive systems combined with three composites to UFG-Nb was compared to corresponding SBS to Ti-6Al-4V and to zirconia. Specimens of the substrates UFG-Nb, Ti-6Al-4V and zirconia with plane surfaces were sandblasted with Al2O3, cleaned and dried. Three adhesive systems (Futurabond U, Futurabond M + , Futurabond M + DCA; all VOCO GmbH, Cuxhaven, Germany) were applied each on specimens of each substrate and light cured. One composite (BifixSE, BifixQM, GrandioSO; all VOCO GmbH) was applied and light cured resulting in 27 groups (n = 10) for all substrate-adhesive-composite-combinations. SBS was measured after 24 h of storage. To simulate aging equally prepared specimens underwent 5000 thermocycles before SBS measurement. There was no significant difference in SBS within the non-aged groups. Among the artificially aged groups, GrandioSO-groups showed a greater variance of SBS than the other composites. All significant differences of corresponding UFG-Nb-, Ti-6Al-4V- and zirconia-groups with same adhesive-composite-combination (ACC) were observed between UFG-Nb and zirconia or Ti-6Al-4V and zirconia but never between the two metallic substrates. The similarity between these materials might show in their adhesive bonding behavior. As there were no differences comparing corresponding groups prior to and after artificial aging, it can be concluded that aging does not affect SBS to UFG-Nb, Ti-6Al-4V and zirconia using the tested ACCs. Adhesive bonding of established ACCs to UFG-Nb is possible resulting in SBS comparable to those on Ti-6Al-4V and zirconia surfaces.