Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 531, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791230

RESUMO

BACKGROUND: Nectar is a major floral attractant and reward for insects that ensures pollination. Liriodendron, a genus of the Magnoliaceae family, includes only two relict species, L. chinense and L. tulipifera, which are considered "basal angiosperms" according to plant evolutionary history. The flowers of Liriodendron plants are insect pollinated and secrete nectar to attract pollinators. To date, the morphology and anatomy of nectaries, the mechanism of nectar secretion and the molecular mechanism of nectary development in Liriodendron remain poorly understood. METHODS: In this study, we examined the nectary surface cells and change in starch in L. tulipifera by using scanning electron microscopy and periodic acid-Schiff techniques to select appropriate samples for subsequent research. Transcriptome sequencing was of the top and middle parts of immature nectaries and the middle part of mature and postsecretory nectaries in L. tulipifera was performed. We evaluated the expression profiles of 21 DEGs that are closely related to nectary development and nectar secretion for real-time quantitative PCR analysis. RESULTS: L. tulipifera nectaries are starch-storing nectaries and are located in the top and middle parts of L. tulipifera petals. After analyzing the RNA-seq data, we obtained 115.26 Gb of clean data in 12 libraries and mapped the results to the L. chinense reference genome with 71.02-79.77% efficiency. In total, 26,955 DEGs were identified by performing six pairwise comparisons. The flavonoid biosynthesis, phenylpropanoid biosynthesis, anthocyanin biosynthesis and starch and sucrose metabolism pathways were enriched and related to nectar secretion and pigment change. We identified 56 transcription factor families, and members of the TCP, Trihelix, C2H2, ERF, and MADS families changed dynamically during nectary development. Moreover, to further verify the accuracy of the RNA-seq results, we validated the expression profiles of 21 candidate genes. CONCLUSIONS: We evaluated the nectary development and secretion processes comprehensively and identified many related candidate genes in L. tulipifera. These findings suggest that nectaries play important roles in flavonoid synthesis and petal color presentation.


Assuntos
Genes de Plantas , Liriodendron/crescimento & desenvolvimento , Néctar de Plantas/metabolismo , Transcriptoma , Ensaios de Triagem em Larga Escala , Liriodendron/genética , Liriodendron/ultraestrutura , Microscopia Eletrônica de Varredura
2.
Biochemistry ; 41(48): 14141-9, 2002 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-12450377

RESUMO

Calreticulin is a ubiquitous and highly conserved Ca(2+)-binding protein that is involved in intracellular Ca(2+) homeostasis and molecular chaperoning in the endoplasmic reticulum (ER). Plant calreticulin, in contrast to its animal counterpart, is often glycosylated: its N-glycans have been shown so far to be of the high-mannose type, typical of ER-resident glycoproteins. During the characterization of calreticulin from vegetative and reproductive tissues of Liriodendron tulipifera L., we gained some biochemical evidence that prompted us to investigate the monosaccharide composition and primary structure of the calreticulin N-glycans isolated from the ovary of this dicotyledon tree. The structures of the components of the N-glycan pool were elucidated by HPLC analysis and exoglycosidase sequencing, and further confirmed by matrix-assisted laser desorption/ionization mass spectrometry. The 16 identified oligosaccharide structures, which consisted of both the high-mannose and complex type, are indicative of calreticulin glycan processing through the ER-to-Golgi pathway up to the medial and trans Golgi stacks. Approximately 45% of calreticulin glycan chains are of the complex type, always containing beta(1,2)-xylose, and approximately a third of these also contain alpha(1,3)-fucose in the core. The most complex glycoform harbors the Lewis-a epitope Gal(beta)1-3[Fuc(alpha)1-4]GlcNAc. Immunolocalization of calreticulin with anti-calreticulin antibodies was consistent with protein transit through the Golgi. Thus, although it contains the tetrapeptide HDEL ER retention signal, the reticuloplasmin calreticulin possesses the competence to transit from the ER compartment to the distal Golgi stacks. The final fate of the protein after its complete maturation is still obscure.


Assuntos
Calreticulina/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Plantas/metabolismo , Calreticulina/análise , Calreticulina/isolamento & purificação , Calreticulina/ultraestrutura , Cromatografia Líquida de Alta Pressão , Retículo Endoplasmático/química , Retículo Endoplasmático/ultraestrutura , Flores/química , Flores/citologia , Flores/ultraestrutura , Glicosilação , Complexo de Golgi/química , Complexo de Golgi/ultraestrutura , Liriodendron/química , Liriodendron/citologia , Liriodendron/metabolismo , Liriodendron/ultraestrutura , Microscopia Imunoeletrônica , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/ultraestrutura , Polissacarídeos/análise , Transporte Proteico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA