Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.405
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 759-784, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340572

RESUMO

The signaling lipid sphingosine 1-phosphate (S1P) plays critical roles in an immune response. Drugs targeting S1P signaling have been remarkably successful in treatment of multiple sclerosis, and they have shown promise in clinical trials for colitis and psoriasis. One mechanism of these drugs is to block lymphocyte exit from lymph nodes, where lymphocytes are initially activated, into circulation, from which lymphocytes can reach sites of inflammation. Indeed, S1P can be considered a circulation marker, signaling to immune cells to help them find blood and lymphatic vessels, and to endothelial cells to stabilize the vasculature. That said, S1P plays pleiotropic roles in the immune response, and it will be important to build an integrated view of how S1P shapes inflammation. S1P can function so effectively because its distribution is exquisitely tightly controlled. Here we review how S1P gradients regulate immune cell exit from tissues, with particular attention to key outstanding questions in the field.


Assuntos
Movimento Celular/imunologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Animais , Biomarcadores , Humanos , Sistema Imunitário/citologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Esfingosina/metabolismo
2.
Annu Rev Immunol ; 37: 325-347, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676821

RESUMO

ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.


Assuntos
Inflamação/imunologia , Purinas/metabolismo , Receptores Purinérgicos/metabolismo , ADP-Ribosilação , Trifosfato de Adenosina/metabolismo , Animais , Metilação de DNA , Humanos , Inflamação/genética , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais
3.
Annu Rev Biochem ; 93(1): 447-469, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38603559

RESUMO

Lysosomes catabolize and recycle lipids and other biological molecules to maintain cellular homeostasis in diverse nutrient environments. Lysosomal lipid catabolism relies on the stimulatory activity of bis(monoacylglycero)phosphate (BMP), an enigmatic lipid whose levels are altered across myriad lysosome-associated diseases. Here, we review the discovery of BMP over half a century ago and its structural properties that facilitate the activation of lipid hydrolases and recruitment of their coactivators. We further discuss the current, yet incomplete, understanding of BMP catabolism and anabolism. To conclude, we discuss its role in lysosome-associated diseases and the potential for modulating its levels by pharmacologically activating and inhibiting the BMP synthase to therapeutically target lysosomal storage disorders, drug-induced phospholipidosis, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, cancer, and viral infection.


Assuntos
Lisofosfolipídeos , Doenças por Armazenamento dos Lisossomos , Lisossomos , Monoglicerídeos , Humanos , Lisossomos/metabolismo , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Monoglicerídeos/química , Animais , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Metabolismo dos Lipídeos
4.
Cell ; 186(12): 2644-2655.e16, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224812

RESUMO

Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.


Assuntos
Inflamação , Lisofosfolipídeos , Humanos , Esfingosina , Proteínas de Transporte de Ânions/fisiologia
5.
Nat Immunol ; 24(2): 239-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604547

RESUMO

Metastasis is the leading cause of cancer-related deaths and myeloid cells are critical in the metastatic microenvironment. Here, we explore the implications of reprogramming pre-metastatic niche myeloid cells by inducing trained immunity with whole beta-glucan particle (WGP). WGP-trained macrophages had increased responsiveness not only to lipopolysaccharide but also to tumor-derived factors. WGP in vivo treatment led to a trained immunity phenotype in lung interstitial macrophages, resulting in inhibition of tumor metastasis and survival prolongation in multiple mouse models of metastasis. WGP-induced trained immunity is mediated by the metabolite sphingosine-1-phosphate. Adoptive transfer of WGP-trained bone marrow-derived macrophages reduced tumor lung metastasis. Blockade of sphingosine-1-phosphate synthesis and mitochondrial fission abrogated WGP-induced trained immunity and its inhibition of lung metastases. WGP also induced trained immunity in human monocytes, resulting in antitumor activity. Our study identifies the metabolic sphingolipid-mitochondrial fission pathway for WGP-induced trained immunity and control over metastasis.


Assuntos
Neoplasias Pulmonares , beta-Glucanas , Animais , Camundongos , Humanos , Imunidade Treinada , Macrófagos , Lisofosfolipídeos/metabolismo , Monócitos , Neoplasias Pulmonares/patologia , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia , Microambiente Tumoral
6.
Annu Rev Immunol ; 30: 69-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22149932

RESUMO

Much has been learned about how cells enter lymphoid tissues. But how do they leave? Sphingosine-1-phosphate (S1P) has emerged over the past decade as a central mediator of lymphocyte egress. In this review, we summarize the current understanding of how S1P promotes exit from the secondary lymphoid organs and thymus. We review what is known about additional requirements for emigration and summarize the mostly distinct requirements for exit from the bone marrow. Egress from lymphoid organs is limited during immune responses, and we examine how this regulation works. There is accumulating evidence for roles of S1P in directing immune cell behavior within lymphoid tissues. How such actions can fit together with the egress-promoting role of S1P is discussed. Finally, we examine current understanding of how FTY720, a drug that targets S1P receptors and is approved for the treatment of multiple sclerosis, causes immune suppression.


Assuntos
Linfócitos/imunologia , Linfócitos/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/metabolismo , Cloridrato de Fingolimode , Humanos , Imunossupressores/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/metabolismo , Linfócitos/efeitos dos fármacos , Tecido Linfoide/efeitos dos fármacos , Lisofosfolipídeos/imunologia , Modelos Biológicos , Propilenoglicóis/farmacologia , Esfingosina/imunologia , Esfingosina/metabolismo , Esfingosina/farmacologia , Timo/efeitos dos fármacos , Timo/imunologia , Timo/metabolismo
7.
Immunity ; 57(8): 1828-1847.e11, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002541

RESUMO

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.


Assuntos
Anafilaxia , Fibroblastos , Lisofosfolipídeos , Mastócitos , Camundongos Knockout , Comunicação Parácrina , Diester Fosfórico Hidrolases , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Animais , Mastócitos/imunologia , Mastócitos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Camundongos , Fibroblastos/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Prostaglandina D2/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-33/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diferenciação Celular , Camundongos Endogâmicos C57BL , Proteína 1 Semelhante a Receptor de Interleucina-1 , Lipocalinas
8.
Immunity ; 55(2): 254-271.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139352

RESUMO

Allergic immunity is orchestrated by group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells prominently arrayed at epithelial- and microbial-rich barriers. However, ILC2s and Th2 cells are also present in fibroblast-rich niches within the adventitial layer of larger vessels and similar boundary structures in sterile deep tissues, and it remains unclear whether they undergo dynamic repositioning during immune perturbations. Here, we used thick-section quantitative imaging to show that allergic inflammation drives invasion of lung and liver non-adventitial parenchyma by ILC2s and Th2 cells. However, during concurrent type 1 and type 2 mixed inflammation, IFNγ from broadly distributed type 1 lymphocytes directly blocked both ILC2 parenchymal trafficking and subsequent cell survival. ILC2 and Th2 cell confinement to adventitia limited mortality by the type 1 pathogen Listeria monocytogenes. Our results suggest that the topography of tissue lymphocyte subsets is tightly regulated to promote appropriately timed and balanced immunity.


Assuntos
Inflamação/imunologia , Interferon gama/imunologia , Subpopulações de Linfócitos/imunologia , Células Th2/imunologia , Animais , Morte Celular/imunologia , Movimento Celular/imunologia , Hipersensibilidade/imunologia , Imunidade Inata , Interleucina-33/imunologia , Interleucina-5/metabolismo , Listeria monocytogenes , Listeriose/imunologia , Listeriose/mortalidade , Fígado/imunologia , Pulmão/imunologia , Subpopulações de Linfócitos/metabolismo , Lisofosfolipídeos/imunologia , Camundongos , Tecido Parenquimatoso/imunologia , Esfingosina/análogos & derivados , Esfingosina/imunologia , Células Th1/imunologia , Células Th2/metabolismo
9.
Mol Cell ; 83(15): 2739-2752.e5, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37499662

RESUMO

Solute carrier spinster homolog 2 (SPNS2), one of only four known major facilitator superfamily (MFS) lysolipid transporters in humans, exports sphingosine-1-phosphate (S1P) across cell membranes. Here, we explore the synergistic effects of lipid binding and conformational dynamics on SPNS2's transport mechanism. Using mass spectrometry, we discovered that SPNS2 interacts preferentially with PI(4,5)P2. Together with functional studies and molecular dynamics (MD) simulations, we identified potential PI(4,5)P2 binding sites. Mutagenesis of proposed lipid binding sites and inhibition of PI(4,5)P2 synthesis reduce S1P transport, whereas the absence of the N terminus renders the transporter essentially inactive. Probing the conformational dynamics of SPNS2, we show how synergistic binding of PI(4,5)P2 and S1P facilitates transport, increases dynamics of the extracellular gate, and stabilizes the intracellular gate. Given that SPNS2 transports a key signaling lipid, our results have implications for therapeutic targeting and also illustrate a regulatory mechanism for MFS transporters.


Assuntos
Lisofosfolipídeos , Esfingosina , Humanos , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo
10.
Immunity ; 54(6): 1123-1136.e8, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107271

RESUMO

Neutrophils migrate rapidly to damaged tissue and play critical roles in host defense and tissue homeostasis. Here we investigated the mechanisms whereby neutrophils participate in tissue repair. In an intestinal epithelia injury model, neutrophil depletion exacerbated colitis and associated with reduced interleukin (IL)-22 and limited activation of type 3 innate lymphoid cells (ILC3s). Co-culture with neutrophils activated ILC3s in a manner dependent on neutrophil apoptosis. Metabolomic analyses revealed that lysophosphatidylserine (LysoPS) from apoptotic neutrophils directly stimulated ILC3 activation. ILC3-specific deletion of Gpr34, encoding the LysoPS receptor GPR34, or inhibition of downstream PI3K-AKT or ERK suppressed IL-22 production in response to apoptotic neutrophils. Gpr34-/- mice exhibited compromised ILC3 activation and tissue repair during colon injury, and neutrophil depletion abrogated these defects. GPR34 deficiency in ILC3s limited IL-22 production and tissue repair in vivo in settings of colon and skin injury. Thus, GPR34 is an ILC3-expressed damage-sensing receptor that triggers tissue repair upon recognition of dying neutrophils.


Assuntos
Apoptose/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Lisofosfolipídeos/imunologia , Neutrófilos/imunologia , Receptores de Lisofosfolipídeos/imunologia , Animais , Células Cultivadas , Colite/imunologia , Colo/imunologia , Homeostase/imunologia , Humanos , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/imunologia , Interleucina 22
11.
Nat Immunol ; 18(1): 15-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27841869

RESUMO

The lymph node periphery is an important site for many immunological functions, from pathogen containment to the differentiation of helper T cells, yet the cues that position cells in this region are largely undefined. Here, through the use of a reporter for the signaling lipid S1P (sphingosine 1-phosphate), we found that cells sensed higher concentrations of S1P in the medullary cords than in the T cell zone and that the S1P transporter SPNS2 on lymphatic endothelial cells generated this gradient. Natural killer (NK) cells are located at the periphery of the lymph node, predominantly in the medulla, and we found that expression of SPNS2, expression of the S1P receptor S1PR5 on NK cells, and expression of the chemokine receptor CXCR4 were all required for NK cell localization during homeostasis and rapid production of interferon-γ by NK cells after challenge. Our findings elucidate the spatial cues for NK cell organization and reveal a previously unknown role for S1P in positioning cells within the medulla.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Células Endoteliais/imunologia , Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Lisofosfolipídeos/metabolismo , Receptores CXCR4/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Animais , Proteínas de Transporte de Ânions/genética , Diferenciação Celular , Movimento Celular , Células Cultivadas , Quimiotaxia , Homeostase , Interferon gama/metabolismo , Ativação Linfocitária/genética , Lisofosfolipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR4/genética , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Esfingosina/química , Esfingosina/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia
12.
Mol Cell ; 80(4): 578-591.e5, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33171122

RESUMO

Extracellular 2'3'-cyclic-GMP-AMP (cGAMP) is an immunotransmitter exported by diseased cells and imported into host cells to activate the innate immune STING pathway. We previously identified SLC19A1 as a cGAMP importer, but its use across human cell lines is limited. Here, we identify LRRC8A heteromeric channels, better known as volume-regulated anion channels (VRAC), as widely expressed cGAMP transporters. LRRC8A forms complexes with LRRC8C and/or LRRC8E, depending on their expression levels, to transport cGAMP and other 2'3'-cyclic dinucleotides. In contrast, LRRC8D inhibits cGAMP transport. We demonstrate that cGAMP is effluxed or influxed via LRRC8 channels, as dictated by the cGAMP electrochemical gradient. Activation of LRRC8A channels, which can occur under diverse stresses, strongly potentiates cGAMP transport. We identify activator sphingosine 1-phosphate and inhibitor DCPIB as chemical tools to manipulate channel-mediated cGAMP transport. Finally, LRRC8A channels are key cGAMP transporters in resting primary human vasculature cells and universal human cGAMP transporters when activated.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Transporte Biológico , Ciclopentanos/farmacologia , Humanos , Indanos/farmacologia , Lisofosfolipídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Células U937
13.
Nat Immunol ; 16(12): 1245-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26502404

RESUMO

Despite the importance of signaling lipids, many questions remain about their function because few tools are available for charting lipid gradients in vivo. Here we generated a sphingosine 1-phosphate (S1P) reporter mouse and used this mouse to define the distribution of S1P in the spleen. Unexpectedly, the presence of blood did not serve as a predictor of the concentration of signaling-available S1P. Large areas of the red pulp had low concentrations of S1P, while S1P was sensed by cells inside the white pulp near the marginal sinus. The lipid phosphate phosphatase LPP3 maintained low S1P concentrations in the spleen and enabled efficient shuttling of marginal zone B cells. The exquisitely tight regulation of S1P availability might explain how a single lipid can simultaneously orchestrate the movements of many cells of the immune system.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Baço/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Linfócitos B/metabolismo , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Baço/citologia , Proteína Vermelha Fluorescente
14.
Immunity ; 49(4): 592-594, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332627

RESUMO

Glioblastoma are highly immunosuppressive brain tumors that are known for their T cell paucity. In a recent issue of Nature Medicine, Chongsathidkiet et al. (2018) discovered a brain-specific mechanism of tumors to escape immunosurveillance by trapping T cells in the bone marrow through the loss of sphingosine-1-phosphate (S1P) receptor on the T cell surface.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Medula Óssea , Humanos , Lisofosfolipídeos , Receptores de Lisoesfingolipídeo , Esfingosina , Linfócitos T
15.
Cell ; 150(4): 780-91, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22863277

RESUMO

The Hippo pathway is crucial in organ size control, and its dysregulation contributes to tumorigenesis. However, upstream signals that regulate the mammalian Hippo pathway have remained elusive. Here, we report that the Hippo pathway is regulated by G-protein-coupled receptor (GPCR) signaling. Serum-borne lysophosphatidic acid (LPA) and sphingosine 1-phosphophate (S1P) act through G12/13-coupled receptors to inhibit the Hippo pathway kinases Lats1/2, thereby activating YAP and TAZ transcription coactivators, which are oncoproteins repressed by Lats1/2. YAP and TAZ are involved in LPA-induced gene expression, cell migration, and proliferation. In contrast, stimulation of Gs-coupled receptors by glucagon or epinephrine activates Lats1/2 kinase activity, thereby inhibiting YAP function. Thus, GPCR signaling can either activate or inhibit the Hippo-YAP pathway depending on the coupled G protein. Our study identifies extracellular diffusible signals that modulate the Hippo pathway and also establishes the Hippo-YAP pathway as a critical signaling branch downstream of GPCR.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Aciltransferases , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Humanos , Lisofosfolipídeos/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Tamanho do Órgão , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Soro/química , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fatores de Transcrição/metabolismo
16.
Nature ; 592(7853): 290-295, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658712

RESUMO

The lipid chemoattractant sphingosine 1-phosphate (S1P) guides cells out of tissues, where the concentration of S1P is relatively low, into circulatory fluids, where the concentration of S1P is high1. For example, S1P directs the exit of T cells from lymph nodes, where T cells are initially activated, into lymph, from which T cells reach the blood and ultimately inflamed tissues1. T cells follow S1P gradients primarily using S1P receptor 1 (ref. 1). Recent studies have described how S1P gradients are established at steady state, but little is known about the distribution of S1P in disease or about how changing levels of S1P may affect immune responses. Here we show that the concentration of S1P increases in lymph nodes during an immune response. We found that haematopoietic cells, including inflammatory monocytes, were an important source of this S1P, which was an unexpected finding as endothelial cells provide S1P to lymph1. Inflammatory monocytes required the early activation marker CD69 to supply this S1P, in part because the expression of CD69 was associated with reduced levels of S1pr5 (which encodes S1P receptor 5). CD69 acted as a 'stand-your-ground' signal, keeping immune cells at a site of inflammation by regulating both the receptors and the gradients of S1P. Finally, increased levels of S1P prolonged the residence time of T cells in the lymph nodes and exacerbated the severity of experimental autoimmune encephalomyelitis in mice. This finding suggests that residence time in the lymph nodes might regulate the differentiation of T cells, and points to new uses of drugs that target S1P signalling.


Assuntos
Linfonodos/imunologia , Linfonodos/metabolismo , Lisofosfolipídeos/metabolismo , Monócitos/metabolismo , Esfingosina/análogos & derivados , Linfócitos T/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Linfonodos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfócitos T/citologia
17.
Immunol Rev ; 317(1): 20-29, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036835

RESUMO

In addition to direct activation by pathogens and antigens, immune cell functions are further modulated by factors in their environment. Recent studies have revealed that lysophospholipids (LPL) derived from membrane glycerophospholipids are such environmental factors. They are produced by the action of various phospholipases and modulate immune responses positively or negatively via G-protein-coupled receptor-type receptors. These include lysophosphatidic acid, lysophosphatidylserine (LysoPS), and lysophosphatidylinositol. Here, we summarize what is known about the synthetic pathways, receptors, and immunomodulatory functions of these LPLs. Particular focus is given to LysoPS, which have recently been identified, and recent findings on their immunomodulatory actions are presented.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Lisofosfolipídeos/metabolismo
18.
Immunol Rev ; 317(1): 203-222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37096808

RESUMO

Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.


Assuntos
Antineoplásicos , Linfócitos T CD8-Positivos , Humanos , Camundongos , Animais , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Receptores de Ácidos Lisofosfatídicos/metabolismo
19.
PLoS Biol ; 21(12): e3002387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048360

RESUMO

Lysophosphatidylserine (LysoPS) is a naturally occurring lipid mediator involved in various physiological and pathological processes especially those related to the immune system. GPR34, GPR174, and P2Y10 have been identified as the receptors for LysoPS, and its analogues have been developed as agonists or antagonists for these receptors. However, the lack of structural information hinders the drug development with novel characteristics, such as nonlipid ligands and allosteric modulators. Here, we determined the structures of human GPR34 and GPR174 in complex with LysoPS and G protein by cryo-EM. Combined with structural analysis and functional studies, we elucidated the lipid-binding modes of these receptors. By structural comparison, we identified the structural features of GPR34 and GPR174 in active state. Taken together, our findings provide insights into ligand recognition and signaling of LysoPS receptors and will facilitate the development of novel therapeutics for related inflammatory diseases and autoimmune diseases.


Assuntos
Lisofosfolipídeos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lisofosfolipídeos/agonistas , Receptores de Lisofosfolipídeos/metabolismo
20.
Circ Res ; 134(8): 990-1005, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38456287

RESUMO

BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Proteínas Nogo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Endotélio/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Apolipoproteínas E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA