Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.963
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(3): 748-748.e1, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32359442

RESUMO

In addition to their well-defined recycling function, lysosomes act as metabolic signaling hubs that adjust cellular metabolism according to the availability of nutrients and growth factors by regulating metabolic kinases and transcription factors on their surface. Moreover, lysosomal hydrolases and ions released to cytosol or extracellular space have recently emerged as important regulators of various cellular processes from cell death to cell division. To view this SnapShot, open or download the PDF.


Assuntos
Lisossomos/metabolismo , Lisossomos/fisiologia , Autofagia/fisiologia , Citosol/metabolismo , Espaço Extracelular/metabolismo , Humanos , Hidrolases/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
2.
Cell ; 181(5): 1176-1187.e16, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32437660

RESUMO

Dysfunctional mitochondria accumulate in many human diseases. Accordingly, mitophagy, which removes these mitochondria through lysosomal degradation, is attracting broad attention. Due to uncertainties in the operational principles of conventional mitophagy probes, however, the specificity and quantitativeness of their readouts are disputable. Thorough investigation of the behaviors and fates of fluorescent proteins inside and outside lysosomes enabled us to develop an indicator for mitophagy, mito-SRAI. Through strict control of its mitochondrial targeting, we were able to monitor mitophagy in fixed biological samples more reproducibly than before. Large-scale image-based high-throughput screening led to the discovery of a hit compound that induces selective mitophagy of damaged mitochondria. In a mouse model of Parkinsons disease, we found that dopaminergic neurons selectively failed to execute mitophagy that promoted their survival within lesions. These results show that mito-SRAI is an essential tool for quantitative studies of mitochondrial quality control.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Lisossomos/metabolismo , Mitofagia/fisiologia , Animais , Autofagia/fisiologia , Imunofluorescência/métodos , Corantes Fluorescentes/química , Humanos , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia/genética
3.
Nat Rev Mol Cell Biol ; 21(2): 101-118, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768005

RESUMO

Exciting new discoveries have transformed the view of the lysosome from a static organelle dedicated to the disposal and recycling of cellular waste to a highly dynamic structure that mediates the adaptation of cell metabolism to environmental cues. Lysosome-mediated signalling pathways and transcription programmes are able to sense the status of cellular metabolism and control the switch between anabolism and catabolism by regulating lysosomal biogenesis and autophagy. The lysosome also extensively communicates with other cellular structures by exchanging content and information and by establishing membrane contact sites. It is now clear that lysosome positioning is a dynamically regulated process and a crucial determinant of lysosomal function. Finally, growing evidence indicates that the role of lysosomal dysfunction in human diseases goes beyond rare inherited diseases, such as lysosomal storage disorders, to include common neurodegenerative and metabolic diseases, as well as cancer. Together, these discoveries highlight the lysosome as a regulatory hub for cellular and organismal homeostasis, and an attractive therapeutic target for a broad variety of disease conditions.


Assuntos
Homeostase/fisiologia , Lisossomos/metabolismo , Lisossomos/fisiologia , Animais , Autofagia , Humanos , Doenças Metabólicas/metabolismo , Metabolismo , Transdução de Sinais
4.
Cell ; 167(6): 1433-1435, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912049

RESUMO

This year's Nobel Prize in Physiology or Medicine has been awarded to Yoshinori Ohsumi for the discovery of the molecular principles governing autophagy, an intracellular degradation pathway routed via lysosomes or vacuoles. It is a story of a simple yet insightful yeast genetic screen that revealed the inner circuitry of one of the most powerful quality-control pathways in cells.


Assuntos
Autofagia , Prêmio Nobel , Fisiologia/história , Animais , Autofagossomos/fisiologia , História do Século XX , Humanos , Lisossomos/fisiologia , Leveduras/citologia , Leveduras/fisiologia
5.
Nat Rev Mol Cell Biol ; 19(6): 365-381, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626215

RESUMO

Chaperone-mediated autophagy (CMA) was the first studied process that indicated that degradation of intracellular components by the lysosome can be selective - a concept that is now well accepted for other forms of autophagy. Lysosomes can degrade cellular cytosol in a nonspecific manner but can also discriminate what to target for degradation with the involvement of a degradation tag, a chaperone and a sophisticated mechanism to make the selected proteins cross the lysosomal membrane through a dedicated translocation complex. Recent studies modulating CMA activity in vivo using transgenic mouse models have demonstrated that selectivity confers on CMA the ability to participate in the regulation of multiple cellular functions. Timely degradation of specific cellular proteins by CMA modulates, for example, glucose and lipid metabolism, DNA repair, cellular reprograming and the cellular response to stress. These findings expand the physiological relevance of CMA beyond its originally identified role in protein quality control and reveal that CMA failure with age may aggravate diseases, such as ageing-associated neurodegeneration and cancer.


Assuntos
Autofagia/fisiologia , Chaperonas Moleculares/metabolismo , Animais , Humanos , Lisossomos/metabolismo , Lisossomos/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
6.
Cell ; 157(6): 1473-1487, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906158

RESUMO

Endocytosis is critical for cellular physiology and thus is highly regulated. To identify regulatory interactions controlling the endocytic membrane system, we conducted 13 RNAi screens on multiple endocytic activities and their downstream organelles. Combined with image analysis of thousands of single cells per perturbation and their cell-to-cell variability, this created a high-quality and cross-comparable quantitative data set. Unbiased analysis revealed emergent properties of the endocytic membrane system and how its complexity evolved and distinct programs of regulatory control that coregulate specific subsets of endocytic uptake routes and organelle abundances. We show that these subset effects allow the mapping of functional regulatory interactions and their interaction motifs between kinases, membrane-trafficking machinery, and the cytoskeleton at a large scale, some of which we further characterize. Our work presents a powerful approach to identify regulatory interactions in complex cellular systems from parallel single-gene or double-gene perturbation screens in human cells and yeast.


Assuntos
Técnicas Citológicas , Endocitose , Regulação da Expressão Gênica , Técnicas Genéticas , Saccharomyces cerevisiae/citologia , Animais , Endossomos/fisiologia , Técnicas de Inativação de Genes , Complexo de Golgi/fisiologia , Humanos , Lisossomos/fisiologia , Filogenia , Interferência de RNA , Saccharomyces cerevisiae/fisiologia
7.
Nat Immunol ; 17(6): 677-86, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27089382

RESUMO

Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host.


Assuntos
Autofagia/genética , Metabolismo dos Lipídeos/genética , Lisossomos/fisiologia , Macrófagos/fisiologia , MicroRNAs/metabolismo , Mycobacterium tuberculosis/fisiologia , Tuberculose/genética , Animais , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Lisossomos/microbiologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
9.
Annu Rev Cell Dev Biol ; 30: 79-109, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25103867

RESUMO

Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.


Assuntos
Fenômenos Fisiológicos Bacterianos , Membrana Celular/metabolismo , Células/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Autofagia/fisiologia , Proteínas de Bactérias/fisiologia , Toxinas Bacterianas/farmacologia , Transporte Biológico , Permeabilidade da Membrana Celular , Células/ultraestrutura , Citosol/microbiologia , Endocitose/fisiologia , Humanos , Lisossomos/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/fisiologia , Transporte Proteico , Vacúolos/microbiologia , Vacúolos/fisiologia
10.
Mol Cell ; 77(3): 645-655.e7, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31983508

RESUMO

The lysosome is an acidic multi-functional organelle with roles in macromolecular digestion, nutrient sensing, and signaling. However, why cells require acidic lysosomes to proliferate and which nutrients become limiting under lysosomal dysfunction are unclear. To address this, we performed CRISPR-Cas9-based genetic screens and identified cholesterol biosynthesis and iron uptake as essential metabolic pathways when lysosomal pH is altered. While cholesterol synthesis is only necessary, iron is both necessary and sufficient for cell proliferation under lysosomal dysfunction. Remarkably, iron supplementation restores cell proliferation under both pharmacologic and genetic-mediated lysosomal dysfunction. The rescue was independent of metabolic or signaling changes classically associated with increased lysosomal pH, uncoupling lysosomal function from cell proliferation. Finally, our experiments revealed that lysosomal dysfunction dramatically alters mitochondrial metabolism and hypoxia inducible factor (HIF) signaling due to iron depletion. Altogether, these findings identify iron homeostasis as the key function of lysosomal acidity for cell proliferation.


Assuntos
Proliferação de Células/fisiologia , Ferro/metabolismo , Lisossomos/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Células Jurkat , Lisossomos/fisiologia , Mitocôndrias/metabolismo , Transdução de Sinais/genética
11.
Annu Rev Neurosci ; 41: 255-276, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29661037

RESUMO

One of the fundamental properties of the cell is the capability to digest and remodel its own components according to metabolic and developmental needs. This is accomplished via the autophagy-lysosome system, a pathway of critical importance in the brain, where it contributes to neuronal plasticity and must protect nonreplaceable neurons from the potentially harmful accumulation of cellular waste. The study of lysosomal biogenesis and function in the context of common and rare neurodegenerative diseases has revealed that a dysfunctional autophagy-lysosome system is the shared nexus where multiple, interconnected pathogenic events take place. The characterization of pathways and mechanisms regulating the lysosomal system and autophagic clearance offers unprecedented opportunities for the development of polyvalent therapeutic strategies based on the enhancement of the autophagy-lysosome pathway to maintain cellular homeostasis and achieve neuroprotection.


Assuntos
Autofagia/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Lisossomos/fisiologia , Animais , Humanos , Metabolismo dos Lipídeos , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
12.
Annu Rev Genet ; 51: 455-476, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28934592

RESUMO

The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell-cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.


Assuntos
Evolução Biológica , Comunicação Celular/fisiologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cnidários/anatomia & histologia , Cnidários/fisiologia , Endossomos/fisiologia , Endossomos/ultraestrutura , Lisossomos/fisiologia , Lisossomos/ultraestrutura , Sistema Nervoso/citologia , Neurônios/citologia , Placozoa/anatomia & histologia , Placozoa/fisiologia , Poríferos/anatomia & histologia , Poríferos/fisiologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Vertebrados/anatomia & histologia , Vertebrados/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
13.
Nat Immunol ; 14(1): 61-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23160154

RESUMO

The sensing of viral nucleic acids by the innate immune system triggers the production of type I interferons, which activates interferon-stimulated genes (ISGs) and directs a multifaceted antiviral response. ISGs can also be activated through interferon-independent pathways, although the precise mechanisms remain elusive. Here we found that the cytosolic exonuclease Trex1 regulated the activation of a subset of ISGs independently of interferon. Both Trex1(-/-) mouse cells and Trex1-mutant human cells had high expression of genes encoding antiviral molecules ('antiviral genes') and were refractory to viral infection. The interferon-independent activation of antiviral genes in Trex1(-/-) cells required the adaptor STING, the kinase TBK1 and the transcription factors IRF3 and IRF7. We also found that Trex1-deficient cells had an expanded lysosomal compartment, altered subcellular localization of the transcription factor TFEB and diminished activity of the regulator mTORC1. Together our data identify Trex1 as a regulator of lysosomal biogenesis and interferon-independent activation of antiviral genes and show that dysregulation of lysosomes can elicit innate immune responses.


Assuntos
Antígenos Virais/imunologia , Exodesoxirribonucleases/metabolismo , Lisossomos/fisiologia , Fosfoproteínas/metabolismo , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Animais , Exodesoxirribonucleases/genética , Células HeLa , Humanos , Imunidade Ativa/genética , Interferons/imunologia , Camundongos , Camundongos Knockout , Mutação/genética , Biogênese de Organelas , Fosfoproteínas/genética , RNA Interferente Pequeno/genética
14.
Immunity ; 44(6): 1392-405, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27287411

RESUMO

Although numerous polymorphisms have been associated with inflammatory bowel disease (IBD), identifying the function of these genetic factors has proved challenging. Here we identified a role for nine genes in IBD susceptibility loci in antibacterial autophagy and characterized a role for one of these genes, GPR65, in maintaining lysosome function. Mice lacking Gpr65, a proton-sensing G protein-coupled receptor, showed increased susceptibly to bacteria-induced colitis. Epithelial cells and macrophages lacking GPR65 exhibited impaired clearance of intracellular bacteria and accumulation of aberrant lysosomes. Similarly, IBD patient cells and epithelial cells expressing an IBD-associated missense variant, GPR65 I231L, displayed aberrant lysosomal pH resulting in lysosomal dysfunction, impaired bacterial restriction, and altered lipid droplet formation. The GPR65 I231L polymorphism was sufficient to confer decreased GPR65 signaling. Collectively, these data establish a role for GPR65 in IBD susceptibility and identify lysosomal dysfunction as a potentially causative element in IBD pathogenesis with effects on cellular homeostasis and defense.


Assuntos
Colite/imunologia , Células Epiteliais/imunologia , Doenças Inflamatórias Intestinais/genética , Lisossomos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Salmonella typhimurium/imunologia , Animais , Predisposição Genética para Doença , Células HeLa , Humanos , Doenças Inflamatórias Intestinais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagossomos/fisiologia , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Risco
15.
Nat Rev Mol Cell Biol ; 14(5): 283-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23609508

RESUMO

For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease.


Assuntos
Lisossomos/fisiologia , Animais , Metabolismo Energético , Humanos , Lisossomos/metabolismo , Transdução de Sinais
16.
Gastroenterology ; 164(3): 424-438, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36436593

RESUMO

BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Colangiocarcinoma , Exossomos , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Colangiocarcinoma/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Lisossomos/fisiologia , Complexo de Endopeptidases do Proteassoma , PTEN Fosfo-Hidrolase/metabolismo , Estudos Retrospectivos
17.
Cell Mol Life Sci ; 80(2): 53, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707427

RESUMO

Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive disorder caused by biallelic mutations in the lysosomal trafficking regulator (LYST) gene. Even though enlarged lysosomes and/or lysosome-related organelles (LROs) are the typical cellular hallmarks of CHS, they have not been investigated in human neuronal models. Moreover, how and why the loss of LYST function causes a lysosome phenotype in cells has not been elucidated. We report that the LYST-deficient human neuronal model exhibits lysosome depletion accompanied by hyperelongated tubules extruding from enlarged autolysosomes. These results have also been recapitulated in neurons differentiated from CHS patients' induced pluripotent stem cells (iPSCs), validating our model system. We propose that LYST ensures the correct fission/scission of the autolysosome tubules during autophagic lysosome reformation (ALR), a crucial process to restore the number of free lysosomes after autophagy. We further demonstrate that LYST is recruited to the lysosome membrane, likely to facilitate the fission of autolysosome tubules. Together, our results highlight the key role of LYST in maintaining lysosomal homeostasis following autophagy and suggest that ALR dysregulation is likely associated with the neurodegenerative CHS phenotype.


Assuntos
Síndrome de Chediak-Higashi , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Lisossomos/fisiologia , Organelas , Autofagia/fisiologia , Síndrome de Chediak-Higashi/genética , Neurônios
18.
Immunity ; 41(3): 375-388, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25238095

RESUMO

SLC15A4 is a lysosome-resident, proton-coupled amino-acid transporter that moves histidine and oligopeptides from inside the lysosome to the cytosol of eukaryotic cells. SLC15A4 is required for Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) and is involved in the pathogenesis of certain diseases including lupus-like autoimmunity. How SLC15A4 contributes to diseases is largely unknown. Here we have shown that B cell SLC15A4 was crucial for TLR7-triggered IFN-I and autoantibody productions in a mouse lupus model. SLC15A4 loss disturbed the endolysosomal pH regulation and probably the v-ATPase integrity, and these changes were associated with disruption of the mTOR pathway, leading to failure of the IFN regulatory factor 7 (IRF7)-IFN-I regulatory circuit. Importantly, SLC15A4's transporter activity was necessary for the TLR-triggered cytokine production. Our findings revealed that SLC15A4-mediated optimization of the endolysosomal state is integral to a TLR7-triggered, mTOR-dependent IRF7-IFN-I circuit that leads to autoantibody production.


Assuntos
Formação de Anticorpos/imunologia , Inflamação/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Proteínas de Membrana Transportadoras/imunologia , Serina-Treonina Quinases TOR/imunologia , Animais , Anticorpos/imunologia , Autoanticorpos/biossíntese , Linfócitos B/imunologia , Células Cultivadas , Imunoglobulina G/biossíntese , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/biossíntese , Lúpus Eritematoso Sistêmico/patologia , Lisossomos/fisiologia , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/imunologia
19.
Nat Rev Mol Cell Biol ; 12(8): 535-41, 2011 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-21750569

RESUMO

A little over 1 year ago, we lost a bright scientist and a dear colleague who, in his younger years, proposed the 'heretical' idea that lysosomes could selectively degrade cytosolic proteins. That scientist was J. Fred Dice, and his lifetime's discovery was the degradative pathway that we now know as chaperone-mediated autophagy.


Assuntos
Autofagia/fisiologia , Lisossomos/fisiologia , Chaperonas Moleculares/história , Animais , Boston , California , História do Século XX , Modelos Biológicos , Chaperonas Moleculares/fisiologia , Ratos , Pesquisa/história , Espanha
20.
Mol Cell ; 59(4): 522-39, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26295960

RESUMO

Autophagy constitutes a prominent mechanism through which eukaryotic cells preserve homeostasis in baseline conditions and in response to perturbations of the intracellular or extracellular microenvironment. Autophagic responses can be relatively non-selective or target a specific subcellular compartment. At least in part, this depends on the balance between the availability of autophagic substrates ("offer") and the cellular need of autophagic products or functions for adaptation ("demand"). Irrespective of cargo specificity, adaptive autophagy relies on a panel of sensors that detect potentially dangerous cues and convert them into signals that are ultimately relayed to the autophagic machinery. Here, we summarize the molecular systems through which specific subcellular compartments-including the nucleus, mitochondria, plasma membrane, reticular apparatus, and cytosol-convert homeostatic perturbations into an increased offer of autophagic substrates or an accrued cellular demand for autophagic products or functions.


Assuntos
Autofagia , Núcleo Celular/fisiologia , Retículo Endoplasmático/fisiologia , Mitocôndrias/fisiologia , Animais , Membrana Celular/fisiologia , Humanos , Lisossomos/fisiologia , Potencial da Membrana Mitocondrial , Fagossomos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA