RESUMO
Diabetic foot ulcers (DFUs), a life-threatening complication of diabetes mellitus, have limited treatment options, often resulting in amputations. HMG-CoA reductase inhibitors such as statins are cholesterol-reducing agents that may provide a new therapeutic option. Statins target the cholesterol pathway and block the synthesis of the wound-healing inhibitors farnesyl pyrophosphate (FPP) and cortisol, ligands for the glucocorticoid receptor (GR). Here we demonstrate that the naturally occurring statin mevastatin reverses FPP's effects and promotes healing by using in vitro wound healing assays, human ex vivo and porcine in vivo wound models, and DFU tissue. Moreover, we measured cortisol levels by ELISA and found that mevastatin inhibited cortisol synthesis in keratinocytes and biopsies from patients with DFU. Of note, topical mevastatin stimulated epithelialization and angiogenesis in vivo Mevastatin also reversed FPP-mediated induction of the GR target, the transcription factor c-Myc (a biomarker of non-healing wounds), in porcine and human wound models. Importantly, mevastatin reversed c-Myc overexpression in DFUs. It induced expression of the long noncoding RNA Gas5 that blocks c-Myc expression, which was confirmed by overexpression studies. We conclude that topical mevastatin accelerates wound closure by promoting epithelialization via multiple mechanisms: modulation of GR ligands and induction of the long noncoding RNA Gas5, leading to c-Myc inhibition. In light of these findings, we propose that repurposing statin drugs for topical treatment of DFUs may offer another option for managing this serious condition.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Queratinócitos/metabolismo , Lovastatina/análogos & derivados , Proteínas Proto-Oncogênicas c-myc/biossíntese , RNA Longo não Codificante/metabolismo , Receptores de Glucocorticoides/metabolismo , Cicatrização/efeitos dos fármacos , Administração Tópica , Pé Diabético/tratamento farmacológico , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Humanos , Queratinócitos/patologia , Lovastatina/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genéticaRESUMO
Vimentin is a cytoskeletal intermediate filament protein that is expressed in mesenchymal cells and cancer cells during the epithelial-mesenchymal transition. The goal of this study was to identify vimentin-targeting small molecules by using the Tocriscreen library of 1120 biochemically active compounds. We monitored vimentin filament reorganization and bundling in adrenal carcinoma SW13 vimentin-positive (SW13-vim+) cells via indirect immunofluorescence. The screen identified 18 pharmacologically diverse hits that included 2 statins-simvastatin and mevastatin. Simvastatin induced vimentin reorganization within 15-30 min and significant perinuclear bundling within 60 min (IC50 = 6.7 nM). Early filament reorganization coincided with increased vimentin solubility. Mevastatin produced similar effects at >1 µM, whereas the structurally related pravastatin and lovastatin did not affect vimentin. In vitro vimentin filament assembly assays revealed a direct targeting mechanism, as determined biochemically and by electron microscopy. In SW13-vim+ cells, simvastatin, but not pravastatin, reduced total cell numbers (IC50 = 48.1 nM) and promoted apoptosis after 24 h. In contrast, SW13-vim- cell viability was unaffected by simvastatin, unless vimentin was ectopically expressed. Simvastatin similarly targeted vimentin filaments and induced cell death in MDA-MB-231 (vim+), but lacked effect in MCF7 (vim-) breast cancer cells. In conclusion, this study identified vimentin as a direct molecular target that mediates simvastatin-induced cell death in 2 different cancer cell lines.-Trogden, K. P., Battaglia, R. A., Kabiraj, P., Madden, V. J., Herrmann, H., Snider, N. T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells.
Assuntos
Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Sinvastatina/farmacologia , Vimentina/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/ultraestrutura , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/ultraestrutura , Morte Celular , Feminino , Humanos , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Células MCF-7 , Microscopia de Fluorescência , Proteínas de Neoplasias/antagonistas & inibidores , Vimentina/antagonistas & inibidoresRESUMO
OBJECTIVE: Evolocumab, a PCSK9 (proprotein convertase subtilisin kexin type 9)-neutralizing antibody, lowers low-density lipoprotein cholesterol (LDL-C) in homozygous familial hypercholesterolemic (HoFH) patients with reduced LDLR (low-density lipoprotein receptor) function. However, their individual responses are highly variable, even among carriers of identical LDLR genetic defects. We aimed to elucidate why HoFH patients variably respond to PCSK9 inhibition. APPROACH AND RESULTS: Lymphocytes were isolated from 22 HoFH patients enrolled in the TAUSSIG trial (Trial Assessing Long Term Use of PCSK9 Inhibition in Subjects With Genetic LDL Disorders). Ten patients were true homozygotes (FH1/FH1) and 5 identical compound heterozygotes (FH1/FH2). Lymphocytes were plated with or without mevastatin, recombinant PCSK9 (rPCSK9), or a PCSK9-neutralizing antibody. Cell surface LDLR expression was analyzed by flow cytometry. All HoFH lymphocytes had reduced cell surface LDLR expression compared with non-FH lymphocytes, for each treatment modality. Lymphocytes from FH1/FH2 patients (LDLR defective/negative) displayed the lowest LDLR expression levels followed by lymphocytes from FH1/FH1 patients (defective/defective). Mevastatin increased, whereas rPCSK9 reduced LDLR expression. The PCSK9-neutralizing antibody restored LDLR expression. Lymphocytes displaying higher LDLR expression levels were those isolated from patients presenting with lowest levels of LDL-C and apolipoprotein B, before and after 24 weeks of evolocumab treatment. These negative correlations remained significant in FH1/FH1 patients and appeared more pronounced when patients with apolipoprotein E3/E3 genotypes were analyzed separately. Significant positive correlations were found between the levels of LDLR expression and the percentage reduction in LDL-C on evolocumab treatment. CONCLUSIONS: Residual LDLR expression in HoFH is a major determinant of LDL-C levels and seems to drive their individual response to evolocumab.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Homozigoto , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Mutação , Inibidores de PCSK9 , Receptores de LDL/genética , Inibidores de Serina Proteinase/uso terapêutico , Adolescente , Adulto , Anticorpos Monoclonais Humanizados , Apolipoproteína B-100/sangue , Células Cultivadas , LDL-Colesterol/sangue , Quimioterapia Combinada , Ezetimiba/uso terapêutico , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Lovastatina/análogos & derivados , Lovastatina/uso terapêutico , Linfócitos/enzimologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores de LDL/metabolismo , Resultado do Tratamento , Adulto JovemRESUMO
A novel HPLC method with UV detection was developed and validated in skin penetration (in vitro) studies to identify and quantify lovastatin, mevastatin, rosuvastatin and simvastatin. A Venusil XBP C18 (2), 150 x 4.6 mm, 5 µm column (Agela Technologies, Newark, DE) was used with gradient elution (start at 45 % acetonitrile and increase linearly to 90 % after 1 min; hold at 90 % until 6 min and then re-equilibrate at start conditions) and the mobile phase consisted of (A) Milli-Q ® water and 0.1% orthophosphoric acid, and (B) HPLC grade acetonitrile. The flow rate was set at 1 ml/min, 240 nm UV detection and an injection volume of 10 µl. Linearity was obtained over a range of 0.50-200.00 µg/ml and correlation coefficients ranging from 0.998-1.000 were obtained. Average recovery ranged from 95.9-100.6 %. The LOD and LOQ values obtained from the slope of a calibration curve and the standard deviation of the response ranged from 0.0138-0.0860 µg/ml and 0.0419-0.2615 µg/ml, respectively, where lovastatin and simvastatin could be detected at a concentration similar to the other statins, but could only be quantified at a higher concentration than the remaining statins. The specificity of the method was proved as accurate and quantification of statins was found, even within the incorporation of other compounds.
Assuntos
Lovastatina/análogos & derivados , Lovastatina/análise , Rosuvastatina Cálcica/análise , Sinvastatina/análise , Cromatografia Líquida de Alta Pressão/métodos , Inibidores de Hidroximetilglutaril-CoA Redutases/análise , Técnicas In Vitro , Absorção CutâneaRESUMO
Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Assuntos
Actinobacteria/genética , Substituição de Aminoácidos , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Mutação , Engenharia de Proteínas/métodos , Actinobacteria/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colecalciferol/metabolismo , Sequência Conservada , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ferredoxinas/metabolismo , Expressão Gênica , Hidroxilação , Isoenzimas , Lovastatina/análogos & derivados , Lovastatina/metabolismo , Simulação de Acoplamento Molecular , Pravastatina/biossíntese , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por SubstratoRESUMO
Xuezhikang capsule (XZK) is a traditional Chinese medicine that contains lovastatin (Lv) for hyperlipidemia treatment, although it has fewer side effects than Lv. However, the pharmacokinetic mechanisms contributing to its distinct efficacy and low side effects are unclear. Mice were fed a high-fat diet (HFD) for 6 weeks to induce hyperlipidemia. We first conducted the pharmacokinetic studies in HFD mice following oral administration of Lv (10 mg/kg, i.g.) and found that HFD remarkably decreased the active form of Lv (the lovastatin acid, LvA) exposure in the circulation system, especially in the targeting organ liver, with a declined conversion from Lv to LvA, whereas the Lv (responsible for myotoxicity) exposure in muscle markedly increased. Then we compared the pharmacokinetic profiles of Lv in HFD mice after the oral administration of XZK (1200 mg/kg, i.g.) or an equivalent dose of Lv (10 mg/kg, i.g.). A higher exposure of LvA and lower exposure of Lv were observed after XZK administration, suggesting a pharmacokinetic interaction of some ingredients in XZK. Further studies revealed that HFD promoted the inflammation and inhibited carboxylesterase (CES) activities in the intestine and the liver, thus contributing to the lower transformation of Lv into LvA. In contrast, XZK inhibited the inflammation and upregulated CES in the intestine and the liver. Finally, we evaluated the effects of monacolins and phytosterols, the fractional extracts of isoflavones, on inflammatory LS174T or HepG2 cells, which showed that isoflavones inhibited inflammation, upregulated CES, and markedly enhanced the conversion of Lv into LvA. For the first time, we provide evidence that isoflavones and Lv in XZK act in concert to enhance the efficacy and reduce the side effects of Lv.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Isoflavonas/farmacologia , Lovastatina/análogos & derivados , Lovastatina/uso terapêutico , Administração Oral , Animais , Carboxilesterase/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Inflamação/tratamento farmacológico , Lovastatina/administração & dosagem , Lovastatina/metabolismo , Lovastatina/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/genética , Regulação para Cima/efeitos dos fármacosRESUMO
OBJECTIVE: Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors lower low-density lipoprotein (LDL) cholesterol in the vast majority of patients with autosomal dominant familial hypercholesterolemia. Will PCSK9 inhibition with monoclonal antibodies, in particular alirocumab, be of therapeutic value for patients with autosomal recessive hypercholesterolemia (ARH)? APPROACH AND RESULTS: Primary lymphocytes were obtained from 28 genetically characterized ARH patients and 11 controls. ARH lymphocytes treated with mevastatin were incubated with increasing doses of recombinant PCSK9 with or without saturating concentrations of alirocumab. Cell surface LDL receptor expression measured by flow cytometry and confocal microscopy was higher in ARH than in control lymphocytes. PCSK9 significantly reduced LDL receptor expression in ARH lymphocytes albeit to a lower extent than in control lymphocytes (25% versus 76%, respectively), an effect reversed by alirocumab. Fluorescent LDL cellular uptake, also measured by flow cytometry, was reduced in ARH lymphocytes compared with control lymphocytes. PCSK9 significantly lowered LDL cellular uptake in ARH lymphocytes, on average by 18%, compared with a 46% reduction observed in control lymphocytes, an effect also reversed by alirocumab. Overall, the effects of recombinant PCSK9, and hence of alirocumab, on LDL receptor expression and function were significantly less pronounced in ARH than in control cells. CONCLUSIONS: PCSK9 inhibition with alirocumab on top of statin treatment has the potential to lower LDL cholesterol in some autosomal recessive hypercholesterolemia patients.
Assuntos
Anticorpos Monoclonais/farmacologia , Anticolesterolemiantes/farmacologia , Hipercolesterolemia/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Inibidores de PCSK9 , Inibidores de Serina Proteinase/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Anticorpos Monoclonais Humanizados , Estudos de Casos e Controles , Células Cultivadas , LDL-Colesterol/metabolismo , Quimioterapia Combinada , Feminino , Predisposição Genética para Doença , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/enzimologia , Hipercolesterolemia/genética , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Linfócitos/enzimologia , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Adulto Jovem , Hiperlipoproteinemia Tipo IIIRESUMO
Statins or HMG-CoA reductase inhibitors have been shown to be effective at lowering cholesterol levels, and the application of these molecules has gradually emerged as an attractive therapeutic strategy for neurodegenerative diseases. Epidemiological studies suggest that statin use is associated with a decreased incidence of Alzheimer's disease (AD). Thus, statins may play a beneficial role in reducing amyloid ß (Aß) toxicity, the most relevant pathological feature and pathogenesis of AD. However, the precise mechanisms involved in statin-inhibited Aß toxicity remain unclear. In the present study, we report that mevastatin significantly protects against Aß-induced neurotoxicity in SK-N-MC neuronal cells by restoring impaired insulin signaling. This protection appears to be associated with the activation of AMP-activated protein kinase (AMPK), which has long been known to increase insulin sensitivity. Our results also indicate that high levels of cholesterol likely underlie Aß-induced neurotoxicity and that activation of AMPK by mevastatin alleviates insulin resistance. Signaling through the insulin receptor substrate-1/Akt pathway appears to lead to cell survival. These findings demonstrate that mevastatin plays a potential therapeutic role in targeting Aß-mediated neurotoxicity. The molecule presents a novel therapeutic strategy for further studies in AD prevention and therapeutics.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/análogos & derivados , Neurônios/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Lovastatina/farmacologia , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
AIMS/HYPOTHESIS: Islet amyloid, a pathological feature of type 2 diabetes, forms from the aggregation of islet amyloid polypeptide (IAPP), a beta cell peptide that is produced and co-secreted with insulin. Cholesterol regulates amyloid-ß processing, deposition and clearance, promoting amyloidogenesis in the brain. ATP-binding cassette transporter 1 (ABCA1) is a cholesterol efflux transporter that when absent increases and when overexpressed reduces brain amyloid-ß deposition in mouse models of Alzheimer's disease. We examined whether alterations in ABCA1 expression and islet cholesterol content could also modulate islet amyloidogenesis. METHODS: Thioflavin S staining for amyloid was performed in islets isolated from mice with beta cell expression of human IAPP (hIAPP (Tg/o)) and cultured for 8 days following cholesterol loading, microRNA-33 overexpression (to reduce ABCA1 expression) or palmitate treatment in the presence or absence of ABCA1 overexpression or mevastatin treatment (to reduce cholesterol synthesis). hIAPP (Tg/o) mice were crossed with beta cell-specific Abca1-knockout mice (hIAPP (Tg/o) Abca1 (ßKO)) and glucose tolerance and amyloid formation were assessed. RESULTS: Cholesterol loading and microRNA-33-induced reduction in islet ABCA1 expression increased Thioflavin S-positive amyloid in hIAPP (Tg/o) islets. Palmitate treatment also increased amyloid formation and this was reduced by both ABCA1 overexpression and mevastatin treatment. hIAPP (Tg/o) Abca1 (ßKO) mice had increased islet cholesterol, accompanied by fasting hyperglycaemia, glucose intolerance, impaired in vivo insulin secretion and an increased islet proinsulin:insulin ratio. Amyloid area was increased in cultured hIAPP (Tg/o) Abca1 (ßKO) islets compared with hIAPP (Tg/o) controls. CONCLUSIONS/INTERPRETATION: These data suggest that elevations in islet cholesterol may lead to increases in IAPP aggregation and islet amyloid formation, further worsening beta cell function and glucose homeostasis.
Assuntos
Transportador 1 de Cassete de Ligação de ATP/deficiência , Amiloidose/metabolismo , Amiloidose/patologia , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Amiloide/metabolismo , Animais , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Palmitatos/farmacologia , RatosRESUMO
STUDY HYPOTHESIS: Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the mevalonate pathway and prescription drugs that treat hypercholesterolemia, compromise preimplantation mouse development via modulation of HIPPO signaling. STUDY FINDING: HMG-CoA reductase activity is required for trophectoderm specification, namely blastocyst cavity formation and Yes-associated protein (YAP) nuclear localization, through the production of isoprenoid geranylgeranyl pyrophosphate (GGPP) and the action of geranylgeranyl transferase. WHAT IS KNOWN ALREADY: Previous studies have shown that treatment of mouse embryos with mevastatin prevents blastocyst formation, but how HMG-CoA reductase is involved in preimplantation development is unknown. HIPPO signaling regulates specification of the trophectoderm lineage of the mouse blastocyst by controlling the nuclear localization of YAP. In human cell lines, the mevalonate pathway regulates YAP to mediate self-renewal and survival through geranylgeranylation of RHO proteins. These studies suggest that in preimplantation development, statins may act through HIPPO pathway to interfere with trophectoderm specification and thereby inhibit blastocyst formation. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Eight-cell stage (E2.5) mouse embryos were treated in hanging drop culture with chemical agents, namely statins (lovastatin, atorvastatin, cerivastatin and pravastatin), mevalonic acid (MVA), cholesterol, squalene, farnesyl pyrophosphate (FPP), geranylgeranyl pyrophosphate (GGPP), geranylgeranyltransferase inhibitor GGTI-298, RHO inhibitor I, and squalene synthase inhibitor YM-53601, up to the late blastocyst stage (E4.5). Efficiency of blastocyst formation was assessed based on gross morphology and the measurement of the cavity size using an image analysis software. Effects on cell lineages and HIPPO signaling were analyzed using immunohistochemistry with confocal microscopy based on the expression patterns of the lineage-specific markers and the nuclear accumulation of YAP. Effects on cell lineages were also examined by quantitative RT-PCR based on the transcript levels of the lineage-specific marker genes. Data were analyzed using one-way ANOVA and two-sample t-test. MAIN RESULTS AND THE ROLE OF CHANCE: All four statins examined inhibited blastocyst formation. The adverse impact of statins was rescued by supplementation of MVA (P < 0.01) or GGPP (P < 0.01) but not squalene nor cholesterol. Blastocyst formation was also prevented by GGTI-298 (P < 0.01). These results indicate that HMG-CoA reductase activity is required for blastocyst formation mainly through the production of GGPP but not cholesterol. Inhibition of RHO proteins, known targets of geranylgeranylation, impaired blastocyst formation, which was not reversed by GGPP supplementation. Nuclear localization of YAP was diminished by statin treatment but fully restored by supplementation of MVA (P < 0.01) or GGPP (P < 0.01). This suggests that HIPPO signaling is regulated by GGPP-dependent mechanisms, possibly geranylgeranylation of RHO, to enable trophectoderm formation. YM-53601 prevented blastocyst formation (P < 0.01), but its adverse impact was not rescued by supplementation of squalene or cholesterol, suggesting that squalene synthesis inhibition was not the cause of blastocyst defects. LIMITATIONS, REASONS FOR CAUTION: Analyses were conducted on embryos cultured ex vivo, but they enable the determination of specific concentrations that impair embryo development which can be compared with drug concentrations in the reproductive tract when testing in vivo impact of statins through animal experimentations. Also, analyses were conducted in only one species, the mouse. Epidemiological studies on the effects of various types of statins on the fertility of women are necessary. WIDER IMPLICATIONS OF THE FINDINGS: Our study reveals how the mevalonate pathway is required for blastocyst formation and intersects with HIPPO pathway to provide a mechanistic basis for the embryotoxic effect of statins. This bears relevance for women who are taking statins while trying to conceive, since statins have potential to prevent the conceptus from reaching the blastocyst stage and to cause early conceptus demise. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: This study was supported by grants from the George F. Straub Trust of the Hawaii Community Foundation (13ADVC-60315 to V.B.A.) and the National Institutes of Health, USA (P20GM103457 to V.B.A.). The authors have no conflict of interest to declare.
Assuntos
Blastocisto/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Prenilação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Benzamidas/farmacologia , Blastocisto/efeitos dos fármacos , Proteínas de Ciclo Celular , Feminino , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Masculino , Ácido Mevalônico/farmacologia , Camundongos , Fosfoproteínas/metabolismo , Fosfatos de Poli-Isoprenil/farmacologia , Pravastatina/farmacologia , Quinuclidinas/farmacologia , Sesquiterpenos/farmacologia , Proteínas de Sinalização YAPRESUMO
Some hydroxamate compounds induce cancer cell death by intracellular reactive oxygen species (ROS). This study introduced the hydroxamate core into lovastatin, a fungus metabolite clinically used for the treatment of hypercholesterolemia. The resulting compounds were evaluated for the activity for inducing ROS production. Most compounds exhibited higher activity than original lovastatin. Of these compounds, compound 3c had the most potent activity. Test of cytotoxicity in a panel of human cancer cell lines indicated compound 3c had activities superior to cisplatin in prostate cancer PC-3 cells and breast cancer T47D cells. In contrast, it in amounts up to 40µM had a much lower cytotoxic effect on normal human IMR-90 cells. Further profiling of cell cycle progression, cell apoptosis, and DNA damage activated checkpoint signaling pathway revealed the important role of compound 3c-mediated cytotoxicity in ROS generation.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismoRESUMO
The goal of this work was to assess the potential of T cells expressing Vγ9Vδ2+ T cell receptors (TCR, γ9δ2T cells) present in peripheral blood (PB) m ononuclear cells (MC, PBMC) of glioblastoma multiforme (GBM) patients to act as anti-tumoral agents. We found that γ9δ2T cell levels were decreased in patients' PB relative to a cohort of healthy donors (HD) (respectively 0.52±0.55%, n=16, vs 1.12±0.6%, n=14, p=0.008) but did not significantly correlate with postoperative survival (R=0.6, p=0.063). Importantly, however, the γ9δ2T cells could be expanded in vitro to consist 51±23% of the cultured lymphocytes (98% CD3+). This was achieved after 14 days of culture in medium containing the amino-bisphosphonate (ABP) Zoledronate (Zol) and interleukin (IL)-2, resulting in γ9δ2T cell-enriched lines (gdTCEL) similar to those of HD derived gdTCEL (54±19%). Moreover, gdTCEL from patients and HD mediated cytotoxicity to GBM-derived cell lines (GBMDCL), which was abrogated by immune-magnetic removal of the γ9δ2T cells. Furthermore, low level interferon (IFN) γ secretion was induced by gdTCEL briefly co-cultured with GBMDCL or autologous - tumor-derived cells, which was greatly amplified in the presence of Zol. Importantly, IFNγ secretion was inhibited by mevastatin but enhanced by cross-linking of butyrophilin 3A1 (CD277) on a CD277+ GBMDCL (U251MG) or by pretreatment of GBMDCL with temozolomide (TMZ). Taken together, these data suggest that γ9δ2T cells in PB of GBM patients can give rise to gdTCEL that mediate anti-tumoral activities.
Assuntos
Antineoplásicos/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/patologia , Glioblastoma/sangue , Glioblastoma/patologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Neoplasias Encefálicas/imunologia , Butirofilinas , Linhagem Celular Tumoral , Proliferação de Células , Terapia Combinada , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Feminino , Glioblastoma/imunologia , Humanos , Memória Imunológica , Interferon gama/metabolismo , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Masculino , Ácido Mevalônico/metabolismo , Camundongos , Pessoa de Meia-Idade , Fenótipo , Temozolomida , Doadores de TecidosRESUMO
Three new lovastatin analogues (1, 4, and 5) together with four known lovastatin derivatives, namely, lovastatin (2), α,ß-dehydrolovastatin (3), α,ß-dehydrodihydromonacolin K (6), and α,ß-dehydro-4a,5-dihydromonacolin L (7), were isolated from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Their structures were established using spectroscopic evidence. Compound 5 exhibited the most potent activity against HMG-CoA reductase, with an IC50 value of 387 µM. In addition, the present study indicated the direct interaction of compound 5 with HMG-CoA reductase. Compound 5 was considered to be noncytotoxic against noncancerous Vero cells, with an IC50 value of 40.0 µM, whereas compound 2 displayed much stronger activity, with an IC50 value of 2.2 µM.
Assuntos
Aspergillus/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Células KB , Lovastatina/análogos & derivados , Lovastatina/química , Lovastatina/isolamento & purificação , Lovastatina/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Mycobacterium scrofulaceum/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Plasmodium falciparum/efeitos dos fármacos , Microbiologia do Solo , Tailândia , Células VeroRESUMO
Cultivation of Aspergillus terreus ATCC 20542 in a stirred tank bioreactor was performed to induce the biosynthesis of secondary metabolites and provide the bioprocess-related insights into the metabolic capabilities of the investigated strain. The activation of biosynthetic routes was attempted by the diversification of process conditions and growth media. Several strategies were tested, including the addition of rapeseed oil or inulin, changing the concentration of nitrogen source, reduction of chlorine supply, cultivation under saline conditions, and using various aeration schemes. Fifteen secondary metabolites were identified in the course of the study by using ultra-high performance liquid chromatography coupled with mass spectrometry, namely mevinolinic acid, 4a,5-dihydromevinolinic acid, 3α-hydroxy-3,5-dihydromonacolin L acid, terrein, aspulvinone E, dihydroisoflavipucine, (+)-geodin, (+)-bisdechlorogeodin, (+)-erdin, asterric acid, butyrolactone I, desmethylsulochrin, questin, sulochrin, and demethylasterric acid. The study also presents the collection of mass spectra that can serve as a resource for future experiments. The growth in a salt-rich environment turned out to be strongly inhibitory for secondary metabolism and the formation of dense and compact pellets was observed. Generally, the addition of inulin, reducing the oxygen supply, and increasing the content of nitrogen source did not enhance the production of examined molecules. The most successful strategy involved the addition of rapeseed oil to the chlorine-deficient medium. Under these conditions, the highest levels of butyrolactone I, asterric acid, and mevinolinic acid were achieved and the presence of desmethylsulochrin and (+)-bisdechlorogeodin was detected in the broth. The constant and relatively high aeration rate in the idiophase was shown to be beneficial for terrein and (+)-geodin biosynthesis.
Assuntos
Aspergillus/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Inulina/farmacologia , Metabolismo Secundário/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/biossíntese , Antraquinonas/metabolismo , Aspergillus/metabolismo , Técnicas de Cultura Celular por Lotes , Benzofuranos/metabolismo , Biomassa , Reatores Biológicos , Cromatografia Líquida de Alta Pressão , Ciclopentanos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Fermentação , Inulina/metabolismo , Lovastatina/análogos & derivados , Lovastatina/biossíntese , Éteres Fenílicos/metabolismo , Piridonas/metabolismo , Óleo de Brassica napusRESUMO
Searching the 3D structural fragments of organic molecules is challenging because of structural differences between X-ray and theoretically calculated geometries and the conformational flexibility of substituents. The codification program called Conformational Code for Organic Molecules (CCOM) can be used to unambiguously convert 3D conformational data for various molecules to 1D data. Two deviations from Rule E-5.6 of the International Union of Pure and Applied Chemistry (IUPAC) Rules for Nomenclature of Organic Chemistry were introduced to the CCOM program for 3D fragment searching. First, the search for the highest priority atom was limited to a distance of two bonds from the center bond for dihedral angle determination. Second, for indistinguishable atoms in experimentally observed solution structures, the smallest number of atom index in the molecular model was chosen as the priority atom for dihedral angle determination. A search of the 3D conformational fragment mb_3a6c4c of mevastatin () in combination with the SMiles ARbitrary Target Specification (SMARTS) description suggested that a change in the conformation of this fragment may be the driving force for dissociation of mevastatin from its target protein. Chirality 28:370-375, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Lovastatina/análogos & derivados , Conformação Molecular , Software , Lovastatina/química , Estrutura MolecularRESUMO
Visceral leishmaniasis (VL) is one of the most severe forms of leishmaniasis which is fatal if left untreated. Sterol biosynthetic pathway in Leishmania is currently being explored for its therapeutic potential. In the present study, we have evaluated the antileishmanial efficacy of mevastatin, a known inhibitor of 3-hydroxy-3-methyl glutaryl-CoA reductase (HMGR) enzyme. Mevastatin inhibited Leishmania donovani promastigotes and intracellular amastigotes with an 50% inhibitory concentration (IC50) value of 23.8 ± 4.2 and 7.5 ± 1.1 µM, respectively, without exhibiting toxicity towards host cell line. Mevastatin also inhibited recombinant L. donovani HMGR (LdHMGR) enzyme activity with an IC50 value of 42.2 ± 3.0 µM. Kinetic analysis revealed that the inhibition of recombinant LdHMGR activity by mevastatin was competitive with HMG-CoA. Mevastatin-treated parasites exhibited 66% reduction in ergosterol levels with respect to untreated parasites. Incubation of mevastatin-treated L. donovani promastigotes with ergosterol resulted in revival of cell growth, whereas cholesterol supplementation failed to cause reversal in cell death. To further prove the specificity of mevastatin for HMGR enzyme, HMGR-overexpressing parasites were used which showed almost threefold resistance to mevastatin. It also induced morphological changes in the parasite accompanied by lipid body accumulation. Hence, antileishmanial effect of mevastatin was due to the inhibition of HMGR, which eventually leads to reduction in ergosterol levels and hence parasite death. The present study may have implications in the treatment of visceral form of leishmaniasis.
Assuntos
Inibidores Enzimáticos/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Lovastatina/análogos & derivados , Esteróis/metabolismo , Acil Coenzima A/química , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Linhagem Celular , Inibidores Enzimáticos/química , Cinética , Leishmania donovani/química , Leishmania donovani/enzimologia , Leishmania donovani/metabolismo , Lovastatina/química , Lovastatina/farmacologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
PURPOSE: Our previous studies indicated that drug leaked from discoidal reconstituted high density lipoprotein (d-rHDL) during the remodeling behaviors induced by lecithin cholesterol acyl transferase (LCAT) abundant in circulation, thus decreasing the drug amount delivered into the target. In this study, arachidonic acid (AA)-modified d-rHDL loaded with lovastatin (LT) were engineered as AA-LT-d-rHDL to explore whether AA modification could reduce the drug leakage during the remodeling behaviors induced by LCAT and further deliver more drug into target cells to improve efficacy. METHODS: After successful preparation of AA-LT-d-rHDL with different AA modification amount, a series of in vitro remodeling behaviors were investigated. Furthermore, inhibition on macrophage-derived foam cell formation was chosen to evaluate drug efficacy of AA-LT-d-rHDL. RESULTS: In vitro physicochemical characterizations studies showed that all LT-d-rHDL and AA-LT-d-rHDL preparations had nano-size, negative surface charge, high entrapment efficiency (EE) and comparable drug loading efficiency (DL). With increment of AA modification amount, AA-LT-d-rHDL manifested lower reactivity with LCAT, thus significantly reducing the undesired drug leakage during the remodeling behaviors induced by LCAT, eventually exerting stronger efficacy on inhibition of macrophage-derived foam cell formation. CONCLUSION: AA-LT-d-rHDL could decrease the drug leakage during the remodeling behaviors induced by LCAT and fulfill efficient drug delivery.
Assuntos
Anticolesterolemiantes/química , Anticolesterolemiantes/metabolismo , Ácido Araquidônico/química , Lipoproteínas HDL/química , Lovastatina/análogos & derivados , Lovastatina/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Animais , Anticolesterolemiantes/administração & dosagem , Anticolesterolemiantes/farmacologia , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Linhagem Celular , Portadores de Fármacos/química , Células Espumosas/citologia , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Humanos , Lovastatina/administração & dosagem , Lovastatina/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Moleculares , Proteínas Recombinantes/químicaRESUMO
OBJECTIVE: To study the regulation of laeA overexpression on mevastatin production and sporulation in Penicillium citrinum. METHODS: We cloned the laeA gene from Penicillium citrinum and constructed the vector pGiHTGi-laeA. The plasmid pGiHTGi-laeA was transformed in Penicillium citrinum by agrobacterium tumefaciens-mediated transformation. Positive transformants were detected by cloning the hygromycin gene. The mevastatin production of the wild type and OE:: laeA was compared by HPLC. The conidia number was counted by blood counting chamber. The biosynthetic gene cluster expression quantity of mevastatin in the wild type and OE: :laeA were analyzed by qRT-PCR. RESULTS: We constructed the plasmid pGiHTGi-laeA, and screened the positive transformants that overexpress the laeA in Penicillium citrinum. With the overexpression of laeA, the mevastatin production was increased from (0.69 ± 0.12) mg/g to (4.02 ± 0.50) mg/g dry cell weight. Compared to the wild type strain, the laeA expression quantity in the OE :: laeA strain increased 29%, and the mlcB expression increased 72%, the mlcR expression increased 153%. Moreover, the overexpression of laeA would decrease the conidia number. CONCLUSION: Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum, with increases expression of pathway-regulator mlcR, and biosynthetic gene MlcR. These results could guide global regulatory mechanism of mevastatin biosynthesis and the exploitation of high-production strain.
Assuntos
Genes Fúngicos/fisiologia , Genes Reguladores/fisiologia , Lovastatina/análogos & derivados , Penicillium/genética , Esporos Fúngicos/fisiologia , Lovastatina/biossíntese , Penicillium/fisiologiaRESUMO
Fungal endophytes are valued for biosynthesizing chemically diverse metabolic cascade with interesting biological activities. In the current investigation, two compounds were isolated from Penicillium polonicum, an endophyte of Zingiber officinale. The active moieties, glaucanic acid (1) and dihydrocompactin acid (2) were isolated from the ethyl acetate extract of P. polonicum and characterized by NMR and mass spectroscopy. Further, bioactive potential of the isolated compounds was evaluated by antimicrobial, antioxidant and cytotoxicity assays. Compounds 1 and 2 displayed antifungal activity against phytopathogen Colletotrichum gloeosporioides with more than 50% reduction in its growth. Both the compounds exhibited antioxidant activity against free radicals (DPPH and ABTS) and cytotoxicity activity against cancer cell lines respectively. The compounds, glaucanic acid and dihydrocompactin acid are being reported for the first time from an endophytic fungus. This is the first report on the biological activities of Dihydrocompactin acid produced by endophytic fungal strain.
Assuntos
Lovastatina/análogos & derivados , Penicillium , Zingiber officinale , Penicillium/química , Fungos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Endófitos/químicaRESUMO
BACKGROUND & AIMS: Statins improve hepatic endothelial function and liver fibrosis in experimental models of cirrhosis, thus they have been proposed as therapeutic options to ameliorate portal hypertension syndrome. The transcription factor Kruppel-like factor 2 (KLF2) may be induced by statins in liver sinusoidal endothelial cells (SEC), orchestrating an efficient vasoprotective response. The present study aimed at characterizing whether KLF2 mediates statins-derived hepatic protection. METHODS: Expression of KLF2 and its vasoprotective target genes was determined in SEC freshly isolated from control or CCl(4)-cirrhotic rats treated with four different statins (atorvastatin, mevastatin, simvastatin, and lovastatin), in the presence of mevalonate (or vehicle), under static or controlled shear stress conditions. KLF2-derived vasoprotective transcriptional programs were analyzed in SEC transfected with siRNA for KLF2 or siRNA-control, and incubated with simvastatin. Paracrine effects of SEC highly-expressing KLF2 on the activation status of rat and human hepatic stellate cells (HSC) were evaluated. RESULTS: Statins administration to SEC induced significant upregulation of KLF2 expression. KLF2 upregulation was observed after 6h of treatment and was accompanied by induction of its vasoprotective programs. Simvastatin vasoprotection was inhibited in the presence of mevalonate, and was magnified in cells cultured under physiological shear stress conditions. Statin-dependent induction of vasoprotective genes was not observed when KLF2 expression was muted with siRNA. SEC overexpressing KLF2 induced quiescence of HSC through a KLF2-nitric oxide-guanylate cyclase-mediated paracrine mechanism. CONCLUSIONS: Upregulation of hepatic endothelial KLF2-derived transcriptional programs by statins confers vasoprotection and stellate cells deactivation, reinforcing the therapeutic potential of these drugs for liver diseases that course with endothelial dysfunction.