Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.861
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(1): 79-94.e24, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181743

RESUMO

The CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs. Structures of the CD4bs nAb bound to HIV-1 Env demonstrated binding angles and heavy-chain interactions characteristic of all known human CD4-mimicking bnAbs. Macaque nAb were derived from variable and joining gene segments orthologous to the genes of human VH1-46-class bnAb. This vaccine study initiated in primates the B cells from which CD4bs bnAbs can derive, accomplishing the key first step in the development of an effective HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS , HIV-1 , Animais , Humanos , Anticorpos Amplamente Neutralizantes , Antígenos CD4 , Moléculas de Adesão Celular , HIV-1/fisiologia , Macaca , Vacinas contra a AIDS/imunologia
2.
Cell ; 186(12): 2672-2689.e25, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295404

RESUMO

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Vacinas Virais , Animais , Camundongos , Vírus da Encefalite Equina Venezuelana/genética , Anticorpos Antivirais , Macaca
3.
Cell ; 186(17): 3726-3743.e24, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37442136

RESUMO

Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.


Assuntos
Córtex Cerebral , Macaca , Análise de Célula Única , Transcriptoma , Animais , Humanos , Camundongos , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Macaca/metabolismo , Transcriptoma/genética
4.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36182704

RESUMO

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Assuntos
Arterivirus , Febres Hemorrágicas Virais , Animais , Arterivirus/fisiologia , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Humanos , Macaca , Primatas , Zoonoses Virais , Internalização do Vírus , Replicação Viral
5.
Cell ; 185(9): 1556-1571.e18, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447072

RESUMO

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Macaca , RNA Mensageiro
6.
Cell ; 185(9): 1549-1555.e11, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35427477

RESUMO

The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. In this study, we show that the mRNA-based BNT162b2 vaccine and the adenovirus-vector-based Ad26.COV2.S vaccine provide robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in cynomolgus macaques. We vaccinated 30 macaques with homologous and heterologous prime-boost regimens with BNT162b2 and Ad26.COV2.S. Following Omicron challenge, vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs. However, 4 vaccinated animals that had moderate Omicron-neutralizing antibody titers and undetectable Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Moreover, virologic control correlated with both antibody and T cell responses. These data suggest that both humoral and cellular immune responses contribute to vaccine protection against a highly mutated SARS-CoV-2 variant.


Assuntos
Ad26COVS1/imunologia , Vacina BNT162/imunologia , COVID-19 , Macaca , SARS-CoV-2 , Ad26COVS1/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162/administração & dosagem , COVID-19/imunologia , COVID-19/prevenção & controle , Linfócitos T/imunologia
7.
Nat Immunol ; 24(12): 2068-2079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919524

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.


Assuntos
COVID-19 , Interferon gama , Animais , Interferon gama/metabolismo , SARS-CoV-2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Macrófagos Alveolares/metabolismo , Células Matadoras Naturais/metabolismo , Pulmão/metabolismo , Macaca/metabolismo
8.
Cell ; 180(5): 829-831, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142676

RESUMO

Prevention of pulmonary tuberculosis by vaccination has proven an elusive goal. In a recent study, Darrah et al. show that prevention of infection and disease can be achieved in non-human primates by intravenous administration of the century-old vaccine BCG. This finding heralds a step-change in the approach to TB vaccine development.


Assuntos
Vacina BCG , Tuberculose , Administração Intravenosa , Animais , Macaca , Vacinação
9.
Cell ; 176(5): 1222-1237.e22, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712875

RESUMO

High-acuity vision in primates, including humans, is mediated by a small central retinal region called the fovea. As more accessible organisms lack a fovea, its specialized function and its dysfunction in ocular diseases remain poorly understood. We used 165,000 single-cell RNA-seq profiles to generate comprehensive cellular taxonomies of macaque fovea and peripheral retina. More than 80% of >60 cell types match between the two regions but exhibit substantial differences in proportions and gene expression, some of which we relate to functional differences. Comparison of macaque retinal types with those of mice reveals that interneuron types are tightly conserved. In contrast, projection neuron types and programs diverge, despite exhibiting conserved transcription factor codes. Key macaque types are conserved in humans, allowing mapping of cell-type and region-specific expression of >190 genes associated with 7 human retinal diseases. Our work provides a framework for comparative single-cell analysis across tissue regions and species.


Assuntos
Fóvea Central/fisiologia , Primatas/fisiologia , Retina/fisiologia , Idoso , Animais , Callithrix , Feminino , Humanos , Macaca , Masculino , Retina/anatomia & histologia , Células Ganglionares da Retina/metabolismo
10.
Cell ; 176(4): 743-756.e17, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735633

RESUMO

Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.


Assuntos
Córtex Cerebral/citologia , Organoides/metabolismo , Animais , Evolução Biológica , Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Córtex Cerebral/metabolismo , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Macaca , Neurogênese/genética , Organoides/crescimento & desenvolvimento , Pan troglodytes , Células-Tronco Pluripotentes/citologia , Análise de Célula Única , Especificidade da Espécie , Transcriptoma/genética
11.
Cell ; 176(3): 597-609.e18, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661754

RESUMO

Many evolutionary years separate humans and macaques, and although the amygdala and cingulate cortex evolved to enable emotion and cognition in both, an evident functional gap exists. Although they were traditionally attributed to differential neuroanatomy, functional differences might also arise from coding mechanisms. Here we find that human neurons better utilize information capacity (efficient coding) than macaque neurons in both regions, and that cingulate neurons are more efficient than amygdala neurons in both species. In contrast, we find more overlap in the neural vocabulary and more synchronized activity (robustness coding) in monkeys in both regions and in the amygdala of both species. Our findings demonstrate a tradeoff between robustness and efficiency across species and regions. We suggest that this tradeoff can contribute to differential cognitive functions between species and underlie the complementary roles of the amygdala and the cingulate cortex. In turn, it can contribute to fragility underlying human psychopathologies.


Assuntos
Tonsila do Cerebelo/fisiologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Adulto , Animais , Evolução Biológica , Criança , Pré-Escolar , Cognição/fisiologia , Emoções/fisiologia , Feminino , Humanos , Macaca , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Especificidade da Espécie
12.
Cell ; 172(4): 647-649, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425487

RESUMO

In this issue of Cell, Liu et al. (2018) report the birth of two healthy cloned macaque monkeys using fetal fibroblasts. By artificially enhancing the arsenal of epigenetic modifiers in the oocyte, the authors overcome the earliest roadblocks that take place during somatic cell nuclear transfer (SCNT).


Assuntos
Haplorrinos , Macaca , Animais , Clonagem de Organismos , Fibroblastos , Técnicas de Transferência Nuclear , Oócitos , Primatas
13.
Cell ; 172(3): 517-533.e20, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29249358

RESUMO

B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Inata , Influenza Humana/imunologia , Interleucina-4/genética , Células Matadoras Naturais/imunologia , Infecção por Zika virus/imunologia , Animais , Galinhas , Cães , Centro Germinativo/citologia , Humanos , Interleucina-4/metabolismo , Macaca , Macrófagos/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL
14.
Cell ; 168(3): 413-426.e12, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28129540

RESUMO

The fovea is a specialized region of the retina that dominates the visual perception of primates by providing high chromatic and spatial acuity. While the foveal and peripheral retina share a similar core circuit architecture, they exhibit profound functional differences whose mechanisms are unknown. Using intracellular recordings and structure-function analyses, we examined the cellular and synaptic underpinnings of the primate fovea. Compared to peripheral vision, the fovea displays decreased sensitivity to rapid variations in light inputs; this difference is reflected in the responses of ganglion cells, the output cells of the retina. Surprisingly, and unlike in the periphery, synaptic inhibition minimally shaped the responses of foveal midget ganglion cells. This difference in inhibition cannot however, explain the differences in the temporal sensitivity of foveal and peripheral midget ganglion cells. Instead, foveal cone photoreceptors themselves exhibited slower light responses than peripheral cones, unexpectedly linking cone signals to perceptual sensitivity.


Assuntos
Fóvea Central/fisiologia , Macaca/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção Visual , Animais , Cinética , Células Fotorreceptoras de Vertebrados/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses
15.
Cell ; 169(6): 1013-1028.e14, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575666

RESUMO

Primates recognize complex objects such as faces with remarkable speed and reliability. Here, we reveal the brain's code for facial identity. Experiments in macaques demonstrate an extraordinarily simple transformation between faces and responses of cells in face patches. By formatting faces as points in a high-dimensional linear space, we discovered that each face cell's firing rate is proportional to the projection of an incoming face stimulus onto a single axis in this space, allowing a face cell ensemble to encode the location of any face in the space. Using this code, we could precisely decode faces from neural population responses and predict neural firing rates to faces. Furthermore, this code disavows the long-standing assumption that face cells encode specific facial identities, confirmed by engineering faces with drastically different appearance that elicited identical responses in single face cells. Our work suggests that other objects could be encoded by analogous metric coordinate systems. PAPERCLIP.


Assuntos
Reconhecimento Facial , Modelos Neurológicos , Lobo Temporal/fisiologia , Animais , Humanos , Macaca , Imageamento por Ressonância Magnética , Masculino , Neurônios/citologia , Lobo Temporal/citologia
16.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631118

RESUMO

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos/genética , SARS-CoV-2/imunologia , Vacinas de DNA/imunologia , Vaccinia virus/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Imunofenotipagem , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação/métodos , Vacinas de DNA/genética
17.
Cell ; 160(5): 1002-1012, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723173

RESUMO

HIV latency is the chief obstacle to eradicating HIV but is widely believed to be an evolutionary accident providing no lentiviral fitness advantage. However, findings of latency being "hardwired" into HIV's gene-regulatory circuitry appear inconsistent with latency being an evolutionary accident, given HIV's rapid mutation rate. Here, we propose that latency is an evolutionary "bet-hedging" strategy whose frequency has been optimized to maximize lentiviral transmission by reducing viral extinction during mucosal infections. The model quantitatively fits the available patient data, matches observations of high-frequency latency establishment in cell culture and primates, and generates two counterintuitive but testable predictions. The first prediction is that conventional CD8-depletion experiments in SIV-infected macaques increase latent cells more than viremia. The second prediction is that strains engineered to have higher replicative fitness­via reduced latency­will exhibit lower infectivity in animal-model mucosal inoculations. Therapeutically, the theory predicts treatment approaches that may substantially enhance "activate-and-kill" HIV-cure strategies.


Assuntos
Evolução Biológica , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV/fisiologia , Modelos Biológicos , Latência Viral , Animais , Modelos Animais de Doenças , HIV/genética , Infecções por HIV/imunologia , Humanos , Macaca , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia
18.
Cell ; 163(1): 55-67, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26406371

RESUMO

Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.


Assuntos
Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Animais , Ciclo Celular , Humanos , Macaca , Camundongos , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Análise de Célula Única , Nicho de Células-Tronco
19.
Nature ; 627(8002): 174-181, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355804

RESUMO

Social interactions represent a ubiquitous aspect of our everyday life that we acquire by interpreting and responding to visual cues from conspecifics1. However, despite the general acceptance of this view, how visual information is used to guide the decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity of populations of neurons in the visual and prefrontal cortex in conjunction with wireless recordings of oculomotor events while freely moving macaques engaged in social cooperation. As animals learned to cooperate, visual and executive areas refined the representation of social variables, such as the conspecific or reward, by distributing socially relevant information among neurons in each area. Decoding population activity showed that viewing social cues influences the decision to cooperate. Learning social events increased coordinated spiking between visual and prefrontal cortical neurons, which was associated with improved accuracy of neural populations to encode social cues and the decision to cooperate. These results indicate that the visual-frontal cortical network prioritizes relevant sensory information to facilitate learning social interactions while freely moving macaques interact in a naturalistic environment.


Assuntos
Macaca , Córtex Pré-Frontal , Aprendizado Social , Córtex Visual , Animais , Potenciais de Ação , Comportamento Cooperativo , Sinais (Psicologia) , Tomada de Decisões/fisiologia , Função Executiva/fisiologia , Macaca/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Recompensa , Aprendizado Social/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Tecnologia sem Fio
20.
Nature ; 629(8010): 136-145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570684

RESUMO

Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.


Assuntos
Centrômero , Evolução Molecular , Variação Genética , Animais , Humanos , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Metilação de DNA/genética , DNA Satélite/genética , Cinetocoros/metabolismo , Macaca/genética , Pan troglodytes/genética , Polimorfismo de Nucleotídeo Único/genética , Pongo/genética , Masculino , Feminino , Padrões de Referência , Imunoprecipitação da Cromatina , Haplótipos , Mutação , Amplificação de Genes , Alinhamento de Sequência , Cromatina/genética , Cromatina/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA