Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.956
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(10): 1646-1660.e18, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447073

RESUMO

Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.


Assuntos
Marsupiais , Animais , Austrália , Evolução Molecular , Especiação Genética , Genoma , Marsupiais/genética , Fenótipo , Filogenia
2.
Cell ; 166(2): 264-268, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419863
3.
Nature ; 629(8010): 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658750

RESUMO

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio , Locomoção , Marsupiais , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Locomoção/genética , Marsupiais/anatomia & histologia , Marsupiais/classificação , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Humanos
4.
Nature ; 628(8008): 569-575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570681

RESUMO

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Dente , Animais , Eutérios/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mamíferos/fisiologia , Marsupiais/anatomia & histologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia , Filogenia , Dente/anatomia & histologia , Dente/fisiologia , Mastigação
5.
Annu Rev Cell Dev Biol ; 30: 561-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000994

RESUMO

In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in cis by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of Xist expression, the propagation of the Xist RNA along the chromosome, and the cis-elements and trans-acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.


Assuntos
Inativação Gênica , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Animais , Cromatina/genética , Cromatina/ultraestrutura , Mapeamento Cromossômico , Cromossomos Humanos X/genética , Células-Tronco Embrionárias/ultraestrutura , Evolução Molecular , Feminino , Impressão Genômica , Humanos , Elementos Nucleotídeos Longos e Dispersos , Masculino , Marsupiais/genética , Camundongos , Processos de Determinação Sexual , Fatores de Transcrição/genética , Cromossomo X/genética , Cromossomo X/ultraestrutura
6.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38276965

RESUMO

The varying pathways of mammary gland development across species and evolutionary history are underexplored, largely due to a lack of model systems. Recent progress in organoid technology holds the promise of enabling in-depth studies of the developmental adaptations that have occurred throughout the evolution of different species, fostering beneficial phenotypes. The practical application of this technology for mammary glands has been mostly confined to rodents and humans. In the current study, we have successfully created next-generation 3D mammary gland organoids from eight eutherian mammals and the first branched organoid of a marsupial mammary gland. Using mammary organoids, we identified a role for ROCK protein in regulating branching morphogenesis, a role that manifests differently in organoids from different mammals. This finding demonstrates the utility of the 3D organoid model for understanding the evolution and adaptations of signaling pathways. These achievements highlight the potential for organoid models to expand our understanding of mammary gland biology and evolution, and their potential utility in studies of lactation or breast cancer.


Assuntos
Glândulas Mamárias Humanas , Marsupiais , Humanos , Feminino , Animais , Marsupiais/genética , Organoides/metabolismo , Lactação , Eutérios , Glândulas Mamárias Animais/metabolismo
7.
Cell ; 148(4): 780-91, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341448

RESUMO

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Assuntos
Neoplasias Faciais/veterinária , Instabilidade Genômica , Marsupiais/genética , Mutação , Animais , Evolução Clonal , Espécies em Perigo de Extinção , Neoplasias Faciais/epidemiologia , Neoplasias Faciais/genética , Neoplasias Faciais/patologia , Feminino , Estudo de Associação Genômica Ampla , Masculino , Dados de Sequência Molecular , Tasmânia/epidemiologia
8.
Proc Natl Acad Sci U S A ; 121(12): e2307780121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466855

RESUMO

Coevolution is common and frequently governs host-pathogen interaction outcomes. Phenotypes underlying these interactions often manifest as the combined products of the genomes of interacting species, yet traditional quantitative trait mapping approaches ignore these intergenomic interactions. Devil facial tumor disease (DFTD), an infectious cancer afflicting Tasmanian devils (Sarcophilus harrisii), has decimated devil populations due to universal host susceptibility and a fatality rate approaching 100%. Here, we used a recently developed joint genome-wide association study (i.e., co-GWAS) approach, 15 y of mark-recapture data, and 960 genomes to identify intergenomic signatures of coevolution between devils and DFTD. Using a traditional GWA approach, we found that both devil and DFTD genomes explained a substantial proportion of variance in how quickly susceptible devils became infected, although genomic architectures differed across devils and DFTD; the devil genome had fewer loci of large effect whereas the DFTD genome had a more polygenic architecture. Using a co-GWA approach, devil-DFTD intergenomic interactions explained ~3× more variation in how quickly susceptible devils became infected than either genome alone, and the top genotype-by-genotype interactions were significantly enriched for cancer genes and signatures of selection. A devil regulatory mutation was associated with differential expression of a candidate cancer gene and showed putative allele matching effects with two DFTD coding sequence variants. Our results highlight the need to account for intergenomic interactions when investigating host-pathogen (co)evolution and emphasize the importance of such interactions when considering devil management strategies.


Assuntos
Doenças Transmissíveis , Daunorrubicina/análogos & derivados , Neoplasias Faciais , Marsupiais , Animais , Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Estudo de Associação Genômica Ampla , Marsupiais/genética
9.
Proc Natl Acad Sci U S A ; 121(6): e2220392121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38305758

RESUMO

Germline colonization by retroviruses results in the formation of endogenous retroviruses (ERVs). Most colonization's occurred millions of years ago. However, in the Australo-Papuan region (Australia and New Guinea), several recent germline colonization events have been discovered. The Wallace Line separates much of Southeast Asia from the Australo-Papuan region restricting faunal and pathogen dispersion. West of the Wallace Line, gibbon ape leukemia viruses (GALVs) have been isolated from captive gibbons. Two microbat species from China appear to have been infected naturally. East of Wallace's Line, the woolly monkey virus (a GALV) and the closely related koala retrovirus (KoRV) have been detected in eutherians and marsupials in the Australo-Papuan region, often vertically transmitted. The detected vertically transmitted GALV-like viruses in Australo-Papuan fauna compared to sporadic horizontal transmission in Southeast Asia and China suggest the GALV-KoRV clade originates in the former region and further models of early-stage genome colonization may be found. We screened 278 samples, seven bat and one rodent family endemic to the Australo-Papuan region and bat and rodent species found on both sides of the Wallace Line. We identified two rodents (Melomys) from Australia and Papua New Guinea and no bat species harboring GALV-like retroviruses. Melomys leucogaster from New Guinea harbored a genomically complete replication-competent retrovirus with a shared integration site among individuals. The integration was only present in some individuals of the species indicating this retrovirus is at the earliest stages of germline colonization of the Melomys genome, providing a new small wild mammal model of early-stage genome colonization.


Assuntos
Quirópteros , Retrovirus Endógenos , Gammaretrovirus , Marsupiais , Animais , Vírus da Leucemia do Macaco Gibão/genética , Nova Guiné , Gammaretrovirus/genética , Murinae/genética , Marsupiais/genética , Células Germinativas
10.
Proc Natl Acad Sci U S A ; 121(18): e2320590121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621118

RESUMO

Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.


Assuntos
Mamíferos , Marsupiais , Animais , Camundongos , Austrália , Dinâmica Populacional , Genótipo , Heterozigoto , Variação Genética , Genética Populacional
11.
Proc Natl Acad Sci U S A ; 121(36): e2412185121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190362

RESUMO

X chromosome inactivation (XCI) is an epigenetic process that results in the transcriptional silencing of one X chromosome in the somatic cells of females. This phenomenon is common to both eutherian and marsupial mammals, but there are fundamental differences. In eutherians, the X chosen for silencing is random. DNA methylation on the eutherian inactive X is high at transcription start sites (TSSs) and their flanking regions, resulting in universally high DNA methylation. This contrasts XCI in marsupials where the paternally derived X is always silenced, and in which DNA methylation is low at TSSs and flanking regions. Here, we examined the DNA methylation status of the tammar wallaby X chromosome during spermatogenesis to determine the DNA methylation profile of the paternal X prior to and at fertilization. Whole genome enzymatic methylation sequencing was carried out on enriched flow-sorted populations of premeiotic, meiotic, and postmeiotic cells. We observed that the X displayed a pattern of DNA methylation from spermatogonia to mature sperm that reflected the inactive X in female somatic tissue. Therefore, the paternal X chromosome arrives at the egg with a DNA methylation profile that reflects the transcriptionally silent X in adult female somatic tissue. We present this epigenetic signature as a candidate for the long sought-after imprint for paternal XCI in marsupials.


Assuntos
Metilação de DNA , Inativação do Cromossomo X , Cromossomo X , Animais , Inativação do Cromossomo X/genética , Masculino , Feminino , Cromossomo X/genética , Impressão Genômica , Espermatogênese/genética , Macropodidae/genética , Óvulo/metabolismo , Marsupiais/genética , Espermatozoides/metabolismo , Epigênese Genética
12.
Genome Res ; 33(8): 1299-1316, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37463752

RESUMO

Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve protein-coding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains.


Assuntos
Genômica , Marsupiais , Animais , Genômica/métodos , Filogenia , Extinção Biológica , Paleontologia , Marsupiais/genética , RNA/genética
13.
Nature ; 586(7829): 424-428, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029010

RESUMO

Since 1814, when rubella was first described, the origins of the disease and its causative agent, rubella virus (Matonaviridae: Rubivirus), have remained unclear1. Here we describe ruhugu virus and rustrela virus in Africa and Europe, respectively, which are, to our knowledge, the first known relatives of rubella virus. Ruhugu virus, which is the closest relative of rubella virus, was found in apparently healthy cyclops leaf-nosed bats (Hipposideros cyclops) in Uganda. Rustrela virus, which is an outgroup to the clade that comprises rubella and ruhugu viruses, was found in acutely encephalitic placental and marsupial animals at a zoo in Germany and in wild yellow-necked field mice (Apodemus flavicollis) at and near the zoo. Ruhugu and rustrela viruses share an identical genomic architecture with rubella virus2,3. The amino acid sequences of four putative B cell epitopes in the fusion (E1) protein of the rubella, ruhugu and rustrela viruses and two putative T cell epitopes in the capsid protein of the rubella and ruhugu viruses are moderately to highly conserved4-6. Modelling of E1 homotrimers in the post-fusion state predicts that ruhugu and rubella viruses have a similar capacity for fusion with the host-cell membrane5. Together, these findings show that some members of the family Matonaviridae can cross substantial barriers between host species and that rubella virus probably has a zoonotic origin. Our findings raise concerns about future zoonotic transmission of rubella-like viruses, but will facilitate comparative studies and animal models of rubella and congenital rubella syndrome.


Assuntos
Mamíferos/virologia , Filogenia , Vírus da Rubéola/classificação , Vírus da Rubéola/isolamento & purificação , Sequência de Aminoácidos , Animais , Animais de Zoológico/imunologia , Animais de Zoológico/virologia , Membrana Celular/virologia , Quirópteros/virologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Equidae/imunologia , Equidae/virologia , Evolução Molecular , Feminino , Mapeamento Geográfico , Alemanha , Especificidade de Hospedeiro , Humanos , Masculino , Mamíferos/imunologia , Marsupiais/imunologia , Marsupiais/virologia , Fusão de Membrana , Camundongos , Modelos Animais , Modelos Moleculares , Rubéola (Sarampo Alemão)/congênito , Rubéola (Sarampo Alemão)/virologia , Vírus da Rubéola/química , Vírus da Rubéola/imunologia , Alinhamento de Sequência , Uganda , Proteínas do Envelope Viral/química
14.
Proc Natl Acad Sci U S A ; 120(32): e2306516120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523567

RESUMO

The thylacine, or Tasmanian tiger, is the largest of modern-day carnivorous marsupials and was hunted to extinction by European settlers in Australia. Its physical resemblance to eutherian wolves is a striking example of evolutionary convergence to similar ecological niches. However, whether the neuroanatomical organization of the thylacine brain resembles that of canids and how it compares with other mammals remain unknown due to the scarcity of available samples. Here, we gained access to a century-old hematoxylin-stained histological series of a thylacine brain, digitalized it at high resolution, and compared its forebrain cellular architecture with 34 extant species of monotremes, marsupials, and eutherians. Phylogenetically informed comparisons of cortical folding, regional volumes, and cell sizes and densities across cortical areas and layers provide evidence against brain convergences with canids, instead demonstrating features typical of marsupials, and more specifically Dasyuridae, along with traits that scale similarly with brain size across mammals. Enlarged olfactory, limbic, and neocortical areas suggest a small-prey predator and/or scavenging lifestyle, similar to extant quolls and Tasmanian devils. These findings are consistent with a nonuniformity of trait convergences, with brain traits clustering more with phylogeny and head/body traits with lifestyle. By making this resource publicly available as rapid web-accessible, hierarchically organized, multiresolution images for perpetuity, we anticipate that additional comparative insights might arise from detailed studies of the thylacine brain and encourage researchers and curators to share, annotate, and preserve understudied material of outstanding biological relevance.


Assuntos
Carnívoros , Marsupiais , Animais , Austrália , Evolução Biológica , Prosencéfalo
15.
Proc Natl Acad Sci U S A ; 120(22): e2208654120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216522

RESUMO

The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex, patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in noneutherian mammals, as well as when and how they arise during development, remain open questions relevant for understanding brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer an approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice) and examined earlier stages of development to determine the onset of these patterns and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate other early events in cortical development.


Assuntos
Córtex Cerebral , Marsupiais , Animais , Camundongos , Axônios , Mamíferos , Encéfalo , Eutérios , Córtex Somatossensorial
16.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39101626

RESUMO

Retroviruses are an ancient viral family that have globally coevolved with vertebrates and impacted their evolution. In Australia, a continent that has been geographically isolated for millions of years, little is known about retroviruses in wildlife, despite the devastating impacts of a retrovirus on endangered koala populations. We therefore sought to identify and characterize Australian retroviruses through reconstruction of endogenous retroviruses from marsupial genomes, in particular the Tasmanian devil due to its high cancer incidence. We screened 19 marsupial genomes and identified over 80,000 endogenous retrovirus fragments which we classified into eight retrovirus clades. The retroviruses were similar to either Betaretrovirus (5/8) or Gammaretrovirus (3/8) retroviruses, but formed distinct phylogenetic clades compared to extant retroviruses. One of the clades (MEBrv 3) lost an envelope but retained retrotranspositional activity, subsequently amplifying throughout all Dasyuridae genomes. Overall, we provide insights into Australian retrovirus evolution and identify a highly active endogenous retrovirus within Dasyuridae genomes.


Assuntos
Retrovirus Endógenos , Genoma , Marsupiais , Filogenia , Animais , Retrovirus Endógenos/genética , Marsupiais/virologia , Austrália , Evolução Molecular
17.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35005774

RESUMO

Only mammals evolved a neocortex, which integrates sensory-motor and cognitive functions. Significant diversifications in the cellular composition and connectivity of the neocortex occurred between the two main therian groups: marsupials and eutherians. However, the developmental mechanisms underlying these diversifications are largely unknown. Here, we compared the neocortical transcriptomes of Sminthopsis crassicaudata, a mouse-sized marsupial, with those of eutherian mice at two developmentally equivalent time points corresponding to deeper and upper layer neuron generation. Enrichment analyses revealed more mature gene networks in marsupials at the early stage, which reverted at the later stage, suggesting a more precocious but protracted neuronal maturation program relative to birth timing of cortical layers. We ranked genes expressed in different species and identified important differences in gene expression rankings between species. For example, genes known to be enriched in upper-layer cortical projection neuron subtypes, such as Cux1, Lhx2 and Satb2, likely relate to corpus callosum emergence in eutherians. These results show molecular heterochronies of neocortical development in Theria, and highlight changes in gene expression and cell type composition that may underlie neocortical evolution and diversification. This article has an associated 'The people behind the papers' interview.


Assuntos
Evolução Biológica , Eutérios/crescimento & desenvolvimento , Marsupiais/crescimento & desenvolvimento , Neocórtex/crescimento & desenvolvimento , Transcriptoma , Animais , Eutérios/classificação , Eutérios/genética , Marsupiais/classificação , Marsupiais/genética , Camundongos , Neocórtex/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142343

RESUMO

The neocortex is unique to mammals and so, for evolutionary studies, researchers have compared eutherians and marsupials. A new paper in Development uncovers key differences in the timing of gene expression changes in the cortical development of the mouse and the similarly sized marsupial, the fat-tailed dunnart. We caught up with the authors from The University of Queensland, Australia, to find out more about their research and their future plans.


Assuntos
Neocórtex/metabolismo , Pesquisadores/psicologia , Animais , Autoria , Evolução Biológica , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Humanos , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Camundongos , Neocórtex/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA