Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.143
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33333020

RESUMO

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Assuntos
Córtex Cerebral/fisiologia , Córtex Motor/fisiologia , Organoides/fisiologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Vértebras Cervicais , Regulação da Expressão Gênica , Glutamatos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Músculos/fisiologia , Mioblastos/metabolismo , Rede Nervosa/fisiologia , Optogenética , Organoides/ultraestrutura , Rombencéfalo/fisiologia , Esferoides Celulares/citologia , Medula Espinal/citologia
2.
Cell ; 175(4): 1105-1118.e17, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343898

RESUMO

Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This "primary regionalization" allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS.


Assuntos
Montagem e Desmontagem da Cromatina , Indução Embrionária , Neurogênese , Animais , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo
3.
Nat Immunol ; 21(12): 1496-1505, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106668

RESUMO

Transected axons typically fail to regenerate in the central nervous system (CNS), resulting in chronic neurological disability in individuals with traumatic brain or spinal cord injury, glaucoma and ischemia-reperfusion injury of the eye. Although neuroinflammation is often depicted as detrimental, there is growing evidence that alternatively activated, reparative leukocyte subsets and their products can be deployed to improve neurological outcomes. In the current study, we identify a unique granulocyte subset, with characteristics of an immature neutrophil, that had neuroprotective properties and drove CNS axon regeneration in vivo, in part via secretion of a cocktail of growth factors. This pro-regenerative neutrophil promoted repair in the optic nerve and spinal cord, demonstrating its relevance across CNS compartments and neuronal populations. Our findings could ultimately lead to the development of new immunotherapies that reverse CNS damage and restore lost neurological function across a spectrum of diseases.


Assuntos
Axônios/metabolismo , Comunicação Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Regeneração Nervosa , Neurônios/metabolismo , Neutrófilos/metabolismo , Animais , Biomarcadores , Plasticidade Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Sistema Nervoso Central/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Camundongos , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Nervo Óptico/imunologia , Nervo Óptico/metabolismo , Receptores de Interleucina-8B/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Transcriptoma , Zimosan/metabolismo , Zimosan/farmacologia
4.
Cell ; 168(1-2): 295-310.e19, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28041852

RESUMO

The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.


Assuntos
Medula Espinal/citologia , Medula Espinal/metabolismo , Sinapses , Animais , Axônios/metabolismo , Dendritos/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Mecanorreceptores/metabolismo , Camundongos , Biologia Molecular/métodos , Vias Neurais , Percepção do Tato
5.
Cell ; 165(1): 220-233, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26949187

RESUMO

Documenting the extent of cellular diversity is a critical step in defining the functional organization of tissues and organs. To infer cell-type diversity from partial or incomplete transcription factor expression data, we devised a sparse Bayesian framework that is able to handle estimation uncertainty and can incorporate diverse cellular characteristics to optimize experimental design. Focusing on spinal V1 inhibitory interneurons, for which the spatial expression of 19 transcription factors has been mapped, we infer the existence of ~50 candidate V1 neuronal types, many of which localize in compact spatial domains in the ventral spinal cord. We have validated the existence of inferred cell types by direct experimental measurement, establishing this Bayesian framework as an effective platform for cell-type characterization in the nervous system and elsewhere.


Assuntos
Teorema de Bayes , Células de Renshaw/química , Células de Renshaw/citologia , Medula Espinal/citologia , Fatores de Transcrição/análise , Animais , Camundongos , Células de Renshaw/classificação , Transcriptoma
6.
Cell ; 165(1): 207-219, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26949184

RESUMO

Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. Here, we show that V1 interneurons, a major inhibitory population that controls motor output, fractionate into highly diverse subsets on the basis of the expression of 19 transcription factors. Transcriptionally defined V1 subsets exhibit distinct physiological signatures and highly structured spatial distributions with mediolateral and dorsoventral positional biases. These positional distinctions constrain patterns of input from sensory and motor neurons and, as such, suggest that interneuron position is a determinant of microcircuit organization. Moreover, V1 diversity indicates that different inhibitory microcircuits exist for motor pools controlling hip, ankle, and foot muscles, revealing a variable circuit architecture for interneurons that control limb movement.


Assuntos
Extremidades/fisiologia , Movimento , Células de Renshaw/química , Células de Renshaw/citologia , Medula Espinal/citologia , Fatores de Transcrição/análise , Animais , Camundongos , Propriocepção , Células de Renshaw/classificação , Células de Renshaw/fisiologia , Transcriptoma
7.
Cell ; 167(1): 73-86.e12, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662084

RESUMO

Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Contração Muscular/fisiologia , Neurônios/fisiologia , Ponte/fisiologia , Bexiga Urinária/fisiologia , Micção/fisiologia , Animais , Feminino , Ácido Glutâmico/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ponte/citologia , Olfato , Medula Espinal/citologia , Medula Espinal/fisiologia , Bexiga Urinária/inervação
8.
Nature ; 630(8018): 926-934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898273

RESUMO

Krause corpuscles, which were discovered in the 1850s, are specialized sensory structures found within the genitalia and other mucocutaneous tissues1-4. The physiological properties and functions of Krause corpuscles have remained unclear since their discovery. Here we report the anatomical and physiological properties of Krause corpuscles of the mouse clitoris and penis and their roles in sexual behaviour. We observed a high density of Krause corpuscles in the clitoris compared with the penis. Using mouse genetic tools, we identified two distinct somatosensory neuron subtypes that innervate Krause corpuscles of both the clitoris and penis and project to a unique sensory terminal region of the spinal cord. In vivo electrophysiology and calcium imaging experiments showed that both Krause corpuscle afferent types are A-fibre rapid-adapting low-threshold mechanoreceptors, optimally tuned to dynamic, light-touch and mechanical vibrations (40-80 Hz) applied to the clitoris or penis. Functionally, selective optogenetic activation of Krause corpuscle afferent terminals evoked penile erection in male mice and vaginal contraction in female mice, while genetic ablation of Krause corpuscles impaired intromission and ejaculation of males and reduced sexual receptivity of females. Thus, Krause corpuscles of the clitoris and penis are highly sensitive mechanical vibration detectors that mediate sexually dimorphic mating behaviours.


Assuntos
Clitóris , Mecanorreceptores , Pênis , Comportamento Sexual Animal , Tato , Vibração , Animais , Feminino , Masculino , Camundongos , Clitóris/inervação , Clitóris/fisiologia , Ejaculação/fisiologia , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiologia , Optogenética , Ereção Peniana/fisiologia , Pênis/inervação , Pênis/fisiologia , Comportamento Sexual Animal/fisiologia , Medula Espinal/fisiologia , Medula Espinal/citologia , Tato/fisiologia , Vagina/fisiologia , Neurônios/fisiologia
9.
Nature ; 628(8007): 391-399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408487

RESUMO

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Assuntos
Padronização Corporal , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultura de Células em Três Dimensões , Diferenciação Celular , Crista Neural/citologia , Crista Neural/embriologia , Tubo Neural/citologia , Tubo Neural/embriologia , Células-Tronco Pluripotentes/citologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Medula Espinal/citologia , Medula Espinal/embriologia
10.
Cell ; 156(3): 537-48, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24485459

RESUMO

Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement.


Assuntos
Tronco Encefálico/fisiologia , Técnicas Genéticas , Vias Neurais , Medula Espinal/citologia , Medula Espinal/fisiologia , Animais , Axônios/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Sinapses
11.
Nature ; 624(7991): 403-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092914

RESUMO

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Vias Neurais , Neurônios , Medula Espinal , Animais , Camundongos , Hipotálamo , Neurônios/metabolismo , Neuropeptídeos , Medula Espinal/citologia , Medula Espinal/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurotransmissores , Mesencéfalo/citologia , Formação Reticular/citologia , Eletrofisiologia , Cerebelo/citologia , Córtex Cerebral/citologia
12.
Nature ; 622(7983): 552-561, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758947

RESUMO

Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.


Assuntos
Sistema Nervoso Central , Imageamento Tridimensional , Análise de Célula Única , Transcriptoma , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Análise de Célula Única/métodos , Medula Espinal/anatomia & histologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Transcriptoma/genética , Análise da Expressão Gênica de Célula Única , Tropismo Viral , Conjuntos de Dados como Assunto , Transgenes/genética , Imageamento Tridimensional/métodos
13.
Cell ; 152(1-2): 248-61, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332759

RESUMO

Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that oligodendrocyte-lineage determination factor Olig2 functions as a prepatterning factor to direct Smarca4/Brg1 to oligodendrocyte-specific enhancers. Recruitment of Smarca4/Brg1 to distinct subsets of myelination regulatory genes is developmentally regulated. Functional analyses of Smarca4/Brg1 and Olig2 co-occupancy relative to chromatin epigenetic marking uncover stage-specific cis-regulatory elements that predict sets of transcriptional regulators controlling oligodendrocyte differentiation. Together, our results demonstrate that regulation of the functional specificity and activity of a Smarca4/Brg1-dependent chromatin-remodeling complex by Olig2, coupled with transcriptionally linked chromatin modifications, is critical to precisely initiate and establish the transcriptional program that promotes oligodendrocyte differentiation and subsequent myelination of the CNS.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/citologia , Animais , Encéfalo/citologia , Células Cultivadas , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/metabolismo , Ratos , Medula Espinal/citologia , Fatores de Transcrição/metabolismo
14.
Nature ; 610(7932): 526-531, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224394

RESUMO

Although the generation of movements is a fundamental function of the nervous system, the underlying neural principles remain unclear. As flexor and extensor muscle activities alternate during rhythmic movements such as walking, it is often assumed that the responsible neural circuitry is similarly exhibiting alternating activity1. Here we present ensemble recordings of neurons in the lumbar spinal cord that indicate that, rather than alternating, the population is performing a low-dimensional 'rotation' in neural space, in which the neural activity is cycling through all phases continuously during the rhythmic behaviour. The radius of rotation correlates with the intended muscle force, and a perturbation of the low-dimensional trajectory can modify the motor behaviour. As existing models of spinal motor control do not offer an adequate explanation of rotation1,2, we propose a theory of neural generation of movements from which this and other unresolved issues, such as speed regulation, force control and multifunctionalism, are readily explained.


Assuntos
Neurônios Motores , Movimento , Rotação , Medula Espinal , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Caminhada/fisiologia , Neurônios Motores/fisiologia
15.
Nature ; 611(7936): 540-547, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352232

RESUMO

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord1-3 applied during neurorehabilitation4,5 (EESREHAB) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EESREHAB in mice. We applied single-nucleus RNA sequencing6-9 and spatial transcriptomics10,11 to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type12,13 and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EESREHAB, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.


Assuntos
Neurônios , Paralisia , Traumatismos da Medula Espinal , Medula Espinal , Caminhada , Animais , Humanos , Camundongos , Neurônios/fisiologia , Paralisia/genética , Paralisia/fisiopatologia , Paralisia/terapia , Medula Espinal/citologia , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Caminhada/fisiologia , Estimulação Elétrica , Região Lombossacral/inervação , Reabilitação Neurológica , Análise de Sequência de RNA , Perfilação da Expressão Gênica
16.
Physiol Rev ; 100(3): 945-982, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31869278

RESUMO

Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.


Assuntos
Prurido/metabolismo , Prurido/fisiopatologia , Animais , Humanos , Neurônios/fisiologia , Pele/inervação , Medula Espinal/citologia , Medula Espinal/fisiologia
17.
Proc Natl Acad Sci U S A ; 121(23): e2314213121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805282

RESUMO

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch, and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here, we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify three clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 and ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.


Assuntos
Proteínas de Homeodomínio , Animais , Camundongos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Neurônios/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Núcleo Celular/metabolismo , Núcleo Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Cell ; 147(3): 641-52, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22036570

RESUMO

Neurons typically settle at positions that match the location of their synaptic targets, creating topographic maps. In the spinal cord, the organization of motor neurons into discrete clusters is linked to the location of their muscle targets, establishing a topographic map of punctate design. To define the significance of motor pool organization for neuromuscular map formation, we assessed the role of cadherin-catenin signaling in motor neuron positioning and limb muscle innervation. We find that joint inactivation of ß- and γ-catenin scrambles motor neuron settling position in the spinal cord but fails to erode the predictive link between motor neuron transcriptional identity and muscle target. Inactivation of N-cadherin perturbs pool positioning in similar ways, albeit with reduced penetrance. These findings reveal that cadherin-catenin signaling directs motor pool patterning and imposes topographic order on an underlying identity-based neural map.


Assuntos
Caderinas/metabolismo , Neurônios Motores/metabolismo , Transdução de Sinais , Medula Espinal/embriologia , beta Catenina/metabolismo , gama Catenina/metabolismo , Animais , Evolução Biológica , Padronização Corporal , Embrião de Mamíferos/metabolismo , Camundongos , Mutação , Medula Espinal/citologia , Medula Espinal/metabolismo , Via de Sinalização Wnt
19.
Nature ; 587(7833): 258-263, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116307

RESUMO

The anterolateral pathway consists of ascending spinal tracts that convey pain, temperature and touch information from the spinal cord to the brain1-4. Projection neurons of the anterolateral pathway are attractive therapeutic targets for pain treatment because nociceptive signals emanating from the periphery are channelled through these spinal projection neurons en route to the brain. However, the organizational logic of the anterolateral pathway remains poorly understood. Here we show that two populations of projection neurons that express the structurally related G-protein-coupled receptors (GPCRs) TACR1 and GPR83 form parallel ascending circuit modules that cooperate to convey thermal, tactile and noxious cutaneous signals from the spinal cord to the lateral parabrachial nucleus of the pons. Within this nucleus, axons of spinoparabrachial (SPB) neurons that express Tacr1 or Gpr83 innervate distinct sets of subnuclei, and strong optogenetic stimulation of the axon terminals induces distinct escape behaviours and autonomic responses. Moreover, SPB neurons that  express Gpr83 are highly sensitive to cutaneous mechanical stimuli and receive strong synaptic inputs from both high- and low-threshold primary mechanosensory neurons. Notably, the valence associated with activation of SPB neurons that express Gpr83 can be either positive or negative, depending on stimulus intensity. These findings reveal anatomically, physiologically and functionally distinct subdivisions of the SPB tract that underlie affective aspects of touch and pain.


Assuntos
Vias Neurais , Dor/fisiopatologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Tato/fisiologia , Animais , Axônios/metabolismo , Feminino , Masculino , Mecanotransdução Celular , Camundongos , Filosofia , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Sinapses/metabolismo
20.
Nature ; 587(7835): 613-618, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33029008

RESUMO

Spinal cord injury in mammals is thought to trigger scar formation with little regeneration of axons1-4. Here we show that a crush injury to the spinal cord in neonatal mice leads to scar-free healing that permits the growth of long projecting axons through the lesion. Depletion of microglia in neonatal mice disrupts this healing process and stalls the regrowth of axons, suggesting that microglia are critical for orchestrating the injury response. Using single-cell RNA sequencing and functional analyses, we find that neonatal microglia are transiently activated and have at least two key roles in scar-free healing. First, they transiently secrete fibronectin and its binding proteins to form bridges of extracellular matrix that ligate the severed ends of the spinal cord. Second, neonatal-but not adult-microglia express several extracellular and intracellular peptidase inhibitors, as well as other molecules that are involved in resolving inflammation. We transplanted either neonatal microglia or adult microglia treated with peptidase inhibitors into spinal cord lesions of adult mice, and found that both types of microglia significantly improved healing and axon regrowth. Together, our results reveal the cellular and molecular basis of the nearly complete recovery of neonatal mice after spinal cord injury, and suggest strategies that could be used to facilitate scar-free healing in the adult mammalian nervous system.


Assuntos
Microglia/fisiologia , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Medula Espinal/citologia , Medula Espinal/fisiologia , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/fisiologia , Cicatriz , Fibronectinas/metabolismo , Homeostase , Camundongos , Microglia/efeitos dos fármacos , Inibidores de Proteases/farmacologia , RNA-Seq , Análise de Célula Única , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Regeneração da Medula Espinal/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA