Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.166
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181739

RESUMO

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Assuntos
Melanoma , Humanos , Redes Reguladoras de Genes , Imunoterapia , Melanócitos , Melanoma/tratamento farmacológico , Melanoma/genética , Fator de Transcrição 4/genética , Microambiente Tumoral
2.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233163

RESUMO

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , NADP Trans-Hidrogenases/metabolismo , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular , Estudos de Coortes , AMP Cíclico/metabolismo , Dano ao DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , NADP Trans-Hidrogenases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/genética , Ubiquitina/metabolismo , Peixe-Zebra
3.
Cell ; 176(5): 1113-1127.e16, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712867

RESUMO

Activating mutations in NRAS account for 20%-30% of melanoma, but despite decades of research and in contrast to BRAF, no effective anti-NRAS therapies have been forthcoming. Here, we identify a previously uncharacterized serine/threonine kinase STK19 as a novel NRAS activator. STK19 phosphorylates NRAS to enhance its binding to its downstream effectors and promotes oncogenic NRAS-mediated melanocyte malignant transformation. A recurrent D89N substitution in STK19 whose alterations were identified in 25% of human melanomas represents a gain-of-function mutation that interacts better with NRAS to enhance melanocyte transformation. STK19D89N knockin leads to skin hyperpigmentation and promotes NRASQ61R-driven melanomagenesis in vivo. Finally, we developed ZT-12-037-01 (1a) as a specific STK19-targeted inhibitor and showed that it effectively blocks oncogenic NRAS-driven melanocyte malignant transformation and melanoma growth in vitro and in vivo. Together, our findings provide a new and viable therapeutic strategy for melanomas harboring NRAS mutations.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Melanoma/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Células HEK293 , Humanos , Melanócitos/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Mutação , Fosforilação , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética
4.
Nature ; 616(7958): 774-782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37076619

RESUMO

For unknow reasons, the melanocyte stem cell (McSC) system fails earlier than other adult stem cell populations1, which leads to hair greying in most humans and mice2,3. Current dogma states that McSCs are reserved in an undifferentiated state in the hair follicle niche, physically segregated from differentiated progeny that migrate away following cues of regenerative stimuli4-8. Here we show that most McSCs toggle between transit-amplifying and stem cell states for both self-renewal and generation of mature progeny, a mechanism fundamentally distinct from those of other self-renewing systems. Live imaging and single-cell RNA sequencing revealed that McSCs are mobile, translocating between hair follicle stem cell and transit-amplifying compartments where they reversibly enter distinct differentiation states governed by local microenvironmental cues (for example, WNT). Long-term lineage tracing demonstrated that the McSC system is maintained by reverted McSCs rather than by reserved stem cells inherently exempt from reversible changes. During ageing, there is accumulation of stranded McSCs that do not contribute to the regeneration of melanocyte progeny. These results identify a new model whereby dedifferentiation is integral to homeostatic stem cell maintenance and suggest that modulating McSC mobility may represent a new approach for the prevention of hair greying.


Assuntos
Desdiferenciação Celular , Folículo Piloso , Melanócitos , Nicho de Células-Tronco , Células-Tronco , Animais , Humanos , Camundongos , Folículo Piloso/citologia , Melanócitos/citologia , Células-Tronco/citologia , Microambiente Celular , Linhagem da Célula , Envelhecimento , Homeostase , Cor de Cabelo/fisiologia
5.
Nature ; 618(7966): 808-817, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344645

RESUMO

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Assuntos
Cabelo , Melanócitos , Transdução de Sinais , Animais , Camundongos , Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Receptores de Hialuronatos/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Nevo/metabolismo , Nevo/patologia , Osteopontina/metabolismo , Células-Tronco/citologia
6.
Cell ; 155(5): 1022-33, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267888

RESUMO

Sequence polymorphisms linked to human diseases and phenotypes in genome-wide association studies often affect noncoding regions. A SNP within an intron of the gene encoding Interferon Regulatory Factor 4 (IRF4), a transcription factor with no known role in melanocyte biology, is strongly associated with sensitivity of skin to sun exposure, freckles, blue eyes, and brown hair color. Here, we demonstrate that this SNP lies within an enhancer of IRF4 transcription in melanocytes. The allele associated with this pigmentation phenotype impairs binding of the TFAP2A transcription factor that, together with the melanocyte master regulator MITF, regulates activity of the enhancer. Assays in zebrafish and mice reveal that IRF4 cooperates with MITF to activate expression of Tyrosinase (TYR), an essential enzyme in melanin synthesis. Our findings provide a clear example of a noncoding polymorphism that affects a phenotype by modulating a developmental gene regulatory network.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Sequência de Bases , Elementos Facilitadores Genéticos , Humanos , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/genética , Melanócitos/metabolismo , Camundongos , Dados de Sequência Molecular , Pigmentação , Transdução de Sinais , Fator de Transcrição AP-2/química , Fator de Transcrição AP-2/metabolismo , Peixe-Zebra
7.
Nature ; 601(7891): 118-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912121

RESUMO

The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Fibroblastos/imunologia , Pele/imunologia , Pele/patologia , Vitiligo/imunologia , Vitiligo/patologia , Adolescente , Adulto , Animais , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/imunologia , Criança , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Humanos , Interferon gama/imunologia , Masculino , Melanócitos/imunologia , Melanócitos/patologia , Camundongos , Pessoa de Meia-Idade , Comunicação Parácrina , RNA-Seq , Análise de Célula Única , Células Estromais/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto Jovem
8.
Mol Cell ; 79(3): 472-487.e10, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32531202

RESUMO

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genoma , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Processamento de Proteína Pós-Traducional , Neoplasias Cutâneas/genética , Acetilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Elementos Facilitadores Genéticos , Feminino , Xenoenxertos , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Fator de Transcrição Associado à Microftalmia/química , Fator de Transcrição Associado à Microftalmia/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Peixe-Zebra
9.
Genes Dev ; 34(23-24): 1713-1734, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184221

RESUMO

Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single-cell RNA sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing converging signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated. Employing conditional lineage-specific genetic ablation studies in mice, we found that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream from activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1- and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular/genética , Melanócitos/citologia , Transdução de Sinais/genética , Células-Tronco/citologia , Animais , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Análise de Célula Única
10.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39092608

RESUMO

Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.


Assuntos
Diferenciação Celular , Linhagem da Célula , Melanócitos , Melanoma , Melanócitos/metabolismo , Melanócitos/citologia , Humanos , Animais , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Crista Neural/metabolismo , Proliferação de Células , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética
11.
Cell ; 150(2): 251-63, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817889

RESUMO

Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Melanoma/genética , Mutagênese , Raios Ultravioleta , Sequência de Aminoácidos , Células Cultivadas , Exoma , Humanos , Melanócitos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Alinhamento de Sequência , Proteínas rac1 de Ligação ao GTP/genética
12.
Cell ; 150(6): 1135-46, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980977

RESUMO

DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Here, we report that "loss of 5-hmC" is an epigenetic hallmark of melanoma, with diagnostic and prognostic implications. Genome-wide mapping of 5-hmC reveals loss of the 5-hmC landscape in the melanoma epigenome. We show that downregulation of isocitrate dehydrogenase 2 (IDH2) and TET family enzymes is likely one of the mechanisms underlying 5-hmC loss in melanoma. Rebuilding the 5-hmC landscape in melanoma cells by reintroducing active TET2 or IDH2 suppresses melanoma growth and increases tumor-free survival in animal models. Thus, our study reveals a critical function of 5-hmC in melanoma development and directly links the IDH and TET activity-dependent epigenetic pathway to 5-hmC-mediated suppression of melanoma progression, suggesting a new strategy for epigenetic cancer therapy.


Assuntos
Citosina/análogos & derivados , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Nevo/genética , 5-Metilcitosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Estudo de Associação Genômica Ampla , Humanos , Isocitrato Desidrogenase/genética , Melanócitos/metabolismo , Melanoma/patologia , Nevo/patologia , Proteínas Proto-Oncogênicas/genética
13.
Proc Natl Acad Sci U S A ; 121(16): e2321323121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607931

RESUMO

Extracellular vesicles (EVs) facilitate the transfer of proteins, lipids, and genetic material between cells and are recognized as an additional mechanism for sustaining intercellular communication. In the epidermis, the communication between melanocytes and keratinocytes is tightly regulated to warrant skin pigmentation. Melanocytes synthesize the melanin pigment in melanosomes that are transported along the dendrites prior to the transfer of melanin pigment to keratinocytes. EVs secreted by keratinocytes modulate pigmentation in melanocytes [(A. Lo Cicero et al., Nat. Commun. 6, 7506 (2015)]. However, whether EVs secreted by keratinocytes contribute to additional processes essential for melanocyte functions remains elusive. Here, we show that keratinocyte EVs enhance the ability of melanocytes to generate dendrites and mature melanosomes and promote their efficient transfer. Further, keratinocyte EVs carrying Rac1 induce important morphological changes, promote dendrite outgrowth, and potentiate melanin transfer to keratinocytes. Hence, in addition to modulating pigmentation, keratinocytes exploit EVs to control melanocyte plasticity and transfer capacity. These data demonstrate that keratinocyte-derived EVs, by regulating melanocyte functions, are major contributors to cutaneous pigmentation and expand our understanding of the mechanism underlying skin pigmentation via a paracrine EV-mediated communication.


Assuntos
Vesículas Extracelulares , Melanossomas , Melaninas , Melanócitos , Queratinócitos
14.
Genes Dev ; 33(15-16): 983-1007, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123060

RESUMO

All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanócitos/fisiologia , Melanoma/fisiopatologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Animais , Genoma , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Ligação Proteica , Isoformas de Proteínas
15.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823232

RESUMO

Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.


Assuntos
Oryzias , Peixe-Zebra , Animais , Redes Reguladoras de Genes , Mamíferos/genética , Melanócitos/metabolismo , Mutação , Crista Neural/metabolismo , Oryzias/genética , Oryzias/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Cell ; 145(6): 941-955, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663796

RESUMO

Melanocyte stem cells (McSCs) intimately interact with epithelial stem cells (EpSCs) in the hair follicle bulge and secondary hair germ (sHG). Together, they undergo activation and differentiation to regenerate pigmented hair. However, the mechanisms behind this coordinated stem cell behavior have not been elucidated. Here, we identified Wnt signaling as a key pathway that couples the behavior of the two stem cells. EpSCs and McSCs coordinately activate Wnt signaling at the onset of hair follicle regeneration within the sHG. Using genetic mouse models that specifically target either EpSCs or McSCs, we show that Wnt activation in McSCs drives their differentiation into pigment-producing melanocytes, while EpSC Wnt signaling not only dictates hair follicle formation but also regulates McSC proliferation during hair regeneration. Our data define a role for Wnt signaling in the regulation of McSCs and also illustrate a mechanism for regeneration of complex organs through collaboration between heterotypic stem cell populations.


Assuntos
Células Epiteliais/citologia , Cabelo/fisiologia , Melanócitos/citologia , Pigmentação , Fenômenos Fisiológicos da Pele , Células-Tronco/citologia , Proteínas Wnt/metabolismo , Animais , Diferenciação Celular , Cabelo/citologia , Doenças do Cabelo/metabolismo , Doenças do Cabelo/patologia , Folículo Piloso/citologia , Humanos , Camundongos , Regeneração , Transdução de Sinais , Pele/citologia , beta Catenina/metabolismo
17.
Nature ; 586(7830): 600-605, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029006

RESUMO

Every cell in the human body has a unique set of somatic mutations, but it remains difficult to comprehensively genotype an individual cell1. Here we describe ways to overcome this obstacle in the context of normal human skin, thus offering a glimpse into the genomic landscapes of individual melanocytes from human skin. As expected, sun-shielded melanocytes had fewer mutations than sun-exposed melanocytes. However, melanocytes from chronically sun-exposed skin (for example, the face) had a lower mutation burden than melanocytes from intermittently sun-exposed skin (for example, the back). Melanocytes located adjacent to a skin cancer had higher mutation burdens than melanocytes from donors without skin cancer, implying that the mutation burden of normal skin can be used to measure cumulative sun damage and risk of skin cancer. Moreover, melanocytes from healthy skin commonly contained pathogenic mutations, although these mutations tended to be weakly oncogenic, probably explaining why they did not give rise to discernible lesions. Phylogenetic analyses identified groups of related melanocytes, suggesting that melanocytes spread throughout skin as fields of clonally related cells that are invisible to the naked eye. Overall, our results uncover the genomic landscapes of individual melanocytes, providing key insights into the causes and origins of melanoma.


Assuntos
Genoma Humano/genética , Genômica , Saúde , Melanócitos/citologia , Melanoma/genética , Análise de Célula Única , Pele/citologia , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Mutação , Pele/patologia , Fluxo de Trabalho
18.
Nature ; 577(7792): 676-681, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969699

RESUMO

Empirical and anecdotal evidence has associated stress with accelerated hair greying (formation of unpigmented hairs)1,2, but so far there has been little scientific validation of this link. Here we report that, in mice, acute stress leads to hair greying through the fast depletion of melanocyte stem cells. Using a combination of adrenalectomy, denervation, chemogenetics3,4, cell ablation and knockout of the adrenergic receptor specifically in melanocyte stem cells, we find that the stress-induced loss of melanocyte stem cells is independent of immune attack or adrenal stress hormones. Instead, hair greying results from activation of the sympathetic nerves that innervate the melanocyte stem-cell niche. Under conditions of stress, the activation of these sympathetic nerves leads to burst release of the neurotransmitter noradrenaline (also known as norepinephrine). This causes quiescent melanocyte stem cells to proliferate rapidly, and is followed by their differentiation, migration and permanent depletion from the niche. Transient suppression of the proliferation of melanocyte stem cells prevents stress-induced hair greying. Our study demonstrates that neuronal activity that is induced by acute stress can drive a rapid and permanent loss of somatic stem cells, and illustrates an example in which the maintenance of somatic stem cells is directly influenced by the overall physiological state of the organism.


Assuntos
Vias Autônomas/fisiopatologia , Cor de Cabelo/fisiologia , Melanócitos/patologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/patologia , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Glândulas Suprarrenais/metabolismo , Adrenalectomia , Animais , Vias Autônomas/patologia , Proliferação de Células , Células Cultivadas , Denervação , Feminino , Humanos , Masculino , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Norepinefrina/metabolismo , Trauma Psicológico/patologia , Trauma Psicológico/fisiopatologia , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Estresse Psicológico/patologia , Sistema Nervoso Simpático/patologia
19.
Mol Cell ; 72(3): 444-456.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401431

RESUMO

Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Animais , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Melanócitos/fisiologia , Melanócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/fisiologia , Fator de Transcrição Associado à Microftalmia/efeitos da radiação , Cultura Primária de Células , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
20.
Bioessays ; 46(1): e2300143, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985957

RESUMO

Modeling metastasis in animal systems has been an important focus for developing cancer therapeutics. Xenopus laevis is a well-established model, known for its use in identifying genetic mechanisms underlying diseases and disorders in humans. Prior literature has suggested that the drug, ivermectin, can be used in Xenopus to induce melanocytes to convert into a metastatic melanoma-like state, and thus could be ideal for testing possible melanoma therapies in vivo. However, there are notable inconsistencies between ivermectin studies in Xenopus and the application of ivermectin in mammalian systems, that are relevant to cancer and melanoma research. In this review, we examine the ivermectin-induced phenotypes in Xenopus, and we explore the current uses of ivermectin in human research. We conclude that while ivermectin may be a useful drug for many biomedical purposes, it is not ideal to induce a metastatic melanocyte phenotype in Xenopus for testing the effects of potential melanoma therapeutics.


Assuntos
Melanoma , Animais , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Xenopus laevis , Ivermectina/farmacologia , Melanócitos/patologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA