Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Mol Cell ; 83(19): 3399-3401, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802021

RESUMO

In this issue of Molecular Cell, Zhu et al.1 demonstrate that REV-ERBα and its co-repressor NCOR1 are assembled into daytime-dependent liquid droplets that constitute hubs in which the transcription of multiple REV-ERBα target genes is simultaneously repressed.


Assuntos
Ritmo Circadiano , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Ritmo Circadiano/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas
2.
Mol Cell ; 83(19): 3457-3469.e7, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802023

RESUMO

Circadian gene transcription is fundamental to metabolic physiology. Here we report that the nuclear receptor REV-ERBα, a repressive component of the molecular clock, forms circadian condensates in the nuclei of mouse liver. These condensates are dictated by an intrinsically disordered region (IDR) located in the protein's hinge region which specifically concentrates nuclear receptor corepressor 1 (NCOR1) at the genome. IDR deletion diminishes the recruitment of NCOR1 and disrupts rhythmic gene transcription in vivo. REV-ERBα condensates are located at high-order transcriptional repressive hubs in the liver genome that are highly correlated with circadian gene repression. Deletion of the IDR disrupts transcriptional repressive hubs and diminishes silencing of target genes by REV-ERBα. This work demonstrates physiological circadian protein condensates containing REV-ERBα whose IDR is required for hub formation and the control of rhythmic gene expression.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Fígado/metabolismo , Expressão Gênica
3.
Cell ; 159(5): 1140-1152, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416951

RESUMO

Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.


Assuntos
Ritmo Circadiano , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Transcrição Gênica , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Relógios Circadianos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética
4.
Proc Natl Acad Sci U S A ; 121(42): e2411321121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39383000

RESUMO

Profound functional switch of key regulatory factors may play a major role in homeostasis and disease. Dysregulation of circadian rhythm (CR) is strongly implicated in cancer with mechanisms poorly understood. We report here that the function of REV-ERBα, a major CR regulator of the orphan nuclear receptor subfamily, is dramatically altered in tumors in both its genome binding and functional mode. Loss of CR is linked to a functional inversion of REV-ERBα from a repressor in control of CR and metabolic gene programs in normal tissues to a strong activator in different cancers. Through changing its association from NCoR/HDAC3 corepressor complex to BRD4/p300 coactivators, REV-ERBα directly activates thousands of genes including tumorigenic programs such as MAPK and PI3K-Akt signaling. Functioning as a master transcriptional activator, REV-ERBα partners with pioneer factor FOXA1 and directly stimulates a large number of signaling genes, including multiple growth factors, receptor tyrosine kinases, RASs, AKTs, and MAPKs. Moreover, elevated REV-ERBα reprograms FOXA1 to bind new targets through a BRD4-mediated increase in local chromatin accessibility. Pharmacological targeting with SR8278 diminishes the function of both REV-ERBα and FOXA1 and synergizes with BRD4 inhibitor in effective suppression of tumorigenic programs and tumor growth. Thus, our study revealed a functional inversion by a CR regulator in driving gene reprogramming as an unexpected paradigm of tumorigenesis mechanism and demonstrated a high effectiveness of therapeutic targeting such switch.


Assuntos
Carcinogênese , Ritmo Circadiano , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Humanos , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Carcinogênese/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Transdução de Sinais , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Proteínas que Contêm Bromodomínio
5.
J Allergy Clin Immunol ; 154(3): 707-718, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38734385

RESUMO

BACKGROUND: While the daily rhythm of allergic rhinitis (AR) has long been recognized, the molecular mechanism underlying this phenomenon remains enigmatic. OBJECTIVE: We aimed to investigate the role of circadian clock in AR development and to clarify the mechanism by which the daily rhythm of AR is generated. METHODS: AR was induced in mice with ovalbumin. Toluidine blue staining, liquid chromatography-tandem mass spectrometry analysis, real-time quantitative PCR, and immunoblotting were performed with AR and control mice. RESULTS: Ovalbumin-induced AR is diurnally rhythmic and associated with clock gene disruption in nasal mucosa. In particular, Rev-erbα is generally downregulated and its rhythm retained, but with a near-12-hour phase shift. Furthermore, global knockout of core clock gene Bmal1 or Rev-erbα increases the susceptibility of mice to AR and blunts AR rhythmicity. Importantly, nasal solitary chemosensory cells (SCCs) are rhythmically activated, and inhibition of the SCC pathway leads to attenuated AR and a loss of its rhythm. Moreover, rhythmic activation of SCCs is accounted for by diurnal expression of ChAT (an enzyme responsible for the synthesis of acetylcholine) and temporal generation of the neurotransmitter acetylcholine. Mechanistically, Rev-erbα trans-represses Chat through direct binding to a specific response element, generating a diurnal oscillation in this target gene. CONCLUSION: SCCs, under the control of Rev-erbα, are a driver of AR rhythmicity; targeting SCCs should be considered as a new avenue for AR management.


Assuntos
Ritmo Circadiano , Modelos Animais de Doenças , Mucosa Nasal , Rinite Alérgica , Animais , Rinite Alérgica/imunologia , Rinite Alérgica/metabolismo , Camundongos , Mucosa Nasal/metabolismo , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Camundongos Knockout , Ovalbumina/imunologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Camundongos Endogâmicos BALB C
6.
Histopathology ; 84(4): 661-670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084644

RESUMO

AIMS: Nuclear receptor subfamily 1 group D member 1 (NR1D1)-rearranged soft tissue tumour is a newly described entity with an epithelioid morphology and a potential for aggressive behaviour. Largely due to under-recognition, this tumour type has not yet been widely acknowledged. Herein, we report four additional cases to further expand its clinicopathological and molecular spectrum. METHODS AND RESULTS: Four mesenchymal tumours with NR1D1 rearrangement were identified from our consultation files. There were one male and three females with ages ranging from 19 to 47 years (median = 28.5 years). Tumour occurred in the tongue, neck, hip and index finger, respectively. Histologically, two tumours were composed predominantly of epithelioid cells; one tumour had admixed epithelioid-spindle cells and one tumour consisted of monomorphic small round to ovoid cells. By immunohistochemistry, none of the tumours expressed lineage-specific markers. Targeted RNA-sequencing identified NR1D1 fusions in all four tumours, the partner genes being MAML2, MAML3, KMT2A and NCOA2, respectively. The novel MAML3 and NCOA2 rearrangements were confirmed by fluorescence in-situ hybridisation analysis. On follow-up (2-23 months), one patient experienced local recurrence due to incomplete resection and one patient developed lung metastasis. The other two patients were alive without disease. CONCLUSIONS: This study adds more support for NR1D1-rearranged soft tissue tumour as an emerging entity. The occurrence of two additional tumours in the head and neck region, description of a small round cell variant and identification of novel MAML3, KMT2A and NCOA2 partners further expand its clinicopathological and molecular spectrum. More studies on larger series are necessary to validate the fully malignant potential of NR1D1-rearranged soft tissue tumour.


Assuntos
Neoplasias de Tecidos Moles , Fatores de Transcrição , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Hibridização in Situ Fluorescente , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Fatores de Transcrição/genética , Adulto Jovem , Adulto , Pessoa de Meia-Idade
7.
Clin Sci (Lond) ; 138(19): 1209-1226, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222031

RESUMO

Allergens and Th2 cytokines affect the homeostatic environment in the airways, leading to increased mucus production by goblet cells associated with altered adherens junctional complex (AJC) and tight junction (TJ) proteins responsible for maintaining epithelial barrier function. Circadian clock-dependent regulatory mechanisms such as inflammation and epithelial barrier function are gaining more attention due to their therapeutic potential against allergic inflammatory lung diseases. Currently, there are no studies to support whether REV-ERBα activation can attenuate Th2 cytokine-induced epithelial barrier dysfunction in human bronchial epithelial cells. We hypothesized that Th2 cytokine-induced epithelial barrier dysfunction may be protected by activating REV-ERBα. Treatment with Th2 cytokines or HDM significantly reduced the cell impedance, as confirmed by transepithelial electrical resistance (TEER). However, pre-treatment with SR10067 attenuated Th2 cytokine-induced barrier dysfunction, such as decreased permeability, improved TEER, localization of AJC and TJ proteins, and mRNA and protein levels of selected epithelial barrier and circadian clock targets. Overall, we showed for the first time that REV-ERBα activation regulates altered epithelial barrier function that may have direct implications for the treatment of asthma and other allergic diseases.


Assuntos
Brônquios , Citocinas , Células Epiteliais , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Células Th2 , Humanos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Citocinas/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Impedância Elétrica , Tiofenos/farmacologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo
8.
Mol Biol Rep ; 51(1): 279, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324049

RESUMO

BACKGROUND: Epilepsy is a neurological disease characterized by recurrent seizures, hyperexcitable neurons and various behavioral comorbidities. The electrical charge during seizures depletes the antioxidant defense mechanism in the epileptic brain and increases the oxidative burden. Natural antioxidant compounds are potential therapeutics in the treatment of two major pathologies of epilepsy with their anticonvulsant and anxiolytic effects and can modulate these targets. Gum Arabic is one of the natural plant polysaccharides that is non-toxic and biodegradable. METHODS AND RESULTS: A total of 30 Wistar albino male rats (8-12 weeks, 350-500 g), were randomly divided into 5 groups with 6 animals in each group: 1-Control, 2-Sham (Phosphate buffer saline (PBS)), 3-PTZ, 4-Gum Arabic, 5-PTZ + Gum Arabic. PTZ was administered i.p at 35 mg/kg/day for 11 days. After 48 h, the injection was completed with 75 mg/kg PTZ. Locomotor activity, immobilization, rearing, grooming, eating, and drinking behaviors were recorded with the LABORAS behavior system for 30 min after kindling. Animals were treated with Gum Arabic (2 mg/kg/day, oral gavage) for 10 days. At the end of the period, animal behavior was recorded again. Then the hippocampus tissues were removed. Oxidative parameters (TAS and TOS), early growth response 1 (EGR1) and nuclear receptor subfamily 1 group D member 1 (Rev-erbα) gene expressions and behaviors were analyzed. CONCLUSION: Gum Arabic increased TAS levels (P = 0.000), decreased TOS levels (P = 0.000), and thus exhibited antioxidant properties by reducing oxidative stress burden. EGR1, which was upregulated in the seizure group, was downregulated after treatment (P = 0.000), and Rev-erbα was downregulated in seizure and upregulated after treatment (P = 0.000). Gum arabic may be an antiepileptic and anxiolytic therapeutic in improving epileptic seizures by reducing oxidative stress burden through EGR1 and Rev-erbα.0.


Assuntos
Ansiolíticos , Proteína 1 de Resposta de Crescimento Precoce , Epilepsia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Ratos , Anticonvulsivantes , Antioxidantes , Goma Arábica , Ratos Wistar , Convulsões , Proteína 1 de Resposta de Crescimento Precoce/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética
9.
PLoS Genet ; 17(2): e1009350, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524027

RESUMO

The circadian clock drives extensive temporal gene expression programs controlling daily changes in behavior and physiology. In mouse liver, transcription factors dynamics, chromatin modifications, and RNA Polymerase II (PolII) activity oscillate throughout the 24-hour (24h) day, regulating the rhythmic synthesis of thousands of transcripts. Also, 24h rhythms in gene promoter-enhancer chromatin looping accompany rhythmic mRNA synthesis. However, how chromatin organization impinges on temporal transcription and liver physiology remains unclear. Here, we applied time-resolved chromosome conformation capture (4C-seq) in livers of WT and arrhythmic Bmal1 knockout mice. In WT, we observed 24h oscillations in promoter-enhancer loops at multiple loci including the core-clock genes Period1, Period2 and Bmal1. In addition, we detected rhythmic PolII activity, chromatin modifications and transcription involving stable chromatin loops at clock-output gene promoters representing key liver function such as glucose metabolism and detoxification. Intriguingly, these contacts persisted in clock-impaired mice in which both PolII activity and chromatin marks no longer oscillated. Finally, we observed chromatin interaction hubs connecting neighbouring genes showing coherent transcription regulation across genotypes. Thus, both clock-controlled and clock-independent chromatin topology underlie rhythmic regulation of liver physiology.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Genoma/genética , Fígado/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Acetilação , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Histonas/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA-Seq/métodos
10.
Genes Dev ; 30(14): 1636-44, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27445394

RESUMO

Hepatocyte nuclear factor 6 (HNF6) is required for liver development, but its role in adult liver metabolism is not known. Here we show that deletion of HNF6 in livers of adult C57Bl/6 mice leads to hepatic steatosis in mice fed normal laboratory chow. Although HNF6 is known mainly as a transcriptional activator, hepatic loss of HNF6 up-regulated many lipogenic genes bound directly by HNF6. Many of these genes are targets of the circadian nuclear receptor Rev-erbα, and binding of Rev-erbα at these sites was lost when HNF6 was ablated in the liver. While HNF6 and Rev-erbα coordinately regulate hepatic lipid metabolism, each factor also affects additional gene sets independently. These findings highlight a novel mechanism of transcriptional repression by HNF6 and demonstrate how overlapping and distinct mechanisms of transcription factor function contribute to the integrated physiology of the liver.


Assuntos
Regulação da Expressão Gênica/genética , Fator 6 Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/fisiopatologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Fígado Gorduroso/genética , Deleção de Genes , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Ligação Proteica/genética
11.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732079

RESUMO

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Mitofagia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Ratos , Ritmo Circadiano/fisiologia , Masculino , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Simulação de Ausência de Peso , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Temperatura Corporal , Frequência Cardíaca , Ratos Sprague-Dawley , Proteólise
12.
EMBO J ; 38(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31126958

RESUMO

Autophagy and energy metabolism are known to follow a circadian pattern. However, it is unclear whether autophagy and the circadian clock are coordinated by common control mechanisms. Here, we show that the oscillation of autophagy genes is dependent on the nutrient-sensitive activation of TFEB and TFE3, key regulators of autophagy, lysosomal biogenesis, and cell homeostasis. TFEB and TFE3 display a circadian activation over the 24-h cycle and are responsible for the rhythmic induction of genes involved in autophagy during the light phase. Genetic ablation of TFEB and TFE3 in mice results in deregulated autophagy over the diurnal cycle and altered gene expression causing abnormal circadian wheel-running behavior. In addition, TFEB and TFE3 directly regulate the expression of Rev-erbα (Nr1d1), a transcriptional repressor component of the core clock machinery also involved in the regulation of whole-body metabolism and autophagy. Comparative analysis of the cistromes of TFEB/TFE3 and REV-ERBα showed an extensive overlap of their binding sites, particularly in genes involved in autophagy and metabolic functions. These data reveal a direct link between nutrient and clock-dependent regulation of gene expression shedding a new light on the crosstalk between autophagy, metabolism, and circadian cycles.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Relógios Circadianos , Metabolismo Energético , Nutrientes/fisiologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Sítios de Ligação , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Nutrientes/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
13.
J Mol Evol ; 91(6): 963-975, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006429

RESUMO

For several decades, it has been known that a substantial number of genes within human DNA exhibit overlap; however, the biological and evolutionary significance of these overlaps remain poorly understood. This study focused on investigating specific instances of overlap where the overlapping DNA region encompasses the coding DNA sequences (CDSs) of protein-coding genes. The results revealed that proteins encoded by overlapping CDSs exhibit greater disorder than those from nonoverlapping CDSs. Additionally, these DNA regions were identified as GC-rich. This could be partially attributed to the absence of stop codons from two distinct reading frames rather than one. Furthermore, these regions were found to harbour fewer single-nucleotide polymorphism (SNP) sites, possibly due to constraints arising from the overlapping state where mutations could affect two genes simultaneously.While elucidating these properties, the NR1D1-THRA gene pair emerged as an exceptional case with highly structured proteins and a distinctly conserved sequence across eutherian mammals. Both NR1D1 and THRA are nuclear receptors lacking a ligand-binding domain at their C-terminus, which is the region where these gene pairs overlap. The NR1D1 gene is involved in the regulation of circadian rhythm, while the THRA gene encodes a thyroid hormone receptor, and both play crucial roles in various physiological processes. This study suggests that, in addition to their well-established functions, the specifically overlapping CDS regions of these genes may encode protein segments with additional, yet undiscovered, biological roles.


Assuntos
Genes erbA , Genoma Humano , Animais , Humanos , Genoma Humano/genética , Receptores dos Hormônios Tireóideos/genética , Mutação , Proteínas/genética , Fases de Leitura Aberta/genética , DNA , Mamíferos/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética
14.
Biochem Biophys Res Commun ; 669: 120-127, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37269594

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by excessive scarring of the lungs that can lead to respiratory failure and death. Lungs of patients with IPF demonstrate excessive deposition of extracellular matrix (ECM) and an increased presence of pro-fibrotic mediators such as transforming growth factor-beta 1 (TGFß1), which is a major driver of fibroblast-to-myofibroblast transition (FMT). Current literature supports that circadian clock dysfunction plays an essential role in the pathophysiology of various chronic inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease, and IPF. The circadian clock transcription factor Rev-erbα is encoded by Nr1d1 that regulates daily rhythms of gene expression linked to immunity, inflammation, and metabolism. However, investigations into the potential roles of Rev-erbα in TGFß-induced FMT and ECM accumulation are limited. In this study, we utilized several novel small molecule Rev-erbα agonists (GSK41122, SR9009, and SR9011) and a Rev-erbα antagonist (SR8278) to determine the roles of Rev-erbα in regulating TGFß1-induced FMT and pro-fibrotic phenotypes in human lung fibroblasts. WI-38 cells were either pre-treated/co-treated with or without Rev-erbα agonist/antagonist along with TGFß1. After 48 h, the following parameters were evaluated: secretion of COL1A1 (Slot-Blot analysis) and IL-6 (ELISA) into condition media, expressions of α-smooth muscle actin (αSMA: immunostaining and confocal microscopy), and pro-fibrotic proteins (αSMA and COL1A1 by immunoblotting), as well as gene expression of pro-fibrotic targets (qRT-PCR: Acta2, Fn1, and Col1a1). Results revealed that Rev-erbα agonists inhibited TGFß1-induced FMT (αSMA and COL1A1), and ECM production (reduced gene expression of Acta2, Fn1, and Col1a1), and decreased pro-inflammatory cytokine IL-6 release. The Rev-erbα antagonist promoted TGFß1-induced pro-fibrotic phenotypes. These findings support the potential of novel circadian clock-based therapeutics, such as Rev-erbα agonist, for the treatment and management of fibrotic lung diseases and disorders.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Interleucina-6/metabolismo , Pulmão/patologia , Fibrose , Fibrose Pulmonar Idiopática/patologia , Fibroblastos/metabolismo , Fenótipo , Doença Crônica , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
15.
Biol Reprod ; 109(5): 720-735, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552055

RESUMO

Trophoblast plays a crucial role in gestation maintenance and embryo implantation, partly due to the synthesis of progesterone. It has been demonstrated that hypoxia regulates invasion, proliferation, and differentiation of trophoblast cells. Additionally, human trophoblasts display rhythmic expression of circadian clock genes. However, it remains unclear if the circadian clock system is present in goat trophoblast cells (GTCs), and its involvement in hypoxia regulation of steroid hormone synthesis remains elusive. In this study, immunofluorescence staining revealed that both BMAL1 and NR1D1 (two circadian clock components) were highly expressed in GTCs. Quantitative real-time PCR analysis showed that several circadian clock genes were rhythmically expressed in forskolin-synchronized GTCs. To mimic hypoxia, GTCs were treated with hypoxia-inducing reagents (CoCl2 or DMOG). Quantitative real-time PCR results demonstrated that hypoxia perturbed the mRNA expression of circadian clock genes and StAR. Notably, the increased expression of NR1D1 and the reduction of StAR expression in hypoxic GTCs were also detected by western blotting. In addition, progesterone secretion exhibited a notable decline in hypoxic GTCs. SR9009, an NR1D1 agonist, significantly decreased StAR expression at both the mRNA and protein levels and markedly inhibited progesterone secretion in GTCs. Moreover, SR8278, an NR1D1 antagonist, partially reversed the inhibitory effect of CoCl2 on mRNA and protein expression levels of StAR and progesterone synthesis in GTCs. Our results demonstrate that hypoxia reduces StAR expression via the activation of NR1D1 signaling in GTCs, thus inhibiting progesterone synthesis. These findings provide new insights into the NR1D1 regulation of progesterone synthesis in GTCs under hypoxic conditions.


Assuntos
Progesterona , Trofoblastos , Animais , Humanos , Trofoblastos/metabolismo , Cabras/genética , Hipóxia , RNA Mensageiro , Cobalto , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
16.
FASEB J ; 36(4): e22262, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35319791

RESUMO

Nuclear receptor subfamily 1 group D member 1 (NR1D1, also known as Rev-erbα) is a nuclear transcription factor that is part of the molecular clock encoding circadian rhythms and may link daily rhythms with metabolism and inflammation. NR1D1, unlike most nuclear receptors, lacks a ligand-dependent activation function domain 2 and is a constitutive transcriptional repressor. Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease, caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Approximately 10%-20% of familial ALS is caused by a toxic gain-of-function induced by mutations of the Cu/Zn superoxide dismutase (SOD1). Dysregulated clock and clock-controlled gene expression occur in multiple tissues from mutant hSOD1-linked ALS mouse models. Here we explore NR1D1 dysregulation in the spinal cord of ALS mouse models and its consequences on astrocyte-motor neuron interaction. NR1D1 protein and mRNA expression are significantly downregulated in the spinal cord of symptomatic mice expressing mutant hSOD1, while no changes were observed in age-matched animals overexpressing wild-type hSOD1. In addition, NR1D1 downregulation in primary astrocyte cultures induces a pro-inflammatory phenotype and decreases the survival of cocultured motor neurons. NR1D1 orchestrates the cross talk between physiological pathways identified to be disrupted in ALS (e.g., metabolism, inflammation, redox homeostasis, and circadian rhythms) and we observed that downregulation of NR1D1 alters astrocyte-motor neuron interaction. Our results suggest that NR1D1 could be a potential therapeutic target to prevent astrocyte-mediated motor neuron toxicity in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Fenótipo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
17.
Brain Behav Immun ; 114: 287-298, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648007

RESUMO

The circadian system is an evolutionarily adaptive system that synchronizes biological and physiological activities within the body to the 24 h oscillations on Earth. At the molecular level, circadian clock proteins are transcriptional factors that regulate the rhythmic expression of genes involved in numerous physiological processes such as sleep, cognition, mood, and immune function. Environmental and genetic disruption of the circadian clock can lead to pathology. For example, global deletion of the circadian clock gene Rev-erbα (RKO) leads to hyperlocomotion, increased anxiety-like behaviors, and cognitive impairments in male mice; however, the mechanisms underlying behavioral changes remain unclear. Here we hypothesized that RKO alters microglia function leading to neuroinflammation and altered mood and cognition, and that microglia depletion can resolve neuroinflammation and restore behavior. We show that microglia depletion (CSF1R inhibitor, PLX5622) in 8-month-old RKO mice ameliorated hyperactivity, memory impairments, and anxiety/risky-like behaviors. RKO mice exhibited striking increases in expression of pro-inflammatory cytokines (e.g., IL-1ß and IL-6). Surprisingly, these increases were only fully reversed by microglia depletion in the male but not female RKO hippocampus. In contrast, male RKO mice showed greater alterations in microglial morphology and phagocytic activity than females. In both sexes, microglia depletion reduced microglial branching and decreased CD68 production without altering astrogliosis. Taken together, we show that male and female RKO mice exhibit unique perturbations to the neuroimmune system, but microglia depletion is effective at rescuing aspects of behavioral changes in both sexes. These results demonstrate that microglia are involved in Rev-erbα-mediated changes in behavior and neuroinflammation.


Assuntos
Disfunção Cognitiva , Microglia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Feminino , Masculino , Camundongos , Ansiedade , Ritmo Circadiano/fisiologia , Cognição , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doenças Neuroinflamatórias , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
18.
PLoS Biol ; 18(3): e3000435, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32168317

RESUMO

The circadian clock is a cell-autonomous time-keeping mechanism established gradually during embryonic development. Here, we generated a transgenic zebrafish line carrying a destabilized fluorescent protein driven by the promoter of a core clock gene, nr1d1, to report in vivo circadian rhythm at the single-cell level. By time-lapse imaging of this fish line and 3D reconstruction, we observed the sequential initiation of the reporter expression starting at photoreceptors in the pineal gland, then spreading to the cells in other brain regions at the single-cell level. Even within the pineal gland, we found heterogeneous onset of nr1d1 expression, in which each cell undergoes circadian oscillation superimposed over a cell type-specific developmental trajectory. Furthermore, we found that single-cell expression of nr1d1 showed synchronous circadian oscillation under a light-dark (LD) cycle. Remarkably, single-cell oscillations were dramatically dampened rather than desynchronized in animals raised under constant darkness, while the developmental trend still persists. It suggests that light exposure in early zebrafish embryos has significant effect on cellular circadian oscillations.


Assuntos
Relógios Circadianos/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Glândula Pineal/citologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proteínas de Bactérias/genética , Encéfalo/citologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Embrião não Mamífero/citologia , Proteínas Luminescentes/genética , Fotoperíodo , Glândula Pineal/fisiologia , Regiões Promotoras Genéticas , Análise de Célula Única , Imagem com Lapso de Tempo , Peixe-Zebra/embriologia
19.
Mol Biol Rep ; 50(12): 10427-10443, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874505

RESUMO

BACKGROUND: Today, modern lifestyles and disrupted sleep patterns cause circadian clock rhythm impairments that are associated with altered leptin levels, which subsequently affect a wide range of physiological processes and have significant health burdens on societies. Nevertheless, there has been no systematic review of circadian clock genes and proteins, leptin, and related signaling pathways. METHODS: Accordingly, we systematically reviewed circadian clock proteins, leptin, and molecular mechanisms between them by searching Pubmed, Scopus, ProQuest, Web of Sciences, and Google Scholar until September 2022. After considering the inclusion and exclusion criteria, 20 animal studies were selected. The risk of bias was assessed in each study. RESULTS: The results clarified the reciprocal interconnected relationship between circadian clock genes and leptin. Circadian clock genes regulate leptin expression and signaling via different mechanisms, such as CLOCK-BMAL1 heterodimers, which increase the expression of PPARs. PPARs induce the expression of C/EBPα, a key factor in upregulating leptin expression. CLOCK-BMAL1 also induces the expression of Per1 and Rev-erb genes. PER1 activates mTORC1 and mTORC1 enhances the expression of C/EBPα. In addition, REV-ERBs activate the leptin signaling pathway. Also, leptin controls the expression of circadian clock genes by triggering the AMPK and ERK/MAPK signaling pathways, which regulate the activity of PPARs. Moreover, the roles of these molecular mechanisms are elucidated in different physiological processes and organs. CONCLUSIONS: Crosstalk between circadian clock genes and leptin and their affecting elements should be considered in the selection of new therapeutic targets for related disorders, especially obesity and metabolic impairments.


Assuntos
Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Animais , Fatores de Transcrição ARNTL , Relógios Circadianos/genética , Ritmo Circadiano/genética , Leptina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Humanos
20.
Cell Mol Life Sci ; 79(6): 308, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35596832

RESUMO

Nuclear receptors are a unique family of transcription factors that play cardinal roles in physiology and plethora of human diseases. The adopted orphan nuclear receptor Nr1d1 is a constitutive transcriptional repressor known to modulate several biological processes. In this study, we found that Nr1d1 plays a decisive role in T helper (Th)-cell polarization and transcriptionally impedes the formation of Th2 cells by directly binding to the promoter region of GATA binding protein 3 (GATA3) gene. Nr1d1 interacts with its cellular companion, the nuclear receptor corepressor and histone deacetylase 3 to form a stable repression complex on the GATA3 promoter. The presence of Nr1d1 also imparts protection against associated inflammatory responses in murine model of asthma and its ligand SR9011 eased disease severity by suppressing Th2 responses. Moreover, Chip-seq profiling uncovered Nr1d1 interactions with other gene subsets that impedes Th2-linked pathways and regulates metabolism, immunity and brain functions, therefore, providing empirical evidence regarding the genetic link between asthma and other comorbid conditions. Thus, Nr1d1 emerges as a molecular switch that could be targeted to subdue asthma.


Assuntos
Asma , Células Th2 , Animais , Diferenciação Celular/genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Expressão Gênica , Humanos , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA