Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2400657121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141344

RESUMO

Microsporidia are intracellular eukaryotic pathogens that pose a substantial threat to immunocompromised hosts. The way these pathogens manipulate host cells during infection remains poorly understood. Using a proximity biotinylation strategy we established that microsporidian EnP1 is a nucleus-targeted effector that modifies the host cell environment. EnP1's translocation to the host nucleus is meditated by nuclear localization signals (NLSs). In the nucleus, EnP1 interacts with host histone H2B. This interaction disrupts H2B monoubiquitination (H2Bub), subsequently impacting p53 expression. Crucially, this inhibition of p53 weakens its control over the downstream target gene SLC7A11, enhancing the host cell's resilience against ferroptosis during microsporidian infection. This favorable condition promotes the proliferation of microsporidia within the host cell. These findings shed light on the molecular mechanisms by which microsporidia modify their host cells to facilitate their survival.


Assuntos
Ferroptose , Histonas , Microsporídios , Ubiquitinação , Microsporídios/metabolismo , Microsporídios/genética , Histonas/metabolismo , Humanos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Interações Hospedeiro-Patógeno , Animais , Núcleo Celular/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Microsporidiose/metabolismo
2.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903625

RESUMO

During the reductive evolution of obligate intracellular parasites called microsporidia, a tiny remnant mitochondrion (mitosome) lost its typical cristae, organellar genome, and most canonical functions. Here, we combine electron tomography, stereology, immunofluorescence microscopy, and bioinformatics to characterise mechanisms of growth, division, and inheritance of this minimal mitochondrion in two microsporidia species (grown within a mammalian RK13 culture-cell host). Mitosomes of Encephalitozoon cuniculi (2-12/cell) and Trachipleistophora hominis (14-18/nucleus) displayed incremental/non-phasic growth and division and were closely associated with an organelle identified as equivalent to the fungal microtubule-organising centre (microsporidian spindle pole body; mSPB). The mitosome-mSPB association was resistant to treatment with microtubule-depolymerising drugs nocodazole and albendazole. Dynamin inhibitors (dynasore and Mdivi-1) arrested mitosome division but not growth, whereas bioinformatics revealed putative dynamins Drp-1 and Vps-1, of which, Vps-1 rescued mitochondrial constriction in dynamin-deficient yeast (Schizosaccharomyces pombe). Thus, microsporidian mitosomes undergo incremental growth and dynamin-mediated division and are maintained through ordered inheritance, likely mediated via binding to the microsporidian centrosome (mSPB).


Assuntos
Proteínas Fúngicas , Microsporídios , Animais , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Microsporídios/genética , Microsporídios/metabolismo , Saccharomyces cerevisiae/metabolismo , Dinaminas , Mamíferos/metabolismo
3.
PLoS One ; 19(7): e0301951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038013

RESUMO

Mechanosensitive ion channels play an essential role in reacting to environmental signals and sustaining cell integrity by facilitating ion flux across membranes. For obligate intracellular pathogens like microsporidia, adapting to changes in the host environment is crucial for survival and propagation. Despite representing a eukaryote of extreme genome reduction, microsporidia have expanded the gene family of mechanosensitive ion channels of small conductance (mscS) through repeated gene duplication and horizontal gene transfer. All microsporidian genomes characterized to date contain mscS genes of both eukaryotic and bacterial origin. Here, we investigated the cryo-electron microscopy structure of the bacterially derived mechanosensitive ion channel of small conductance 2 (MscS2) from Nematocida displodere, an intracellular pathogen of Caenorhabditis elegans. MscS2 is the most compact MscS-like channel known and assembles into a unique superstructure in vitro with six heptameric MscS2 channels. Individual MscS2 channels are oriented in a heterogeneous manner to one another, resembling an asymmetric, flexible six-way cross joint. Finally, we show that microsporidian MscS2 still forms a heptameric membrane channel, however the extreme compaction suggests a potential new function of this MscS-like protein.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos , Canais Iônicos/metabolismo , Canais Iônicos/química , Canais Iônicos/genética , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Microsporídios/metabolismo , Microsporídios/genética , Mecanotransdução Celular
4.
Curr Biol ; 33(24): R1280-R1281, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113835

RESUMO

Spliceosomal introns evolved early in eukaryogenesis, originating from self-splicing group II introns that invaded the proto-eukaryotic genome1. Elements of these ribozymes, now called snRNAs (U1, U2, U4, U5, U6), were co-opted to excise these invasive elements. Prior to eukaryotic diversification, the spliceosome is predicted to have accumulated hundreds of proteins2. This early complexification has obscured our understanding of spliceosomal evolution. Reduced systems with few introns and tiny spliceosomes give insights into the plasticity of the splicing reaction and provide an opportunity to study the evolution of the spliceosome3,4. Microsporidia are intracellular parasites possessing extremely reduced genomes that have lost many, and in some instances all, introns5. In the purportedly intron-lacking genome of the microsporidian Pseudoloma neurophilia6, we identified two introns that are spliced at high levels. Furthermore, with only 14 predicted proteins, the P. neurophilia spliceosome could be the smallest known. Intriguingly, the few proteins retained are divergent compared to canonical orthologs. Even the central spliceosomal protein Prp8, which originated from the proteinaceous component of group II introns, is extremely divergent. This is unusual given that Prp8 is highly conserved across eukaryotes, including other microsporidia. All five P. neurophilia snRNAs are present, and all but U2 have diverged extensively, likely resulting from the loss of interacting proteins. Despite this divergence, U1 and U2 are predicted to pair with intron sequences more extensively than previously described. The P. neurophilia spliceosome is retained to splice a mere two introns and, with few proteins and reliance on RNA-RNA interactions, could function in a manner more reminiscent of presumed ancestral splicing.


Assuntos
Microsporídios , Spliceossomos , Spliceossomos/genética , Spliceossomos/metabolismo , Íntrons/genética , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Microsporídios/genética , Microsporídios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA