Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.677
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 104(3): 1265-1333, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153307

RESUMO

The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.


Assuntos
Arritmias Cardíacas , Modelos Cardiovasculares , Humanos , Arritmias Cardíacas/fisiopatologia , Animais , Simulação por Computador , Pesquisa Translacional Biomédica , Miócitos Cardíacos/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Potenciais de Ação/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(35): e2322077121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172779

RESUMO

2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.


Assuntos
Nucleotídeos de Desoxiadenina , Insuficiência Cardíaca , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Nucleotídeos de Desoxiadenina/metabolismo , Animais , Humanos , Função Ventricular , Modelos Cardiovasculares , Contração Miocárdica/efeitos dos fármacos , Miosinas/metabolismo , Sarcômeros/metabolismo , Actomiosina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Cálcio/metabolismo , Cadeias de Markov
3.
Nature ; 580(7802): 252-256, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269341

RESUMO

Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease1, screening for cardiotoxicity2 and decisions regarding the clinical management of patients with a critical illness3. However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training4,5. Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.


Assuntos
Aprendizado Profundo , Cardiopatias/diagnóstico , Cardiopatias/fisiopatologia , Coração/fisiologia , Coração/fisiopatologia , Modelos Cardiovasculares , Gravação em Vídeo , Fibrilação Atrial , Conjuntos de Dados como Assunto , Ecocardiografia , Insuficiência Cardíaca/fisiopatologia , Hospitais , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Função Ventricular Esquerda/fisiologia
4.
PLoS Comput Biol ; 20(7): e1011946, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39018334

RESUMO

Dynamical system models typically involve numerous input parameters whose "effects" and orthogonality need to be quantified through sensitivity analysis, to identify inputs contributing the greatest uncertainty. Whilst prior art has compared total-order estimators' role in recovering "true" effects, assessing their ability to recover robust parameter orthogonality for use in identifiability metrics has not been investigated. In this paper, we perform: (i) an assessment using a different class of numerical models representing the cardiovascular system, (ii) a wider evaluation of sampling methodologies and their interactions with estimators, (iii) an investigation of the consequences of permuting estimators and sampling methodologies on input parameter orthogonality, (iv) a study of sample convergence through resampling, and (v) an assessment of whether positive outcomes are sustained when model input dimensionality increases. Our results indicate that Jansen or Janon estimators display efficient convergence with minimum uncertainty when coupled with Sobol and the lattice rule sampling methods, making them prime choices for calculating parameter orthogonality and influence. This study reveals that global sensitivity analysis is convergence driven. Unconverged indices are subject to error and therefore the true influence or orthogonality of the input parameters are not recovered. This investigation importantly clarifies the interactions of the estimator and the sampling methodology by reducing the associated ambiguities, defining novel practices for modelling in the life sciences.


Assuntos
Simulação por Computador , Humanos , Biologia Computacional/métodos , Modelos Cardiovasculares , Modelos Estatísticos , Algoritmos , Modelos Biológicos , Incerteza
5.
PLoS Comput Biol ; 20(4): e1012013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635856

RESUMO

Cardiovascular diseases are the leading cause of death globally, making the development of non-invasive and simple-to-use tools that bring insights into the state of the cardiovascular system of utmost importance. We investigated the possibility of using peripheral pulse wave recordings to estimate stroke volume (SV) and subject-specific parameters describing the selected properties of the cardiovascular system. Peripheral pressure waveforms were recorded in the radial artery using applanation tonometry (SphygmoCor) in 35 hemodialysis (HD) patients and 14 healthy subjects. The pressure waveforms were then used to estimate subject-specific parameters of a mathematical model of pulse wave propagation coupled with the elastance-based model of the left ventricle. Bioimpedance cardiography measurements (PhysioFlow) were performed to validate the model-estimated SV. Mean absolute percentage error between the simulated and measured pressure waveforms was 4.0% and 2.8% for the HD and control group, respectively. We obtained a moderate correlation between the model-estimated and bioimpedance-based SV (r = 0.57, p<0.05, and r = 0.58, p<0.001, for the control group and HD patients, respectively). We also observed a correlation between the estimated end-systolic elastance of the left ventricle and the peripheral systolic pressure in both HD patients (r = 0.84, p<0.001) and the control group (r = 0.70, p<0.01). These preliminary results suggest that, after additional validation and possibly further refinement to increase accuracy, the proposed methodology could support non-invasive assessment of stroke volume and selected heart function parameters and vascular properties. Importantly, the proposed method could be potentially implemented in the existing devices measuring peripheral pressure waveforms.


Assuntos
Pressão Sanguínea , Modelos Cardiovasculares , Análise de Onda de Pulso , Volume Sistólico , Humanos , Volume Sistólico/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Pressão Sanguínea/fisiologia , Análise de Onda de Pulso/métodos , Adulto , Idoso , Diálise Renal , Cardiografia de Impedância/métodos
6.
PLoS Comput Biol ; 20(6): e1012231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900817

RESUMO

Computational fluid dynamics (CFD) can be used for non-invasive evaluation of hemodynamics. However, its routine use is limited by labor-intensive manual segmentation, CFD mesh creation, and time-consuming simulation. This study aims to train a deep learning model to both generate patient-specific volume-meshes of the pulmonary artery from 3D cardiac MRI data and directly estimate CFD flow fields. This proof-of-concept study used 135 3D cardiac MRIs from both a public and private dataset. The pulmonary arteries in the MRIs were manually segmented and converted into volume-meshes. CFD simulations were performed on ground truth meshes and interpolated onto point-point correspondent meshes to create the ground truth dataset. The dataset was split 110/10/15 for training, validation, and testing. Image2Flow, a hybrid image and graph convolutional neural network, was trained to transform a pulmonary artery template to patient-specific anatomy and CFD values, taking a specific inlet velocity as an additional input. Image2Flow was evaluated in terms of segmentation, and the accuracy of predicted CFD was assessed using node-wise comparisons. In addition, the ability of Image2Flow to respond to increasing inlet velocities was also evaluated. Image2Flow achieved excellent segmentation accuracy with a median Dice score of 0.91 (IQR: 0.86-0.92). The median node-wise normalized absolute error for pressure and velocity magnitude was 11.75% (IQR: 9.60-15.30%) and 9.90% (IQR: 8.47-11.90), respectively. Image2Flow also showed an expected response to increased inlet velocities with increasing pressure and velocity values. This proof-of-concept study has shown that it is possible to simultaneously perform patient-specific volume-mesh based segmentation and pressure and flow field estimation using Image2Flow. Image2Flow completes segmentation and CFD in ~330ms, which is ~5000 times faster than manual methods, making it more feasible in a clinical environment.


Assuntos
Hemodinâmica , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Artéria Pulmonar , Humanos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Hemodinâmica/fisiologia , Modelos Cardiovasculares , Hidrodinâmica , Estudo de Prova de Conceito , Aprendizado Profundo , Velocidade do Fluxo Sanguíneo/fisiologia , Biologia Computacional/métodos
7.
PLoS Comput Biol ; 20(6): e1012244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38917196

RESUMO

Patients with myocardial ischemia and infarction are at increased risk of arrhythmias, which in turn, can exacerbate the overall risk of mortality. Despite the observed reduction in recurrent arrhythmias through antiarrhythmic drug therapy, the precise mechanisms underlying their effectiveness in treating ischemic heart disease remain unclear. Moreover, there is a lack of specialized drugs designed explicitly for the treatment of myocardial ischemic arrhythmia. This study employs an electrophysiological simulation approach to investigate the potential antiarrhythmic effects and underlying mechanisms of various pharmacological agents in the context of ischemia and myocardial infarction (MI). Based on physiological experimental data, computational models are developed to simulate the effects of a series of pharmacological agents (amiodarone, telmisartan, E-4031, chromanol 293B, and glibenclamide) on cellular electrophysiology and utilized to further evaluate their antiarrhythmic effectiveness during ischemia. On 2D and 3D tissues with multiple pathological conditions, the simulation results indicate that the antiarrhythmic effect of glibenclamide is primarily attributed to the suppression of efflux of potassium ion to facilitate the restitution of [K+]o, as opposed to recovery of IKATP during myocardial ischemia. This discovery implies that, during acute cardiac ischemia, pro-arrhythmogenic alterations in cardiac tissue's excitability and conduction properties are more significantly influenced by electrophysiological changes in the depolarization rate, as opposed to variations in the action potential duration (APD). These findings offer specific insights into potentially effective targets for investigating ischemic arrhythmias, providing significant guidance for clinical interventions in acute coronary syndrome.


Assuntos
Antiarrítmicos , Simulação por Computador , Modelos Cardiovasculares , Infarto do Miocárdio , Isquemia Miocárdica , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/fisiopatologia , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Biologia Computacional
8.
Arterioscler Thromb Vasc Biol ; 44(5): 1065-1085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572650

RESUMO

Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.


Assuntos
Prótese Vascular , Hemodinâmica , Humanos , Animais , Modelos Cardiovasculares , Falha de Prótese , Estresse Mecânico , Fenômenos Biomecânicos , Mecanotransdução Celular , Implante de Prótese Vascular/efeitos adversos , Desenho de Prótese , Oclusão de Enxerto Vascular/fisiopatologia , Oclusão de Enxerto Vascular/etiologia , Remodelação Vascular
9.
Arterioscler Thromb Vasc Biol ; 44(7): 1617-1627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38721707

RESUMO

BACKGROUND: While it has been hypothesized that high plaque stress and strain may be related to plaque rupture, its direct verification using in vivo coronary plaque rupture data and full 3-dimensional fluid-structure interaction models is lacking in the current literature due to difficulty in obtaining in vivo plaque rupture imaging data from patients with acute coronary syndrome. This case-control study aims to use high-resolution optical coherence tomography-verified in vivo plaque rupture data and 3-dimensional fluid-structure interaction models to seek direct evidence for the high plaque stress/strain hypothesis. METHODS: In vivo coronary plaque optical coherence tomography data (5 ruptured plaques, 5 no-rupture plaques) were acquired from patients using a protocol approved by the local institutional review board with informed consent obtained. The ruptured caps were reconstructed to their prerupture morphology using neighboring plaque cap and vessel geometries. Optical coherence tomography-based 3-dimensional fluid-structure interaction models were constructed to obtain plaque stress, strain, and flow shear stress data for comparative analysis. The rank-sum test in the nonparametric test was used for statistical analysis. RESULTS: Our results showed that the average maximum cap stress and strain values of ruptured plaques were 142% (457.70 versus 189.22 kPa; P=0.0278) and 48% (0.2267 versus 0.1527 kPa; P=0.0476) higher than that for no-rupture plaques, respectively. The mean values of maximum flow shear stresses for ruptured and no-rupture plaques were 145.02 dyn/cm2 and 81.92 dyn/cm2 (P=0.1111), respectively. However, the flow shear stress difference was not statistically significant. CONCLUSIONS: This preliminary case-control study showed that the ruptured plaque group had higher mean maximum stress and strain values. Due to our small study size, larger scale studies are needed to further validate our findings.


Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Placa Aterosclerótica , Estresse Mecânico , Tomografia de Coerência Óptica , Humanos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Vasos Coronários/patologia , Ruptura Espontânea , Estudos de Casos e Controles , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Idoso , Valor Preditivo dos Testes , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/fisiopatologia , Síndrome Coronariana Aguda/etiologia
10.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969855

RESUMO

We present a numerical method specifically designed for simulating three-dimensional fluid-structure interaction (FSI) problems based on the reference map technique (RMT). The RMT is a fully Eulerian FSI numerical method that allows fluids and large-deformation elastic solids to be represented on a single fixed computational grid. This eliminates the need for meshing complex geometries typical in other FSI approaches and greatly simplifies the coupling between fluid and solids. We develop a three-dimensional implementation of the RMT, parallelized using the distributed memory paradigm, to simulate incompressible FSI with neo-Hookean solids. As part of our method, we develop a field extrapolation scheme that works efficiently in parallel. Through representative examples, we demonstrate the method's suitability in investigating many-body and active systems, as well as its accuracy and convergence. The examples include settling of a mixture of heavy and buoyant soft ellipsoids, lid-driven cavity flow containing a soft sphere, and swimmers actuated via active stress.


Assuntos
Simulação por Computador , Suspensões , Humanos , Locomoção , Mecânica , Modelos Cardiovasculares
11.
Proc Natl Acad Sci U S A ; 119(24): e2117568119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35679346

RESUMO

We identify and demonstrate a universal mechanism for terminating spiral waves in excitable media using an established topological framework. This mechanism dictates whether high- or low-energy defibrillation shocks succeed or fail. Furthermore, this mechanism allows for the design of a single minimal stimulus capable of defibrillating, at any time, turbulent states driven by multiple spiral waves. We demonstrate this method in a variety of computational models of cardiac tissue ranging from simple to detailed human models. The theory described here shows how this mechanism underlies all successful defibrillation and can be used to further develop existing and future low-energy defibrillation strategies.


Assuntos
Cardioversão Elétrica , Coração , Simulação por Computador , Cardioversão Elétrica/métodos , Humanos , Modelos Cardiovasculares
12.
Biophys J ; 123(18): 2996-3009, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38807364

RESUMO

The length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA. Using biomechanical modeling of a human left-ventricular myocyte, this study investigates the extent to which the off-state dynamics could, by itself, plausibly account for LDA, depending on the specific mathematical formulation of the feedback. We hypothesized four different models of the off-state regulatory feedback based on (A) total force, (B) active force, (C) sarcomere strain, and (D) passive force. We tested if these models could reproduce the isometric steady-state and dynamic LDA features predicted by an earlier published model of a human left-ventricle myocyte featuring purely phenomenological length dependences. The results suggest that only total-force feedback (A) is capable of reproducing the expected behaviors, but that passive tension could provide a length-dependent signal on which to initiate the feedback. Furthermore, by attributing LDA to off-state dynamics, our proposed model also qualitatively reproduces experimentally observed effects of the off-state-stabilizing drug mavacamten. Taken together, these results support off-state dynamics as a plausible primary mechanism underlying LDA.


Assuntos
Sarcômeros , Humanos , Fenômenos Biomecânicos , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Contração Miocárdica/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ventrículos do Coração/citologia
13.
J Mol Cell Cardiol ; 192: 94-108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754551

RESUMO

While exercise-mediated vasoregulation in the myocardium is understood to be governed by autonomic, myogenic, and metabolic-mediated mechanisms, we do not yet understand the spatial heterogeneity of vasodilation or its effects on microvascular flow patterns and oxygen delivery. This study uses a simulation and modeling approach to explore the mechanisms underlying the recruitment of myocardial perfusion and oxygen delivery in exercise. The simulation approach integrates model components representing: whole-body cardiovascular hemodynamics, cardiac mechanics and myocardial work; myocardial perfusion; and myocardial oxygen transport. Integrating these systems together, model simulations reveal: (1.) To match expected flow and transmural flow ratios at increasing levels of exercise, a greater degree of vasodilation must occur in the subendocardium compared to the subepicardium. (2.) Oxygen extraction and venous oxygenation are predicted to substantially decrease with increasing exercise level preferentially in the subendocardium, suggesting that an oxygen-dependent error signal driving metabolic mediated recruitment of flow would be operative only in the subendocardium. (3.) Under baseline physiological conditions approximately 4% of the oxygen delivered to the subendocardium may be supplied via retrograde flow from coronary veins.


Assuntos
Simulação por Computador , Circulação Coronária , Exercício Físico , Modelos Cardiovasculares , Miocárdio , Oxigênio , Exercício Físico/fisiologia , Humanos , Oxigênio/metabolismo , Miocárdio/metabolismo , Hemodinâmica , Consumo de Oxigênio , Coração/fisiologia , Vasodilatação
14.
J Mol Cell Cardiol ; 193: 113-124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960316

RESUMO

The sarcolemmal Ca2+ efflux pathways, Na+-Ca2+-exchanger (NCX) and Ca2+-ATPase (PMCA), play a crucial role in the regulation of intracellular Ca2+ load and Ca2+ transient in cardiomyocytes. The distribution of these pathways between the t-tubular and surface membrane of ventricular cardiomyocytes varies between species and is not clear in human. Moreover, several studies suggest that this distribution changes during the development and heart diseases. However, the consequences of NCX and PMCA redistribution in human ventricular cardiomyocytes have not yet been elucidated. In this study, we aimed to address this point by using a mathematical model of the human ventricular myocyte incorporating t-tubules, dyadic spaces, and subsarcolemmal spaces. Effects of various combinations of t-tubular fractions of NCX and PMCA were explored, using values between 0.2 and 1 as reported in animal experiments under normal and pathological conditions. Small variations in the action potential duration (≤ 2%), but significant changes in the peak value of cytosolic Ca2+ transient (up to 17%) were observed at stimulation frequencies corresponding to the human heart rate at rest and during activity. The analysis of model results revealed that the changes in Ca2+ transient induced by redistribution of NCX and PMCA were mainly caused by alterations in Ca2+ concentrations in the subsarcolemmal spaces and cytosol during the diastolic phase of the stimulation cycle. The results suggest that redistribution of both transporters between the t-tubular and surface membranes contributes to changes in contractility in human ventricular cardiomyocytes during their development and heart disease and may promote arrhythmogenesis.


Assuntos
Cálcio , Ventrículos do Coração , Miócitos Cardíacos , Sarcolema , Trocador de Sódio e Cálcio , Humanos , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Sarcolema/metabolismo , Potenciais de Ação , Sinalização do Cálcio , Membrana Celular/metabolismo , Modelos Biológicos , Modelos Cardiovasculares
15.
J Mol Cell Cardiol ; 190: 13-23, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462126

RESUMO

Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.


Assuntos
Cálcio , Proteínas de Transporte , Conectina , Contração Miocárdica , Humanos , Conectina/metabolismo , Conectina/genética , Proteínas de Transporte/metabolismo , Cálcio/metabolismo , Sarcômeros/metabolismo , Modelos Cardiovasculares , Simulação por Computador , Animais , Coração/fisiopatologia , Coração/fisiologia
16.
J Physiol ; 602(18): 4605-4624, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38185911

RESUMO

The human heart is subject to highly variable amounts of strain during day-to-day activities and needs to adapt to a wide range of physiological demands. This adaptation is driven by an autoregulatory loop that includes both electrical and the mechanical components. In particular, mechanical forces are known to feed back into the cardiac electrophysiology system, which can result in pro- and anti-arrhythmic effects. Despite the widespread use of computational modelling and simulation for cardiac electrophysiology research, the majority of in silico experiments ignore this mechano-electric feedback entirely due to the high computational cost associated with solving cardiac mechanics. In this study, we therefore use an electromechanically coupled whole-heart model to investigate the differential and combined effects of electromechanical feedback mechanisms with a focus on their physiological relevance during sinus rhythm. In particular, we consider troponin-bound calcium, the effect of deformation on the tissue diffusion tensor, and stretch-activated channels. We found that activation of the myocardium was only significantly affected when including deformation into the diffusion term of the monodomain equation. Repolarization, on the other hand, was influenced by both troponin-bound calcium and stretch-activated channels and resulted in steeper repolarization gradients in the atria. The latter also caused afterdepolarizations in the atria. Due to its central role for tension development, calcium bound to troponin affected stroke volume and pressure. In conclusion, we found that mechano-electric feedback changes activation and repolarization patterns throughout the heart during sinus rhythm and lead to a markedly more heterogeneous electrophysiological substrate. KEY POINTS: The electrophysiological and mechanical function of the heart are tightly interrelated by excitation-contraction coupling (ECC) in the forward direction and mechano-electric feedback (MEF) in the reverse direction. While ECC is considered in many state-of-the-art computational models of cardiac electromechanics, less is known about the effect of different MEF mechanisms. Accounting for calcium bound to troponin increases stroke volume and delays repolarization. Geometry-mediated MEF leads to more heterogeneous activation and repolarization with steeper gradients. Both effects combine in an additive way. Non-selective stretch-activated channels as an additional MEF mechanism lead to heterogeneous diastolic transmembrane voltage, higher developed tension and delayed repolarization or afterdepolarizations in highly stretched parts of the atria. The differential and combined effects of these three MEF mechanisms during sinus rhythm activation in a human four-chamber heart model may have implications for arrhythmogenesis, both in terms of substrate (repolarization gradients) and triggers (ectopy).


Assuntos
Modelos Cardiovasculares , Humanos , Coração/fisiologia , Retroalimentação Fisiológica/fisiologia , Cálcio/metabolismo
17.
J Physiol ; 602(16): 3929-3954, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075725

RESUMO

One-dimensional (1D) cardiovascular models offer a non-invasive method to answer medical questions, including predictions of wave-reflection, shear stress, functional flow reserve, vascular resistance and compliance. This model type can predict patient-specific outcomes by solving 1D fluid dynamics equations in geometric networks extracted from medical images. However, the inherent uncertainty in in vivo imaging introduces variability in network size and vessel dimensions, affecting haemodynamic predictions. Understanding the influence of variation in image-derived properties is essential to assess the fidelity of model predictions. Numerous programs exist to render three-dimensional surfaces and construct vessel centrelines. Still, there is no exact way to generate vascular trees from the centrelines while accounting for uncertainty in data. This study introduces an innovative framework employing statistical change point analysis to generate labelled trees that encode vessel dimensions and their associated uncertainty from medical images. To test this framework, we explore the impact of uncertainty in 1D haemodynamic predictions in a systemic and pulmonary arterial network. Simulations explore haemodynamic variations resulting from changes in vessel dimensions and segmentation; the latter is achieved by analysing multiple segmentations of the same images. Results demonstrate the importance of accurately defining vessel radii and lengths when generating high-fidelity patient-specific haemodynamics models. KEY POINTS: This study introduces novel algorithms for generating labelled directed trees from medical images, focusing on accurate junction node placement and radius extraction using change points to provide haemodynamic predictions with uncertainty within expected measurement error. Geometric features, such as vessel dimension (length and radius) and network size, significantly impact pressure and flow predictions in both pulmonary and aortic arterial networks. Standardizing networks to a consistent number of vessels is crucial for meaningful comparisons and decreases haemodynamic uncertainty. Change points are valuable to understanding structural transitions in vascular data, providing an automated and efficient way to detect shifts in vessel characteristics and ensure reliable extraction of representative vessel radii.


Assuntos
Hemodinâmica , Modelos Cardiovasculares , Humanos , Incerteza , Simulação por Computador , Artéria Pulmonar/fisiologia , Artéria Pulmonar/diagnóstico por imagem
18.
J Physiol ; 602(9): 1953-1966, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38630963

RESUMO

Dynamic cerebral autoregulation (dCA) is the mechanism that describes how the brain maintains cerebral blood flow approximately constant in response to short-term changes in arterial blood pressure. This is known to be impaired in many different pathological conditions, including ischaemic and haemorrhagic stroke, dementia and traumatic brain injury. Many different approaches have thus been used both to analyse and to quantify this mechanism in a range of healthy and diseased subjects, including data-driven models (in both the time and the frequency domain) and biophysical models. However, despite the substantial body of work on both biophysical models and data-driven models of dCA, there remains little work that links the two together. One of the reasons for this is proposed to be the discrepancies between the time constants that govern dCA in models and in experimental data. In this study, the processes that govern dCA are examined and it is proposed that the application of biophysical models remains limited due to a lack of understanding about the physical processes that are being modelled, partly due to the specific model formulation that has been most widely used (the equivalent electrical circuit). Based on the analysis presented here, it is proposed that the two most important time constants are arterial transit time and feedback time constant. It is therefore time to revisit equivalent electrical circuit models of dCA and to develop a more physiologically realistic alternative, one that can more easily be related to experimental data. KEY POINTS: Dynamic cerebral autoregulation is governed by two time constants. The first time constant is the arterial transit time, rather than the traditional 'RC' time constant widely used in previous models. This arterial transit time is approximately 1 s in the brain. The second time constant is the feedback time constant, which is less accurately known, although it is somewhat larger than the arterial transit time. The equivalent electrical circuit model of dynamic cerebral autoregulation should be replaced with a more physiologically representative model.


Assuntos
Circulação Cerebrovascular , Homeostase , Homeostase/fisiologia , Circulação Cerebrovascular/fisiologia , Humanos , Retroalimentação Fisiológica , Modelos Cardiovasculares , Encéfalo/fisiologia , Encéfalo/irrigação sanguínea , Animais
19.
Am J Physiol Heart Circ Physiol ; 327(2): H473-H503, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38904851

RESUMO

Computational, or in silico, models are an effective, noninvasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales. While commonly used in multiple disciplines, there is a lack of concise guidelines for the implementation of computer models in cardiovascular research. In line with recent calls for more reproducible research, it is imperative that scientists adhere to credible practices when developing and applying computational models to their research. The goal of this manuscript is to provide a consensus document that identifies best practices for in silico computational modeling in cardiovascular research. These guidelines provide the necessary methods for mechanistic model development, model analysis, and formal model calibration using fundamentals from statistics. We outline rigorous practices for computational, mechanistic modeling in cardiovascular research and discuss its synergistic value to experimental and clinical data.


Assuntos
Simulação por Computador , Modelos Cardiovasculares , Humanos , Pesquisa Biomédica/normas , Animais , Fenômenos Fisiológicos Cardiovasculares , Doenças Cardiovasculares/fisiopatologia , Consenso
20.
Am J Physiol Heart Circ Physiol ; 326(6): H1491-H1497, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668702

RESUMO

Heart growth in the pregnant patient helps maintain cardiovascular function while supporting the growing fetus. However, in some cases, the cardiovascular demand of pregnancy can trigger life-threatening conditions, including hypertensive disorders of pregnancy and peripartum cardiomyopathy. The mechanisms that control heart growth throughout pregnancy are unclear, and treating these diseases remains elusive. We previously developed a computational model that accounts for hormonal and hemodynamic interactions throughout pregnancy and demonstrated its ability to capture realistic cardiac growth in normal rat pregnancy. In this study, we evaluated whether this model could capture heart growth beyond normal pregnancy. After further validation of our normal pregnancy predictions, we tested our model predictions of three rat studies of hypertensive pregnancies. We next simulated the postpartum period and examined the impact of lactation on cardiac growth in rats. We demonstrate that our multiscale model can capture cardiac growth associated with new-onset hypertension during pregnancy and lactation status in the postpartum period. We conclude by elaborating on the potential clinical utility of our model in the future.NEW & NOTEWORTHY Our multiscale model predicts appropriate heart growth beyond normal pregnancy, including elevated heart weights in rats with induced hypertension during pregnancy and in lactating mice and decreased heart weight in nonlactating mice. Our model captures distinct mechanisms that result in similar organ-level growth, highlighting its potential to distinguish healthy from diseased pregnancy-induced growth.


Assuntos
Coração , Hipertensão Induzida pela Gravidez , Modelos Cardiovasculares , Período Pós-Parto , Animais , Feminino , Gravidez , Coração/fisiopatologia , Coração/crescimento & desenvolvimento , Hipertensão Induzida pela Gravidez/fisiopatologia , Hipertensão Induzida pela Gravidez/metabolismo , Ratos , Simulação por Computador , Lactação , Modelos Animais de Doenças , Pressão Sanguínea , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA