Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.395
Filtrar
1.
Nat Immunol ; 25(7): 1183-1192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38872000

RESUMO

Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.


Assuntos
Diferenciação Celular , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Animais , Camundongos , Humanos , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Imunidade Inata , Antígeno CD56/metabolismo , Muromegalovirus/imunologia , Linhagem da Célula/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/imunologia , Camundongos Knockout , Células Cultivadas
2.
Nat Immunol ; 23(4): 556-567, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288713

RESUMO

Natural killer (NK) cells are innate lymphocytes that possess traits of adaptive immunity, such as memory formation. However, the molecular mechanisms by which NK cells persist to form memory cells are not well understood. Using single-cell RNA sequencing, we identified two distinct effector NK cell (NKeff) populations following mouse cytomegalovirus infection. Ly6C- memory precursor (MP) NK cells showed enhanced survival during the contraction phase in a Bcl2-dependent manner, and differentiated into Ly6C+ memory NK cells. MP NK cells exhibited distinct transcriptional and epigenetic signatures compared with Ly6C+ NKeff cells, with a core epigenetic signature shared with MP CD8+ T cells enriched in ETS1 and Fli1 DNA-binding motifs. Fli1 was induced by STAT5 signaling ex vivo, and increased levels of the pro-apoptotic factor Bim in early effector NK cells following viral infection. These results suggest that a NK cell-intrinsic checkpoint controlled by the transcription factor Fli1 limits MP NK formation by regulating early effector NK cell fitness during viral infection.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Imunidade Adaptativa , Animais , Linfócitos T CD8-Positivos , Memória Imunológica , Células Matadoras Naturais , Camundongos
3.
Nat Immunol ; 22(5): 627-638, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859404

RESUMO

Cytokine signaling via signal transducer and activator of transcription (STAT) proteins is crucial for optimal antiviral responses of natural killer (NK) cells. However, the pleiotropic effects of both cytokine and STAT signaling preclude the ability to precisely attribute molecular changes to specific cytokine-STAT modules. Here, we employed a multi-omics approach to deconstruct and rebuild the complex interaction of multiple cytokine signaling pathways in NK cells. Proinflammatory cytokines and homeostatic cytokines formed a cooperative axis to commonly regulate global gene expression and to further repress expression induced by type I interferon signaling. These cytokines mediated distinct modes of epigenetic regulation via STAT proteins, and collective signaling best recapitulated global antiviral responses. The most dynamically responsive genes were conserved across humans and mice, which included a cytokine-STAT-induced cross-regulatory program. Thus, an intricate crosstalk exists between cytokine signaling pathways, which governs NK cell responses.


Assuntos
Epigênese Genética/imunologia , Infecções por Herpesviridae/imunologia , Interleucinas/metabolismo , Células Matadoras Naturais/imunologia , Fatores de Transcrição STAT/metabolismo , Animais , Separação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Redes Reguladoras de Genes/imunologia , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/virologia , Humanos , Imunidade Inata/genética , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Muromegalovirus/imunologia , Análise de Componente Principal , RNA-Seq , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia
4.
Nat Immunol ; 21(9): 983-997, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690951

RESUMO

Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN-I). What other functions pDCs exert in vivo during viral infections is controversial, and more studies are needed to understand their orchestration. In the present study, we characterize in depth and link pDC activation states in animals infected by mouse cytomegalovirus by combining Ifnb1 reporter mice with flow cytometry, single-cell RNA sequencing, confocal microscopy and a cognate CD4 T cell activation assay. We show that IFN-I production and T cell activation were performed by the same pDC, but these occurred sequentially in time and in different micro-anatomical locations. In addition, we show that pDC commitment to IFN-I production was marked early on by their downregulation of leukemia inhibitory factor receptor and was promoted by cell-intrinsic tumor necrosis factor signaling. We propose a new model for how individual pDCs are endowed to exert different functions in vivo during a viral infection, in a manner tightly orchestrated in time and space.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Infecções por Herpesviridae/imunologia , Muromegalovirus/fisiologia , Animais , Células Cultivadas , Interferon Tipo I/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator de Necrose Tumoral alfa/metabolismo
5.
Nat Immunol ; 21(12): 1563-1573, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106669

RESUMO

Chronic cytomegalovirus (CMV) infection leads to long-term maintenance of extraordinarily large CMV-specific T cell populations. The magnitude of this so-called 'memory inflation' is thought to mainly depend on antigenic stimulation during the chronic phase of infection. However, by mapping the long-term development of CD8+ T cell families derived from single naive precursors, we find that fate decisions made during the acute phase of murine CMV infection can alter the level of memory inflation by more than 1,000-fold. Counterintuitively, a T cell family's capacity for memory inflation is not determined by its initial expansion. Instead, those rare T cell families that dominate the chronic phase of infection show an early transcriptomic signature akin to that of established T central memory cells. Accordingly, a T cell family's long-term dominance is best predicted by its early content of T central memory precursors, which later serve as a stem-cell-like source for memory inflation.


Assuntos
Evolução Clonal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Viroses/etiologia , Viroses/metabolismo , Doença Aguda , Animais , Biomarcadores , Doença Crônica , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Muromegalovirus/imunologia
6.
Immunity ; 56(3): 531-546.e6, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36773607

RESUMO

Tissue health is dictated by the capacity to respond to perturbations and then return to homeostasis. Mechanisms that initiate, maintain, and regulate immune responses in tissues are therefore essential. Adaptive immunity plays a key role in these responses, with memory and tissue residency being cardinal features. A corresponding role for innate cells is unknown. Here, we have identified a population of innate lymphocytes that we term tissue-resident memory-like natural killer (NKRM) cells. In response to murine cytomegalovirus infection, we show that circulating NK cells were recruited in a CX3CR1-dependent manner to the salivary glands where they formed NKRM cells, a long-lived, tissue-resident population that prevented autoimmunity via TRAIL-dependent elimination of CD4+ T cells. Thus, NK cells develop adaptive-like features, including long-term residency in non-lymphoid tissues, to modulate inflammation, restore immune equilibrium, and preserve tissue health. Modulating the functions of NKRM cells may provide additional strategies to treat inflammatory and autoimmune diseases.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Humanos , Animais , Camundongos , Células Matadoras Naturais , Imunidade Adaptativa , Linfócitos T , Imunidade Inata
7.
Cell ; 171(4): 795-808.e12, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056343

RESUMO

Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Whether tissue-resident lymphocytes confer early antiviral immunity at local sites of primary infection prior to the initiation of circulating responses is not well understood. Furthermore, the kinetics of initial antiviral responses at sites of infection remain unclear. Here, we show that tissue-resident type 1 innate lymphoid cells (ILC1) serve an essential early role in host immunity through rapid production of interferon (IFN)-γ following viral infection. Ablation of Zfp683-dependent liver ILC1 lead to increased viral load in the presence of intact adaptive and innate immune cells critical for mouse cytomegalovirus (MCMV) clearance. Swift production of interleukin (IL)-12 by tissue-resident XCR1+ conventional dendritic cells (cDC1) promoted ILC1 production of IFN-γ in a STAT4-dependent manner to limit early viral burden. Thus, ILC1 contribute an essential role in viral immunosurveillance at sites of initial infection in response to local cDC1-derived proinflammatory cytokines.


Assuntos
Infecções por Herpesviridae/imunologia , Linfócitos/imunologia , Muromegalovirus/fisiologia , Animais , Infecções por Herpesviridae/patologia , Imunidade Inata , Vigilância Imunológica , Inflamação/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Fígado/citologia , Fígado/imunologia , Camundongos Endogâmicos C57BL , Cavidade Peritoneal/citologia , Replicação Viral
8.
Cell ; 169(1): 58-71.e14, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340350

RESUMO

Natural killer (NK) cells play a key role in innate immunity by detecting alterations in self and non-self ligands via paired NK cell receptors (NKRs). Despite identification of numerous NKR-ligand interactions, physiological ligands for the prototypical NK1.1 orphan receptor remain elusive. Here, we identify a viral ligand for the inhibitory and activating NKR-P1 (NK1.1) receptors. This murine cytomegalovirus (MCMV)-encoded protein, m12, restrains NK cell effector function by directly engaging the inhibitory NKR-P1B receptor. However, m12 also interacts with the activating NKR-P1A/C receptors to counterbalance m12 decoy function. Structural analyses reveal that m12 sequesters a large NKR-P1 surface area via a "polar claw" mechanism. Polymorphisms in, and ablation of, the viral m12 protein and host NKR-P1B/C alleles impact NK cell responses in vivo. Thus, we identify the long-sought foreign ligand for this key immunoregulatory NKR family and reveal how it controls the evolutionary balance of immune recognition during host-pathogen interplay.


Assuntos
Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Receptores de Células Matadoras Naturais/imunologia , Proteínas Virais/metabolismo , Animais , Antígenos Ly/metabolismo , Linhagem Celular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Camundongos , Células NIH 3T3 , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ratos
9.
Nat Immunol ; 20(8): 1004-1011, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263280

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident sentinels that are essential for early host protection from pathogens at initial sites of infection. However, whether pathogen-derived antigens directly modulate the responses of tissue-resident ILCs has remained unclear. In the present study, it was found that liver-resident type 1 ILCs (ILC1s) expanded locally and persisted after the resolution of infection with mouse cytomegalovirus (MCMV). ILC1s acquired stable transcriptional, epigenetic and phenotypic changes a month after the resolution of MCMV infection, and showed an enhanced protective effector response to secondary challenge with MCMV consistent with a memory lymphocyte response. Memory ILC1 responses were dependent on the MCMV-encoded glycoprotein m12, and were independent of bystander activation by proinflammatory cytokines after heterologous infection. Thus, liver ILC1s acquire adaptive features in an MCMV-specific manner.


Assuntos
Memória Imunológica/imunologia , Fígado/imunologia , Linfócitos/imunologia , Glicoproteínas de Membrana/imunologia , Muromegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Imunidade Inata/imunologia , Subunidade alfa de Receptor de Interleucina-18/metabolismo , Fígado/citologia , Camundongos
10.
Nat Immunol ; 20(10): 1322-1334, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31427773

RESUMO

We report a new immunodeficiency disorder in mice caused by a viable hypomorphic mutation of Snrnp40, an essential gene encoding a subunit of the U5 small nuclear ribonucleoprotein (snRNP) complex of the spliceosome. Snrnp40 is ubiquitous but strongly expressed in lymphoid tissue. Homozygous mutant mice showed hypersusceptibility to infection by murine cytomegalovirus and multiple defects of lymphoid development, stability and function. Cell-intrinsic defects of hematopoietic stem cell differentiation also affected homozygous mutants. SNRNP40 deficiency in primary hematopoietic stem cells or T cells or the EL4 cell line increased the frequency of splicing errors, mostly intron retention, in several hundred messenger RNAs. Altered expression of proteins associated with immune cell function was also observed in Snrnp40-mutant cells. The immunological consequences of SNRNP40 deficiency presumably result from cumulative, moderate effects on processing of many different mRNA molecules and secondary reductions in the expression of critical immune proteins, yielding a syndromic immune disorder.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Infecções por Herpesviridae/imunologia , Síndromes de Imunodeficiência/imunologia , Muromegalovirus/fisiologia , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/metabolismo , Linfócitos T/fisiologia , Alelos , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Suscetibilidade a Doenças , Infecções por Herpesviridae/genética , Síndromes de Imunodeficiência/genética , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/genética
11.
Nat Immunol ; 20(2): 173-182, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559377

RESUMO

N6-methyladenosine (m6A) is the most common mRNA modification. Recent studies have revealed that depletion of m6A machinery leads to alterations in the propagation of diverse viruses. These effects were proposed to be mediated through dysregulated methylation of viral RNA. Here we show that following viral infection or stimulation of cells with an inactivated virus, deletion of the m6A 'writer' METTL3 or 'reader' YTHDF2 led to an increase in the induction of interferon-stimulated genes. Consequently, propagation of different viruses was suppressed in an interferon-signaling-dependent manner. Significantly, the mRNA of IFNB, the gene encoding the main cytokine that drives the type I interferon response, was m6A modified and was stabilized following repression of METTL3 or YTHDF2. Furthermore, we show that m6A-mediated regulation of interferon genes was conserved in mice. Together, our findings uncover the role m6A serves as a negative regulator of interferon response by dictating the fast turnover of interferon mRNAs and consequently facilitating viral propagation.


Assuntos
Adenosina/análogos & derivados , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Interferon Tipo I/genética , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Citomegalovirus/imunologia , Modelos Animais de Doenças , Feminino , Fibroblastos , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Interferon Tipo I/imunologia , Masculino , Metilação , Metiltransferases/genética , Metiltransferases/imunologia , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Muromegalovirus/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo
12.
Nat Immunol ; 19(9): 963-972, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082830

RESUMO

Clonal expansion and immunological memory are hallmark features of the mammalian adaptive immune response and essential for prolonged host control of pathogens. Recent work demonstrates that natural killer (NK) cells of the innate immune system also exhibit these adaptive traits during infection. Here we demonstrate that differentiating and 'memory' NK cells possess distinct chromatin accessibility states and that their epigenetic profiles reveal a 'poised' regulatory program at the memory stage. Furthermore, we elucidate how individual STAT transcription factors differentially control epigenetic and transcriptional states early during infection. Finally, concurrent chromatin profiling of the canonical CD8+ T cell response against the same infection demonstrated parallel and distinct epigenetic signatures defining NK cells and CD8+ T cells. Overall, our study reveals the dynamic nature of epigenetic modifications during the generation of innate and adaptive lymphocyte memory.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Cromatina/metabolismo , Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/fisiologia , Muromegalovirus/fisiologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT4/metabolismo , Imunidade Adaptativa , Animais , Células Cultivadas , Cromatina/genética , Seleção Clonal Mediada por Antígeno , Epigênese Genética , Perfilação da Expressão Gênica , Imunidade Inata , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT4/genética
13.
Nat Immunol ; 19(9): 954-962, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127438

RESUMO

Controlling the balance between immunity and immunopathology is crucial for host resistance to pathogens. After infection, activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to the production of glucocorticoids. However, the pleiotropic effects of these steroid hormones make it difficult to delineate their precise role(s) in vivo. Here we found that the regulation of natural killer (NK) cell function by the glucocorticoid receptor (GR) was required for host survival after infection with mouse cytomegalovirus (MCMV). Mechanistically, endogenous glucocorticoids produced shortly after infection induced selective and tissue-specific expression of the checkpoint receptor PD-1 on NK cells. This glucocorticoid-PD-1 pathway limited production of the cytokine IFN-γ by spleen NK cells, which prevented immunopathology. Notably, this regulation did not compromise viral clearance. Thus, the fine tuning of NK cell functions by the HPA axis preserved tissue integrity without impairing pathogen elimination, which reveals a novel aspect of neuroimmune regulation.


Assuntos
Glucocorticoides/metabolismo , Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/fisiologia , Muromegalovirus/fisiologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Células Cultivadas , Feminino , Sistema Hipotálamo-Hipofisário , Imunidade Inata , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação , Especificidade de Órgãos , Sistema Hipófise-Suprarrenal , Receptores de Glucocorticoides/genética , Transdução de Sinais , Carga Viral
14.
Immunity ; 54(10): 2288-2304.e7, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34437840

RESUMO

Upon viral infection, natural killer (NK) cells expressing certain germline-encoded receptors are selected, expanded, and maintained in an adaptive-like manner. Currently, these are thought to differentiate along a common pathway. However, by fate mapping of single NK cells upon murine cytomegalovirus (MCMV) infection, we identified two distinct NK cell lineages that contributed to adaptive-like responses. One was equivalent to conventional NK (cNK) cells while the other was transcriptionally similar to type 1 innate lymphoid cells (ILC1s). ILC1-like NK cells showed splenic residency and strong cytokine production but also recognized and killed MCMV-infected cells, guided by activating receptor Ly49H. Moreover, they induced clustering of conventional type 1 dendritic cells and facilitated antigen-specific T cell priming early during MCMV infection, which depended on Ly49H and the NK cell-intrinsic expression of transcription factor Batf3. Thereby, ILC1-like NK cells bridge innate and adaptive viral recognition and unite critical features of cNK cells and ILC1s.


Assuntos
Imunidade Adaptativa/imunologia , Linhagem da Célula/imunologia , Infecções por Herpesviridae/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muromegalovirus
15.
Cell ; 159(1): 94-107, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25259923

RESUMO

The emergence of recombination-activating genes (RAGs) in jawed vertebrates endowed adaptive immune cells with the ability to assemble a diverse set of antigen receptor genes. In contrast, innate lymphocytes, such as natural killer (NK) cells, are not believed to require RAGs. Here, we report that NK cells unable to express RAGs or RAG endonuclease activity during ontogeny exhibit a cell-intrinsic hyperresponsiveness but a diminished capacity to survive following virus-driven proliferation, a reduced expression of DNA damage response mediators, and defects in the repair of DNA breaks. Evidence for this novel function of RAG has also been observed in T cells and innate lymphoid cells (ILCs), revealing an unexpected role for RAG proteins beyond V(D)J recombination. We propose that DNA cleavage events mediated by RAG endow developing adaptive and innate lymphocytes with a cellular "fitness" that safeguards their persistence later in life during episodes of rapid proliferation or cellular stress.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Matadoras Naturais/imunologia , Animais , Infecções por Citomegalovirus/imunologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos SCID , Muromegalovirus/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Recombinação V(D)J
17.
Immunity ; 50(6): 1391-1400.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31103380

RESUMO

Natural killer (NK) cells show some features of adaptive immunity but have not been studied at the clonal level. Here, we used retrogenic color-barcoding and single-cell adoptive transfers to track clonal immune responses to murine cytomegalovirus (MCMV) infection, derived from individual NK cells expressing activating receptor Ly49H. Clonal expansion of single NK cells varied substantially, and this variation could not be attributed to the additional presence or absence of inhibitory Ly49 receptors. Instead, single-cell-derived variability correlated with distinct surface expression levels of Ly49H itself. Ly49Hhi NK cell clones maintained higher Ly49H expression and expanded more than their Ly49Hlo counterparts in response to MCMV. Thus, akin to adaptive processes shaping an antigen-specific T cell receptor (TCR) repertoire, the Ly49H+ NK cell population adapts to MCMV infection. This process relies on the clonal maintenance of distinct Ly49H expression levels, generating a repertoire of individual NK cells outfitted with distinct reactivity to MCMV.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL , Subfamília A de Receptores Semelhantes a Lectina de Células NK
18.
Immunity ; 51(3): 479-490.e6, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31402259

RESUMO

Natural killer (NK) cells are cytotoxic type 1 innate lymphoid cells (ILCs) that defend against viruses and mediate anti-tumor responses, yet mechanisms controlling their development and function remain incompletely understood. We hypothesized that the abundantly expressed microRNA-142 (miR-142) is a critical regulator of type 1 ILC biology. Interleukin-15 (IL-15) signaling induced miR-142 expression, whereas global and ILC-specific miR-142-deficient mice exhibited a cell-intrinsic loss of NK cells. Death of NK cells resulted from diminished IL-15 receptor signaling within miR-142-deficient mice, likely via reduced suppressor of cytokine signaling-1 (Socs1) regulation by miR-142-5p. ILCs persisting in Mir142-/- mice demonstrated increased expression of the miR-142-3p target αV integrin, which supported their survival. Global miR-142-deficient mice exhibited an expansion of ILC1-like cells concurrent with increased transforming growth factor-ß (TGF-ß) signaling. Further, miR-142-deficient mice had reduced NK-cell-dependent function and increased susceptibility to murine cytomegalovirus (MCMV) infection. Thus, miR-142 critically integrates environmental cues for proper type 1 ILC homeostasis and defense against viral infection.


Assuntos
Homeostase/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , MicroRNAs/imunologia , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muromegalovirus/imunologia , Células NIH 3T3 , Receptores de Interleucina-15/imunologia , Transdução de Sinais/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Fator de Crescimento Transformador beta/imunologia
19.
Immunity ; 50(6): 1381-1390.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31103381

RESUMO

The process of affinity maturation, whereby T and B cells bearing antigen receptors with optimal affinity to the relevant antigen undergo preferential expansion, is a key feature of adaptive immunity. Natural killer (NK) cells are innate lymphocytes capable of "adaptive" responses after cytomegalovirus (CMV) infection. However, whether NK cells are similarly selected on the basis of their avidity for cognate ligand is unknown. Here, we showed that NK cells with the highest avidity for the mouse CMV glycoprotein m157 were preferentially selected to expand and comprise the memory NK cell pool, whereas low-avidity NK cells possessed greater capacity for interferon-γ (IFN-γ) production. Moreover, we provide evidence for avidity selection occurring in human NK cells during human CMV infection. These results delineate how heterogeneity in NK cell avidity diversifies NK cell effector function during antiviral immunity, and how avidity selection might serve to produce the most potent memory NK cells.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Células Matadoras Naturais/imunologia , Animais , Infecções por Citomegalovirus/metabolismo , Citotoxicidade Imunológica , Regulação da Expressão Gênica , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Memória Imunológica , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Muromegalovirus/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
20.
EMBO J ; 42(5): e112351, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762436

RESUMO

Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Humanos , Camundongos , Ratos , Microscopia Crioeletrônica , Infecções por Citomegalovirus/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferons/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Receptores de Interleucina-17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA