Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.917
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(6): 1209-1223.e20, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28823556

RESUMO

Fragile X syndrome (FXS) is a leading genetic cause of intellectual disability and autism. FXS results from the loss of function of fragile X mental retardation protein (FMRP), which represses translation of target transcripts. Most of the well-characterized target transcripts of FMRP are synaptic proteins, yet targeting these proteins has not provided effective treatments. We examined a group of FMRP targets that encode transcriptional regulators, particularly chromatin-associated proteins. Loss of FMRP in mice results in widespread changes in chromatin regulation and aberrant gene expression. To determine if targeting epigenetic factors could reverse phenotypes associated with the disorder, we focused on Brd4, a BET protein and chromatin reader targeted by FMRP. Inhibition of Brd4 function alleviated many of the phenotypes associated with FXS. We conclude that loss of FMRP results in significant epigenetic misregulation and that targeting transcription via epigenetic regulators like Brd4 may provide new treatments for FXS.


Assuntos
Azepinas/farmacologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Animais , Células Cultivadas , Epigênese Genética , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Camundongos , Camundongos Knockout , Naftiridinas/farmacologia , Neurônios/metabolismo , Fenazinas , Transcrição Gênica
2.
Cell ; 161(4): 833-44, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25913193

RESUMO

Angiotensin II type 1 receptor (AT(1)R) is a G protein-coupled receptor that serves as a primary regulator for blood pressure maintenance. Although several anti-hypertensive drugs have been developed as AT(1)R blockers (ARBs), the structural basis for AT(1)R ligand-binding and regulation has remained elusive, mostly due to the difficulties of growing high-quality crystals for structure determination using synchrotron radiation. By applying the recently developed method of serial femtosecond crystallography at an X-ray free-electron laser, we successfully determined the room-temperature crystal structure of the human AT(1)R in complex with its selective antagonist ZD7155 at 2.9-Å resolution. The AT(1)R-ZD7155 complex structure revealed key structural features of AT(1)R and critical interactions for ZD7155 binding. Docking simulations of the clinically used ARBs into the AT(1)R structure further elucidated both the common and distinct binding modes for these anti-hypertensive drugs. Our results thereby provide fundamental insights into AT(1)R structure-function relationship and structure-based drug design.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Receptor Tipo 1 de Angiotensina/química , Sequência de Aminoácidos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Mutagênese , Naftiridinas/química , Naftiridinas/farmacologia , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Alinhamento de Sequência
3.
Mol Cell ; 67(6): 936-946.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28918901

RESUMO

Scavenging of extracellular protein via macropinocytosis is an alternative to monomeric amino acid uptake. In pancreatic cancer, macropinocytosis is driven by oncogenic Ras signaling and contributes substantially to amino acid supply. While Ras signaling promotes scavenging, mTOR signaling suppresses it. Here, we present an integrated experimental-computational method that enables quantitative comparison of protein scavenging rates across cell lines and conditions. Using it, we find that, independently of mTORC1, amino acid scarcity induces protein scavenging and that under such conditions the impact of mTOR signaling on protein scavenging rate is minimal. Nevertheless, mTOR inhibition promotes growth of cells reliant on eating extracellular protein. This growth enhancement depends on mTORC1's canonical function in controlling translation rate: mTOR inhibition slows translation, thereby matching protein synthesis to the limited amino acid supply. Thus, paradoxically, in amino acid-poor conditions the pro-anabolic effects of mTORC1 are functionally opposed to growth.


Assuntos
Aminoácidos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Aminoácidos/deficiência , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Fibroblastos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Biológicos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Mutação , Pinocitose/efeitos dos fármacos , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção
4.
Diabetologia ; 67(2): 246-262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127122

RESUMO

The overactivation of the mineralocorticoid receptor (MR) promotes pathophysiological processes related to multiple physiological systems, including the heart, vasculature, adipose tissue and kidneys. The inhibition of the MR with classical MR antagonists (MRA) has successfully improved outcomes most evidently in heart failure. However, real and perceived risk of side effects and limited tolerability associated with classical MRA have represented barriers to implementing MRA in settings where they have been already proven efficacious (heart failure with reduced ejection fraction) and studying their potential role in settings where they might be beneficial but where risk of safety events is perceived to be higher (renal disease). Novel non-steroidal MRA have distinct properties that might translate into favourable clinical effects and better safety profiles as compared with MRA currently used in clinical practice. Randomised trials have shown benefits of non-steroidal MRA in a range of clinical contexts, including diabetic kidney disease, hypertension and heart failure. This review provides an overview of the literature on the systemic impact of MR overactivation across organ systems. Moreover, we summarise the evidence from preclinical studies and clinical trials that have set the stage for a potential new paradigm of MR antagonism.


Assuntos
Nefropatias Diabéticas , Insuficiência Cardíaca , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/efeitos adversos , Mineralocorticoides/uso terapêutico , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Receptores de Mineralocorticoides/uso terapêutico
5.
EMBO J ; 39(21): e105111, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945574

RESUMO

Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.


Assuntos
Neoplasias/metabolismo , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Naftiridinas/farmacologia , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases , RNA Polimerase I/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico , Ribossomos/efeitos dos fármacos , Transcriptoma
6.
N Engl J Med ; 385(24): 2252-2263, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34449181

RESUMO

BACKGROUND: Finerenone, a selective nonsteroidal mineralocorticoid receptor antagonist, has favorable effects on cardiorenal outcomes in patients with predominantly stage 3 or 4 chronic kidney disease (CKD) with severely elevated albuminuria and type 2 diabetes. The use of finerenone in patients with type 2 diabetes and a wider range of CKD is unclear. METHODS: In this double-blind trial, we randomly assigned patients with CKD and type 2 diabetes to receive finerenone or placebo. Eligible patients had a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of 30 to less than 300 and an estimated glomerular filtration rate (eGFR) of 25 to 90 ml per minute per 1.73 m2 of body-surface area (stage 2 to 4 CKD) or a urinary albumin-to-creatinine ratio of 300 to 5000 and an eGFR of at least 60 ml per minute per 1.73 m2 (stage 1 or 2 CKD). Patients were treated with renin-angiotensin system blockade that had been adjusted before randomization to the maximum dose on the manufacturer's label that did not cause unacceptable side effects. The primary outcome, assessed in a time-to-event analysis, was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. The first secondary outcome was a composite of kidney failure, a sustained decrease from baseline of at least 40% in the eGFR, or death from renal causes. Safety was assessed as investigator-reported adverse events. RESULTS: A total of 7437 patients underwent randomization. Among the patients included in the analysis, during a median follow-up of 3.4 years, a primary outcome event occurred in 458 of 3686 patients (12.4%) in the finerenone group and in 519 of 3666 (14.2%) in the placebo group (hazard ratio, 0.87; 95% confidence interval [CI], 0.76 to 0.98; P = 0.03), with the benefit driven primarily by a lower incidence of hospitalization for heart failure (hazard ratio, 0.71; 95% CI, 0.56 to 0.90). The secondary composite outcome occurred in 350 patients (9.5%) in the finerenone group and in 395 (10.8%) in the placebo group (hazard ratio, 0.87; 95% CI, 0.76 to 1.01). The overall frequency of adverse events did not differ substantially between groups. The incidence of hyperkalemia-related discontinuation of the trial regimen was higher with finerenone (1.2%) than with placebo (0.4%). CONCLUSIONS: Among patients with type 2 diabetes and stage 2 to 4 CKD with moderately elevated albuminuria or stage 1 or 2 CKD with severely elevated albuminuria, finerenone therapy improved cardiovascular outcomes as compared with placebo. (Funded by Bayer; FIGARO-DKD ClinicalTrials.gov number, NCT02545049.).


Assuntos
Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Naftiridinas/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Idoso , Albuminúria/etiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/mortalidade , Método Duplo-Cego , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Antagonistas de Receptores de Mineralocorticoides/efeitos adversos , Naftiridinas/efeitos adversos , Modelos de Riscos Proporcionais , Insuficiência Renal Crônica/complicações
7.
Chemistry ; 30(31): e202400423, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38545937

RESUMO

Five novel styrylnaphthyridine derivatives were synthesized and shown to operate as photoswitchable, selective ligands for abasic site-containing DNA (AP-DNA), which is an important therapeutic and diagnostic target. These compounds associate with AP-DNA with binding constants of 0.5-8.4×104 M-1 as shown by photometric and fluorimetric titrations. Specifically, these ligands bind preferentially to AP-DNA relative to regularly paired duplex DNA. As a special feature, the association of these ligands with DNA can be controlled by means of a reversible [2+2] photocycloaddition. Upon irradiation at 420 nm the photodimer is formed, which does not bind to AP-DNA. In turn, the naphthyridine is regained with excitation at 315 nm. Most notably, this photoinduced deactivation and release of the DNA ligand can be performed in situ in the presence of AP-DNA, thus providing a tool for on-demand delivery of a DNA binder. Overall, these results provide a promising starting point for the development of functional AP-DNA ligands whose bioactivity can be modulated by light with local and temporal control.


Assuntos
Reação de Cicloadição , DNA , Naftiridinas , Ligantes , DNA/química , Naftiridinas/química , Processos Fotoquímicos , Sítios de Ligação
8.
Exp Eye Res ; 244: 109943, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797259

RESUMO

Orexin A and B (OXA and OXB) and their receptors are expressed in the majority of retinal neurons in humans, rats, and mice. Orexins modulate signal transmission between the different layers of the retina. The suprachiasmatic nucleus (SCN) and the retina are central and peripheral components of the body's biological clocks; respectively. The SCN receives photic information from the retina through the retinohypothalamic tract (RHT) to synchronize bodily functions with environmental changes. In present study, we aimed to investigate the impact of inhibiting retinal orexin receptors on the expression of retinal Bmal1 and c-fos, as well as hypothalamic c-fos, Bmal1, Vip, and PACAP at four different time-points (Zeitgeber time; ZT 3, 6, 11, and ZT-0). The intravitreal injection (IVI) of OX1R antagonist (SB-334867) and OX2R antagonist (JNJ-10397049) significantly up-regulated c-fos expression in the retina. Additionally, compared to the control group, the combined injection of SB-334867 and JNJ-10397049 showed a greater increase in retinal expression of this gene. Moreover, the expression of hypothalamic Vip and PACAP was significantly up-regulated in both the SB-334867 and JNJ-10397049 groups. In contrast, the expression of Bmal1 was down-regulated. Furthermore, the expression of hypothalamic c-fos was down-regulated in all groups treated with SB-334867 and JNJ-10397049. Additionally, the study demonstrated that blocking these receptors in the retina resulted in alterations in circadian rhythm parameters such as mesor, amplitude, and acrophase. Finally, it affected the phase of gene expression rhythms in both the retina and hypothalamus, as identified through cosinor analysis and the zero-amplitude test. This study represents the initial exploration of how retinal orexin receptors influence expression of rhythmic genes in the retina and hypothalamus. These findings could provide new insights into how the retina regulates the circadian rhythm in both regions and illuminate the role of the orexinergic system expression within the retina.


Assuntos
Hipotálamo , Receptores de Orexina , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Proteínas Proto-Oncogênicas c-fos , Retina , Peptídeo Intestinal Vasoativo , Animais , Masculino , Ratos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Benzoxazóis/farmacologia , Ritmo Circadiano/fisiologia , Dioxanos , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Isoquinolinas , Naftiridinas , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Compostos de Fenilureia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Piridinas , Ratos Wistar , Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Ureia/análogos & derivados , Ureia/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo
9.
Nephrol Dial Transplant ; 39(7): 1063-1072, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38192033

RESUMO

Kidney disease frequently coexists with cardiovascular (CV) diseases, and this dual presence significantly amplifies the risk of adverse clinical outcomes. Shared pathophysiological mechanisms and common CV risk factors contribute to the increased expression of mineralocorticoid receptors, which in turn can drive the progression of chronic CV-kidney disorders. The steroidal mineralocorticoid receptor antagonists (MRAs) spironolactone and eplerenone have demonstrated efficacy in improving patient outcomes in cases of heart failure with reduced ejection fraction or after a myocardial infarction, but have limited value in patients with chronic kidney disease. The non-steroidal MRA finerenone has now established itself as a foundational guideline-recommended therapy in patients with diabetic kidney disease. To date, these pharmacological agents have been developed in distinct patient populations. The consequences of their distinct pharmacological profiles necessitate further consideration. They have not undergone testing across the entire spectrum of cardiorenal scenarios, and the evidence base is currently being complemented with ongoing trials. In this review, we aim to synthesize the existing body of evidence and chart the future trajectory for the use of spironolactone, eplerenone and finerenone in improving clinical outcomes across the diverse spectrum of cardiorenal diseases. By consolidating the current state of knowledge, we seek to provide valuable insights for informed decision making in the management of patients with these complex and interconnected conditions.


Assuntos
Eplerenona , Antagonistas de Receptores de Mineralocorticoides , Naftiridinas , Espironolactona , Humanos , Espironolactona/uso terapêutico , Espironolactona/análogos & derivados , Eplerenona/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Naftiridinas/uso terapêutico , Síndrome Cardiorrenal/tratamento farmacológico
10.
Malar J ; 23(1): 61, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418982

RESUMO

BACKGROUND: Children are particularly at risk of malaria. This analysis consolidates the clinical data for pyronaridine-artesunate (PA) paediatric granules in children from three randomized clinical trials and a real-world study (CANTAM). METHODS: An integrated safety analysis of individual patient data from three randomized clinical trials included patients with microscopically-confirmed Plasmodium falciparum, body weight ≥ 5 kg to < 20 kg, who received at least one dose of study drug (paediatric safety population). PA was administered once daily for 3 days; two trials included the comparator artemether-lumefantrine (AL). PCR-adjusted day 28 adequate clinical and parasitological response (ACPR) was evaluated. Real-world PA granules safety and effectiveness was also considered. RESULTS: In the integrated safety analysis, 63.9% (95% CI 60.2, 67.4; 426/667) of patients had adverse events following PA and 62.0% (95% CI 56.9, 66.9; 222/358) with AL. Vomiting was more common with PA (7.8% [95% CI 6.0, 10.1; 52/667]) than AL (3.4% [95% CI 1.9, 5.8; 12/358]), relative risk 2.3 (95% CI 1.3, 4.3; P = 0.004), occurring mainly following the first PA dose (6.7%, 45/667), without affecting re-dosing or adherence. Prolonged QT interval occurred less frequently with PA (3.1% [95% CI 2.1, 4.8; 21/667]) than AL (8.1% [95% CI 5.7, 11.4; 29/358]), relative risk 0.39 (95% CI 0.22, 0.67; P = 0.0007). In CANTAM, adverse events were reported for 17.7% (95% CI 16.3, 19.2; 460/2599) of patients, most commonly vomiting (5.4% [95% CI 4.6, 6.4; 141/2599]), mainly following the first dose, (4.5% [117/2599]), with all patients successfully re-dosed, and pyrexia (5.4% [95% CI 4.6, 6.3; 140/2599]). In the two comparative clinical trials, Day 28 ACPR in the per-protocol population for PA was 97.1% (95% CI 94.6, 98.6; 329/339) and 100% (95% CI 99.3, 100; 514/514) versus 98.8% (95% CI 95.7, 99.9; 165/167) and 98.4% (95% CI 95.5, 99.7; 188/191) for AL, respectively. In CANTAM, PA clinical effectiveness was 98.0% (95% CI 97.3, 98.5; 2273/2320). CONCLUSIONS: Anti-malarial treatment with PA paediatric granules administered once daily for 3 days was well tolerated in children and displayed good clinical efficacy in clinical trials, with effectiveness confirmed in a real-world study. Trial registration Clinicaltrials.gov: SP-C-003-05: identifier NCT00331136; SP-C-007-07: identifier NCT0541385; SP-C-021-15: identifier NCT03201770. Pan African Clinical Trials Registry: SP-C-013-11: identifier PACTR201105000286876.


Assuntos
Antimaláricos , Artemisininas , Artesunato , Malária Falciparum , Malária , Naftiridinas , Criança , Humanos , Antimaláricos/efeitos adversos , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/efeitos adversos , Malária Falciparum/tratamento farmacológico , Artemeter/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Malária/tratamento farmacológico , Combinação de Medicamentos , Resultado do Tratamento , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Etanolaminas/uso terapêutico
11.
Diabetes Obes Metab ; 26(3): 924-936, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037539

RESUMO

AIMS: To perform dose-exposure-response analyses to determine the effects of finerenone doses. MATERIALS AND METHODS: Two randomized, double-blind, placebo-controlled phase 3 trials enrolling 13 026 randomized participants with type 2 diabetes (T2D) from global sites, each with an estimated glomerular filtration rate (eGFR) of 25 to 90 mL/min/1.73 m2 , a urine albumin-creatinine ratio (UACR) of 30 to 5000 mg/g, and serum potassium ≤ 4.8 mmol/L were included. Interventions were titrated doses of finerenone 10 or 20 mg versus placebo on top of standard of care. The outcomes were trajectories of plasma finerenone and serum potassium concentrations, UACR, eGFR and kidney composite outcomes, assessed using nonlinear mixed-effects population pharmacokinetic (PK)/pharmacodynamic (PD) and parametric time-to-event models. RESULTS: For potassium, lower serum levels and lower rates of hyperkalaemia were associated with higher doses of finerenone 20 mg compared to 10 mg (p < 0.001). The PK/PD model analysis linked this observed inverse association to potassium-guided dose titration. Simulations of a hypothetical trial with constant finerenone doses revealed a shallow but increasing exposure-potassium response relationship. Similarly, increasing finerenone exposures led to less than dose-proportional increasing reductions in modelled UACR. Modelled UACR explained 95% of finerenone's treatment effect in slowing chronic eGFR decline. No UACR-independent finerenone effects were identified. Neither sodium-glucose cotransporter-2 (SGLT2) inhibitor nor glucagon-like peptide-1 receptor agonist (GLP-1RA) treatment significantly modified the effects of finerenone in reducing UACR and eGFR decline. Modelled eGFR explained 87% of finerenone's treatment effect on kidney outcomes. No eGFR-independent effects were identified. CONCLUSIONS: The analyses provide strong evidence for the effectiveness of finerenone dose titration in controlling serum potassium elevations. UACR and eGFR are predictive of kidney outcomes during finerenone treatment. Finerenone's kidney efficacy is independent of concomitant use of SGLT2 inhibitors and GLP-1RAs.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Naftiridinas , Insuficiência Renal Crônica , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Potássio/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Método Duplo-Cego
12.
Nature ; 554(7690): 112-117, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364875

RESUMO

Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations.


Assuntos
Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Dano ao DNA , DNA Ribossômico/metabolismo , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/patologia , Estresse Fisiológico , Animais , Apoptose , Benzotiazóis/farmacologia , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Cromatina/metabolismo , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/deficiência , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Disostose Mandibulofacial/embriologia , Camundongos , Naftiridinas/farmacologia , Crista Neural/enzimologia , Crista Neural/patologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Fenótipo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Helicases/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Crânio/patologia , Estresse Fisiológico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Xenopus , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
13.
Clin Exp Nephrol ; 28(2): 125-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847437

RESUMO

BACKGROUND: Chronic kidney disease (CKD) poses a significant health risk in contemporary society. Current CKD treatments primarily involve renin-angiotensin-aldosterone system inhibitors and mineralocorticoid receptor antagonists, albeit associated with hyperkalemia risks. A novel selective mineralocorticoid receptor antagonist, finerenone, offers a promising, safer alternative for CKD therapy. This review comprehensively assesses the role and efficacy of finerenone in CKD treatment by analyzing clinical and animal studies. Emerging evidence consistently supports finerenone's ability to effectively slow the progression of CKD. By targeting the mineralocorticoid receptor, finerenone not only mitigates renal damage but also exhibits a favorable safety profile, minimizing hyperkalemia concerns. CONCLUSION: Finerenone emerges as a valuable addition to CKD therapy, demonstrating potential benefits in delaying CKD progression while minimizing side effects. Nevertheless, further clinical trials are necessary to provide a comprehensive understanding of its safety and efficacy.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperpotassemia , Insuficiência Renal Crônica , Animais , Antagonistas de Receptores de Mineralocorticoides/efeitos adversos , Hiperpotassemia/induzido quimicamente , Hiperpotassemia/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/induzido quimicamente , Naftiridinas/efeitos adversos , Diabetes Mellitus Tipo 2/complicações
14.
Nucleic Acids Res ; 50(17): 9621-9631, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36095126

RESUMO

Trinucleotide repeat (TNR) diseases are caused by the aberrant expansion of CXG (X = C, A, G and T) sequences in genomes. We have reported two small molecules binding to TNR, NCD, and NA, which strongly bind to CGG repeat (responsible sequence of fragile X syndrome) and CAG repeat (Huntington's disease). The NMR structure of NA binding to the CAG/CAG triad has been clarified, but the structure of NCD bound to the CGG/CGG triad remained to be addressed. We here report the structural determination of the NCD-CGG/CGG complex by NMR spectroscopy and the comparison with the NA-CAG/CAG complex. While the NCD-CGG/CGG structure shares the binding characteristics with that of the NA-CAG/CAG complex, a significant difference was found in the overall structure caused by the structural fluctuation at the ligand-bound site. The NCD-CGG/CGG complex was suggested in the equilibrium between stacked and kinked structures, although NA-CAG/CAG complex has only the stacked structures. The dynamic fluctuation of the NCD-CGG/CGG structure at the NCD-binding site suggested room for optimization in the linker structure of NCD to gain improved affinity to the CGG/CGG triad.


Assuntos
Carbamatos , Naftiridinas/química , DNA/química , Ligantes , Espectroscopia de Ressonância Magnética , Repetições de Trinucleotídeos
15.
J Appl Toxicol ; 44(6): 846-852, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291012

RESUMO

Trovafloxacin is a quinolone antibiotic drug with broad-spectrum activity, which was withdrawn from a global market relatively soon after approval because of serious liver injury. The characteristics of trovafloxacin-induced liver injury are consistent with an idiosyncratic reaction; however, the details of the mechanism have not been elucidated. We examined whether trovafloxacin induces the release of damage-associated molecular patterns (DAMPs) that activate inflammasomes. We also tested ciprofloxacin, levofloxacin, gatifloxacin, and grepafloxacin for their ability to activate inflammasomes. Drug bioactivation was performed with human hepatocarcinoma functional liver cell-4 (FLC-4) cells, and THP-1 cells (human monocyte cell line) were used for the detection of inflammasome activation. The supernatant from the incubation of trovafloxacin with FLC-4 cells for 7 days increased caspase-1 activity and production of IL-1ß by THP-1 cells. In the supernatant of FLC-4 cells that had been incubated with trovafloxacin, heat shock protein (HSP) 40 was significantly increased. Addition of a cytochrome P450 inhibitor to the FLC-4 cells prevented the release of HSP40 from the FLC-4 cells and inflammasome activation in THP-1 cells by the FLC-4 supernatant. These results suggest that reactive metabolites of trovafloxacin can cause the release of DAMPs from hepatocytes that can activate inflammasomes. Inflammasome activation may be an important step in the activation of the immune system by trovafloxacin, which, in some patients, can cause immune-related liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fluoroquinolonas , Inflamassomos , Naftiridinas , Humanos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Fluoroquinolonas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Naftiridinas/toxicidade , Naftiridinas/farmacologia , Células THP-1 , Antibacterianos/toxicidade , Linhagem Celular Tumoral , Interleucina-1beta/metabolismo
16.
Chem Biodivers ; 21(6): e202301746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459958

RESUMO

A series of spiro ß-Lactams (4 a-c, 7 a-c) and thiazolidinones (5 a-c, 8 a-c) possessing 1,8-naphthyridine moiety were synthesized in this study. The structure of the newly synthesized compounds has been confirmed by IR, 1H-NMR, 13C NMR, mass spectra, and elemental analysis. The synthesized compounds were tested in vitro for their antibacterial and antifungal activity against various strains. The antimicrobial data showed that most of the compounds displayed good efficacy against both bacteria and fungi. The structure-activity relationship (SAR) studies suggested that the presence of electron-withdrawing chloro (3 b, 4 b, and 5 b) and nitro groups (7 b, 8 b) at the para position of the phenyl ring improved the antimicrobial activity of the compounds. The free radical scavenging assay showed that all the synthesized compounds exhibited significant antioxidant activity on DPPH. Compounds 8 b (IC50=17.68±0.76 µg/mL) and 4 c (IC50=18.53±0.52 µg/mL) showed the highest antioxidant activity compared to ascorbic acid (IC50=15.16±0.43 µg/mL). Molecular docking studies were also conducted to support the antimicrobial and SAR results.


Assuntos
Antibacterianos , Antifúngicos , Antioxidantes , DNA Topoisomerases Tipo II , Desenho de Fármacos , Fungos , Testes de Sensibilidade Microbiana , Naftiridinas , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Bactérias/efeitos dos fármacos , beta-Lactamas/síntese química , beta-Lactamas/química , beta-Lactamas/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , DNA Topoisomerases Tipo II/metabolismo , Fungos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftiridinas/farmacologia , Naftiridinas/química , Naftiridinas/síntese química , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Compostos de Espiro/farmacologia
17.
Genes Dev ; 30(11): 1289-99, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27298335

RESUMO

Small cell lung cancer (SCLC) is a devastating neuroendocrine carcinoma. MYCL (L-Myc) is frequently amplified in human SCLC, but its roles in SCLC progression are poorly understood. We isolated preneoplastic neuroendocrine cells from a mouse model of SCLC and found that ectopic expression of L-Myc, c-Myc, or N-Myc conferred tumor-forming capacity. We focused on L-Myc, which promoted pre-rRNA synthesis and transcriptional programs associated with ribosomal biogenesis. Deletion of Mycl in two genetically engineered models of SCLC resulted in strong suppression of SCLC. The high degree of suppression suggested that L-Myc may constitute a therapeutic target for a broad subset of SCLC. We then used an RNA polymerase I inhibitor to target rRNA synthesis in an autochthonous Rb/p53-deleted mouse SCLC model and found significant tumor inhibition. These data reveal that activation of RNA polymerase I by L-Myc and other MYC family proteins provides an axis of vulnerability for this recalcitrant cancer.


Assuntos
Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase I/metabolismo , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Animais Geneticamente Modificados , Benzotiazóis/farmacologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Neoplasias Pulmonares/fisiopatologia , Camundongos , Naftiridinas/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase I/antagonistas & inibidores , Ribossomos/metabolismo , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas
18.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000107

RESUMO

Even though several new targets (mostly viral infection) for drug repurposing of pyronaridine and artesunate have recently emerged in vitro and in vivo, inter-species pharmacokinetic (PK) data that can extend nonclinical efficacy to humans has not been reported over 30 years of usage. Since extrapolation of animal PK data to those of humans is essential to predict clinical outcomes for drug repurposing, this study aimed to investigate inter-species PK differences in three animal species (hamster, rat, and dog) and to support clinical translation of a fixed-dose combination of pyronaridine and artesunate. PK parameters (e.g., steady-state volume of distribution (Vss), clearance (CL), area under the concentration-time curve (AUC), mean residence time (MRT), etc.) of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) were determined by non-compartmental analysis. In addition, one- or two-compartment PK modeling was performed to support inter-species scaling. The PK models appropriately described the blood concentrations of pyronaridine, artesunate, and dihydroartemisinin in all animal species, and the estimated PK parameters in three species were integrated for inter-species allometric scaling to predict human PKs. The simple allometric equation (Y = a × Wb) well explained the relationship between PK parameters and the actual body weight of animal species. The results from the study could be used as a basis for drug repurposing and support determining the effective dosage regimen for new indications based on in vitro/in vivo efficacy data and predicted human PKs in initial clinical trials.


Assuntos
Artemisininas , Artesunato , Reposicionamento de Medicamentos , Naftiridinas , Artesunato/farmacocinética , Artesunato/farmacologia , Reposicionamento de Medicamentos/métodos , Animais , Ratos , Cães , Naftiridinas/farmacocinética , Naftiridinas/farmacologia , Artemisininas/farmacocinética , Especificidade da Espécie , Humanos , Modelos Biológicos , Masculino , Antimaláricos/farmacocinética , Antimaláricos/farmacologia
19.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999929

RESUMO

The mechanistic target of rapamycin complex (mTORC) regulates protein synthesis and can be activated by branched-chain amino acids (BCAAs). mTORC has also been implicated in the regulation of mitochondrial metabolism and BCAA catabolism. Some speculate that mTORC overactivation by BCAAs may contribute to insulin resistance. The present experiments assessed the effect of mTORC activation on myotube metabolism and insulin sensitivity using the mTORC agonist MHY1485, which does not share structural similarities with BCAAs. METHODS: C2C12 myotubes were treated with MHY1485 or DMSO control both with and without rapamycin. Gene expression was assessed using qRT-PCR and insulin sensitivity and protein expression by western blot. Glycolytic and mitochondrial metabolism were measured by extracellular acidification rate and oxygen consumption. Mitochondrial and lipid content were analyzed by fluorescent staining. Liquid chromatography-mass spectrometry was used to assess extracellular BCAAs. RESULTS: Rapamycin reduced p-mTORC expression, mitochondrial content, and mitochondrial function. Surprisingly, MHY1485 did not alter p-mTORC expression or cell metabolism. Neither treatment altered indicators of BCAA metabolism or extracellular BCAA content. CONCLUSION: Collectively, inhibition of mTORC via rapamycin reduces myotube metabolism and mitochondrial content but not BCAA metabolism. The lack of p-mTORC activation by MHY1485 is a limitation of these experiments and warrants additional investigation.


Assuntos
Mitocôndrias , Fibras Musculares Esqueléticas , Sirolimo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Animais , Camundongos , Sirolimo/farmacologia , Linhagem Celular , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Aminoácidos de Cadeia Ramificada/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Resistência à Insulina , Serina-Treonina Quinases TOR/metabolismo , Naftiridinas
20.
Circulation ; 145(6): 437-447, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34775784

RESUMO

BACKGROUND: Chronic kidney disease and type 2 diabetes are independently associated with heart failure (HF), a leading cause of morbidity and mortality. In the FIDELIO-DKD (Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease) and FIGARO-DKD (Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease) trials, finerenone (a selective, nonsteroidal mineralocorticoid receptor antagonist) improved cardiovascular outcomes in patients with albuminuric chronic kidney disease and type 2 diabetes. These prespecified analyses from FIGARO-DKD assessed the effect of finerenone on clinically important HF outcomes. METHODS: Patients with type 2 diabetes and albuminuric chronic kidney disease (urine albumin-to-creatinine ratio ≥30 to <300 mg/g and estimated glomerular filtration rate ≥25 to ≤90 mL per min per 1.73 m2, or urine albumin-to-creatinine ratio ≥300 to ≤5000 mg/g and estimated glomerular filtration rate ≥60 mL per min per 1.73 m2), without symptomatic HF with reduced ejection fraction, were randomized to finerenone or placebo. Time-to-first-event outcomes included new-onset HF (first hospitalization for HF [HHF] in patients without a history of HF at baseline); cardiovascular death or first HHF; HF-related death or first HHF; first HHF; cardiovascular death or total (first or recurrent) HHF; HF-related death or total HHF; and total HHF. Outcomes were evaluated in the overall population and in prespecified subgroups categorized by baseline HF history (as reported by the investigators). RESULTS: Overall, 7352 patients were included in these analyses; 571 (7.8%) had a history of HF at baseline. New-onset HF was significantly reduced with finerenone versus placebo (1.9% versus 2.8%; hazard ratio [HR], 0.68 [95% CI, 0.50-0.93]; P=0.0162). In the overall population, the incidences of all HF outcomes analyzed were significantly lower with finerenone than placebo, including an 18% lower risk of cardiovascular death or first HHF (HR, 0.82 [95% CI, 0.70-0.95]; P=0.011), a 29% lower risk of first HHF (HR, 0.71 [95% CI, 0.56-0.90]; P=0.0043) and a 30% lower rate of total HHF (rate ratio, 0.70 [95% CI, 0.52-0.94]). The effects of finerenone on improving HF outcomes were not modified by a history of HF. The incidence of treatment-emergent adverse events was balanced between treatment groups. CONCLUSIONS: The results from these FIGARO-DKD analyses demonstrate that finerenone reduces new-onset HF and improves other HF outcomes in patients with chronic kidney disease and type 2 diabetes, irrespective of a history of HF. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02545049.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Naftiridinas/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Idoso , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Naftiridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA