Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2123527119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858309

RESUMO

A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated Gd2O3-mesoporous silica/gold core/shell NSs (Gd2O3-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥108 NSs per milliliter). The nanoparticles have r1 relaxivities more than three times larger than those of conventional T1 contrast agents, requiring less concentration of Gd3+ to observe an equivalent signal enhancement in T1-weighted MR images. Furthermore, Gd2O3-MS NS nanoparticles have r2 relaxivities comparable to those of existing T2 contrast agents, observed in agarose phantoms. This highly unusual combination of simultaneous T1 and T2 contrast allows for MRI enhancement through different approaches. As a rudimentary example, we demonstrate T1/T2 ratio MR images with sixfold contrast signal enhancement relative to its T1 MRI and induced temperature increases of 20 to 55 °C under clinical illumination conditions. These nanoparticles facilitate MRI-guided PTT while providing real-time temperature feedback through thermal MRI mapping.


Assuntos
Meios de Contraste , Gadolínio , Ouro , Imageamento por Ressonância Magnética , Nanoconchas , Terapia Fototérmica , Meios de Contraste/síntese química , Gadolínio/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanoconchas/química , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Dióxido de Silício/química
2.
Nano Lett ; 23(16): 7334-7340, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37540682

RESUMO

Nanoparticles with high absorption cross sections will advance therapeutic and bioimaging nanomedicine technologies. While Au nanoshells have shown great promise in nanomedicine, state-of-the-art synthesis methods result in scattering-dominant particles, mitigating their efficacy in absorption-based techniques that leverage the photothermal effect, such as photoacoustic (PA) imaging. We introduce a highly reproducible synthesis route to monodisperse sub-100 nm Au nanoshells with an absorption-dominant optical response. Au nanoshells with 48 nm SiO2 cores and 7 nm Au shells show a 14-fold increase in their volumetric absorption coefficient compared to commercial Au nanoshells with dimensions commonly used in nanomedicine. PA imaging with Au nanoshell contrast agents showed a 50% improvement in imaging depth for sub-100 nm Au nanoshells compared with the smallest commercially available nanoshells in a turbid phantom. Furthermore, the high PA signal at low fluences, enabled by sub-100 nm nanoshells, will aid the deployment of low-cost, low-fluence light-emitting diodes for PA imaging.


Assuntos
Nanoconchas , Técnicas Fotoacústicas , Nanoconchas/uso terapêutico , Dióxido de Silício , Técnicas Fotoacústicas/métodos , Diagnóstico por Imagem , Ouro/uso terapêutico
3.
Nano Lett ; 23(15): 7092-7099, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498114

RESUMO

Venous malformations (VMs) consist of hugely enlarged and dysmorphic veins. These lesions cause significant disfigurement, pain, and complications such as bleeding and coagulopathy. Pharmacotherapy for the treatment of VMs has limited efficacy and potentially limiting toxicity. Current treatment for patients with VMs entails life-long pharmacotherapy or surgical procedures. Here we explored whether intravenously administered agents can be used to destroy VMs by photothermal therapy (PTT), using gold nanoshells (AuNSs) that generated heat following irradiation with near-infrared (NIR) light. In a murine model of VMs, intravenous AuNSs accumulated within the VMs. Irradiation of the VMs induced marked regression and even elimination. Nanoparticle-based photothermal therapy can provide effective therapy for VMs, which are otherwise relatively refractory to treatment.


Assuntos
Hipertermia Induzida , Nanoconchas , Humanos , Camundongos , Animais , Terapia Fototérmica , Ouro/uso terapêutico , Nanoconchas/uso terapêutico , Hipertermia Induzida/métodos , Fototerapia
4.
Nano Lett ; 23(15): 7076-7085, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463308

RESUMO

The bioengineering applications of cells, such as cell printing and multicellular assembly, are directly limited by cell damage and death due to a harsh environment. Improved cellular robustness thus motivates investigations into cell encapsulation, which provides essential protection. Here we target the cell-surface glycocalyx and cross-link two layers of DNA nanorods on the cellular plasma membrane to form a modular and programmable nanoshell. We show that the DNA origami nanoshell modulates the biophysical properties of cell membranes by enhancing the membrane stiffness and lowering the lipid fluidity. The nanoshell also serves as armor to protect cells and improve their viability against mechanical stress from osmotic imbalance, centrifugal forces, and fluid shear stress. Moreover, it enables mediated cell-cell interactions for effective and robust multicellular assembly. Our results demonstrate the potential of the nanoshell, not only as a cellular protection strategy but also as a platform for cell and cell membrane manipulation.


Assuntos
Células Artificiais , Nanoconchas , Nanoestruturas , Membrana Celular/metabolismo , DNA/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338926

RESUMO

Gold nanoshells have been actively applied in industries beyond the research stage because of their unique optical properties. Although numerous methods have been reported for gold nanoshell synthesis, the labor-intensive and time-consuming production process is an issue that must be overcome to meet industrial demands. To resolve this, we report a high-throughput synthesis method for nanogap-rich gold nanoshells based on a core silica support (denoted as SiO2@Au NS), affording a 50-fold increase in scale by combining it with a dual-channel infusion pump system. By continuously dropping the reactant solution through the pump, nanoshells with closely packed Au nanoparticles were prepared without interparticle aggregation. The thickness of the gold nanoshells was precisely controlled at 2.3-17.2 nm by regulating the volume of the reactant solution added dropwise. Depending on the shell thickness, the plasmonic characteristics of SiO2@Au NS prepared by the proposed method could be tuned. Moreover, SiO2@Au NS exhibited surface-enhanced Raman scattering activity comparable to that of gold nanoshells prepared by a previously reported low-throughput method at the same reactant ratio. The results indicate that the proposed high-throughput synthesis method involving the use of a dual-channel infusion system will contribute to improving the productivity of SiO2@Au NS with tunable plasmonic characteristics.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Ouro , Dióxido de Silício
6.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256075

RESUMO

Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.


Assuntos
Doenças Cardiovasculares , Nanopartículas Metálicas , Nanoconchas , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Antibacterianos , Confiabilidade dos Dados
7.
Molecules ; 29(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39125086

RESUMO

Interleukin-6 (IL-6) detection and monitoring are of great significance for evaluating the progression of many diseases and their therapeutic efficacy. Lateral flow immunoassay (LFIA) is one of the most promising point-of-care testing (POCT) methods, yet suffers from low sensitivity and poor quantitative ability, which greatly limits its application in IL-6 detection. Hence, in this work, we integrated Aushell nanoparticles (NPs) as new LFIA reporters and achieved the colorimetric and photothermal dual-mode detection of IL-6. Aushell NPs were conveniently prepared using a galvanic exchange process. By controlling the shell thickness, their localized surface plasmon resonance (LSPR) peak was easily tuned to near-infrared (NIR) range, which matched well with the NIR irradiation light. Thus, the Aushell NPs were endowed with good photothermal effect. Aushell NPs were then modified with IL-6 detection antibody to construct Aushell probes. In the LFIA detection, the Aushell probes were combined with IL-6, which were further captured by the capture IL-6 antibody on the test line of the strip, forming a colored band. By observation with naked eyes, the colorimetric qualitative detection of IL-6 was achieved with limit of 5 ng/mL. By measuring the temperature rise of the test line with a portable infrared thermal camera, the photothermal quantitative detection of IL-6 was performed from 1~1000 ng/mL. The photothermal detection limit reached 0.3 ng/mL, which was reduced by nearly 20 times compared with naked-eye detection. Therefore, this Aushell-based LFIA efficiently improved the sensitivity and quantitative ability of commercial colloidal gold LFIA. Furthermore, this method showed good specificity, and kept the advantages of convenience, speed, cost-effectiveness, and portability. Therefore, this Aushell-based LFIA exhibits practical application potential in IL-6 POCT detection.


Assuntos
Colorimetria , Ouro , Interleucina-6 , Interleucina-6/análise , Ouro/química , Imunoensaio/métodos , Colorimetria/métodos , Humanos , Nanoconchas/química , Ressonância de Plasmônio de Superfície/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Biossensoriais/métodos
8.
Small ; 19(50): e2303934, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632323

RESUMO

Treatment failure in breast cancers overexpressing human epidermal growth factor receptor 2 (HER2) is associated mainly to the upregulation of human epidermal growth factor receptor 3 (HER3) oncoprotein linked to chemoresitence. Therefore, to increase patient survival, here a multimodal theranostic nanoplatform targeting both HER2 and HER3 is developed. This consists of doxorubicin-loaded branched gold nanoshells functionalized with the near-infrared (NIR) fluorescent dye indocyanine green, a small interfering RNA (siRNA) against HER3, and the HER2-specific antibody Transtuzumab, able to provide a combined therapeutic outcome (chemo- and photothermal activities, RNA silencing, and immune response). In vitro assays in HER2+ /HER3+ SKBR-3 breast cancer cells have shown an effective silencing of HER3 by the released siRNA and an inhibition of HER2 oncoproteins provided by Trastuzumab, along with a decrease of the serine/threonine protein kinase Akt (p-AKT) typically associated with cell survival and proliferation, which helps to overcome doxorubicin chemoresistance. Conversely, adding the NIR light therapy, an increment in p-AKT concentration is observed, although HER2/HER3 inhibitions are maintained for 72 h. Finally, in vivo studies in a tumor-bearing mice model display a significant progressively decrease of the tumor volume after nanoparticle administration and subsequent NIR light irradiation, confirming the potential efficacy of the hybrid nanocarrier.


Assuntos
Neoplasias da Mama , Nanoconchas , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ouro , Receptor ErbB-2/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , RNA Interferente Pequeno , Linhagem Celular Tumoral
9.
Phys Chem Chem Phys ; 25(48): 33038-33047, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037391

RESUMO

Transition metal dichalcogenides (TMD) coated gold nanoshells (GNSs), in addition to having low cytotoxicity and a biocompatibility value greater than graphene, exhibit strong light absorption in the near-infrared (NIR) region and high photothermal conversion efficiency. Using a quasi-static approach and bioheat equations, the optical and photothermal properties of GNSs coated with various TMDs are studied for treatment of skin cancer. Our findings show that the intensity of localized surface plasmon resonance (LSPR) peaks and their position in the extinction spectrum of nanoparticles (NPs) can be easily tuned within biological windows by varying the core radius, the gold shell thickness and the number of coating layers of the different TMDs. In order to engineer heat production at designated spatial locations of NPs, near electric field (NEF) enhancement is investigated. Moreover, the effect of laser intensity and the number of TMD layers on the temperature rise and the amount of thermal damage in skin tumor tissue and its surroundings are studied. Our results introduce GNSs with various TMD coatings as superlative nanoagents for photothermal therapy (PTT) applications.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Ouro , Terapia Fototérmica , Luz , Ressonância de Plasmônio de Superfície , Fototerapia/métodos
10.
J Nanobiotechnology ; 21(1): 138, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106405

RESUMO

Since the successful clinical trial of AuroShell for photothermal therapy, there is currently intense interest in developing gold-based core-shell structures with near-infrared (NIR) absorption ranging from NIR-I (650-900 nm) to NIR-II (900-1700 nm). Here, we propose a seed-mediated successive growth approach to produce gold nanoshells on the surface of the nanoscale metal-organic framework (NMOF) of UiO-66-NH2 (UiO = the University of Oslo) in one pot. The key to this strategy is to modulate the proportion of the formaldehyde (reductant) and its regulator / oxidative product of formic acid to harness the particle nucleation and growth rate within the same system. The gold nanoshells propagate through a well-oriented and controllable diffusion growth pattern (points → facets → octahedron), which has not been identified. Most strikingly, the gold nanoshells prepared hereby exhibit an exceedingly broad and strong absorption in NIR-II with a peak beyond 1300 nm and outstanding photothermal conversion efficiency of 74.0%. Owing to such superior performance, these gold nanoshells show promising outcomes in photoacoustic (PA), computed tomography (CT), and photothermal imaging-guided photothermal therapy (PTT) for breast cancer, as demonstrated both in vitro and in vivo.


Assuntos
Nanoconchas , Nanoconchas/química , Terapia Fototérmica , Ouro/química , Imagem Multimodal , Fototerapia
11.
Small ; 18(1): e2105209, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761520

RESUMO

Plasmonic nanostructures have raised the interest of biomedical applications of surface-enhanced Raman scattering (SERS). To improve the enhancement and produce sensitive SERS probes, porous Au-Ag alloy nanoparticles (NPs) are synthesized by dealloying Au-Ag alloy NP-precursors with Au or Ag core in aqueous colloidal environment through galvanic replacement reaction. The novel designed core-shell Au-Ag alloy NP-precursors facilitate controllable synthesis of porous nanostructure, and dealloying degree during the reaction has significant effect on structural and spectral properties of dealloyed porous NPs. Narrow-dispersed dealloyed NPs are obtained using NPs of Au/Ag ratio from 10/90 to 40/60 with Au and Ag core to produce solid core@porous shell and porous nanoshells, having rough surface, hollowness, and porosity around 30-60%. The clean nanostructure from colloidal synthesis exhibits a redshifted plasmon peak up to near-infrared region, and the large accessible surface induces highly localized surface plasmon resonance and generates robust SERS activity. Thus, the porous NPs produce intensely enhanced Raman signal up to 68-fold higher than 100 nm AuNP enhancement at single-particle level, and the estimated Raman enhancement around 7800, showing the potential for highly sensitive SERS probes. The single-particle SERS probes are effectively demonstrated in quantitative monitoring of anticancer drug Doxorubicin release.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Ouro , Porosidade , Prata , Análise Espectral Raman
12.
Small ; 18(29): e2200522, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35748183

RESUMO

The design of nanomedicine for cancer therapy, especially the treatment of tumor metastasis has received great attention. Proteasome inhibition is accepted as a new strategy for cancer therapy. Despite being a big breakthrough in multiple myeloma therapy, carfilzomib (CFZ), a second-in-class proteasome inhibitor is still unsatisfactory for solid tumor and metastasis therapy. In this study, hollow titanium nitride (TiN) nanoshells are synthesized as a drug carrier of CFZ. The TiN nanoshells have a high loading capacity of CFZ, and their intrinsic inhibitory effect on autophagy synergistically enhances the activity of CFZ. Due to an excellent photothermal conversion efficiency in the second near-infrared (NIR-II) region, TiN nanoshell-based photothermal therapy further induces a synergistic anticancer effect. In vivo study demonstrates that TiN nanoshells readily drain into the lymph nodes, which are responsible for tumor lymphatic metastasis. The CFZ-loaded TiN nanoshell-based chemo-photothermal therapy combined with surgery offers a remarkable therapeutic outcome in greatly inhibiting further metastatic spread of cancer cells. These findings suggest that TiN nanoshells act as an efficient carrier of CFZ for realizing enhanced outcomes for proteasome inhibitor-based cancer therapy, and this work also presents a "combined chemo-phototherapy assisted surgery" strategy, promising for future cancer treatment.


Assuntos
Nanoconchas , Neoplasias , Fotoquimioterapia , Humanos , Linhagem Celular Tumoral , Ouro , Metástase Linfática , Neoplasias/tratamento farmacológico , Oligopeptídeos , Inibidores de Proteassoma/farmacologia , Titânio
13.
Langmuir ; 38(12): 3876-3886, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35302776

RESUMO

In this work, monodisperse silica-coated gold nanoparticles (NPs) were synthesized and used for obtaining aqueous colloidal dispersions with an optimum relationship between colloidal stability and photothermal activity. The idea behind this design was to produce systems with the advantages of the presence of a silica shell (biocompatibility, potential for surface modification, and protecting effect) with a minimal loss of optical and thermal properties. With this aim, the photothermal properties of NPs with silica shells of different thicknesses were analyzed under conditions of high radiation extinction. By using amorphous, gel-like silica coatings, thicknesses higher than 40 nm could be obtained without an important loss of the light absorption capacity of the colloids and with a significant photothermal response even at low NP concentrations. The effects produced by changes in the solvent and in the NP concentration were also analyzed. The results show that the characteristics of the shell control both, the photothermal effect and the optical properties of the colloidal dispersions. As the presence of a silica shell strongly enhances the possibilities of adding cargo molecules or probes, these colloids can be considered of high interest for biomedical therapies, sensing applications, remote actuation, and other technological applications.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Coloides/química , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Suspensões
14.
Phys Chem Chem Phys ; 24(9): 5700-5709, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35187554

RESUMO

Plasmonic nanoshells have attracted significant interest due to their resonant optical properties providing excellent spectral tunability, promising for various biophotonic applications. In this work we discuss our experimental and theoretical results related to the synthesis and optical characterization of surface-modified gold nanoshells. The nanoshell growth mechanism is monitored by IR spectroscopy, and the effects of modification of the gold nanoshell surface by PEG-SH ((11-mercaptoundecyl)tetra(ethylene glycol)) molecules are studied using TEM and optical methods. A red shift of localized surface plasmon resonance is observed upon formation of a layer of PEG-SH molecules on the completed gold nanoshells. Uncompleted gold shells show tendency to detach from the spherical silica cores, and the underlying destabilizing mechanism is discussed. The experimentally measured optical extinction properties are in good agreement with the results of numerical simulations, which additionally shed light on the localized plasmon modes contributing to the extinction, as well as on the effects of nanoshell surface nonuniformity on the resonant plasmonic properties and local field enhancements.


Assuntos
Nanoconchas , Ouro/química , Nanoconchas/química , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície
15.
Proc Natl Acad Sci U S A ; 116(37): 18304-18309, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451645

RESUMO

Graphene-based materials are being developed for a variety of wearable technologies to provide advanced functions that include sensing; temperature regulation; chemical, mechanical, or radiative protection; or energy storage. We hypothesized that graphene films may also offer an additional unanticipated function: mosquito bite protection for light, fiber-based fabrics. Here, we investigate the fundamental interactions between graphene-based films and the globally important mosquito species, Aedes aegypti, through a combination of live mosquito experiments, needle penetration force measurements, and mathematical modeling of mechanical puncture phenomena. The results show that graphene or graphene oxide nanosheet films in the dry state are highly effective at suppressing mosquito biting behavior on live human skin. Surprisingly, behavioral assays indicate that the primary mechanism is not mechanical puncture resistance, but rather interference with host chemosensing. This interference is proposed to be a molecular barrier effect that prevents Aedes from detecting skin-associated molecular attractants trapped beneath the graphene films and thus prevents the initiation of biting behavior. The molecular barrier effect can be circumvented by placing water or human sweat as molecular attractants on the top (external) film surface. In this scenario, pristine graphene films continue to protect through puncture resistance-a mechanical barrier effect-while graphene oxide films absorb the water and convert to mechanically soft hydrogels that become nonprotective.


Assuntos
Grafite/química , Mordeduras e Picadas de Insetos/prevenção & controle , Roupa de Proteção , Aedes , Animais , Feminino , Humanos , Hidrogéis , Nanoconchas , Nanotecnologia/métodos , Seda/química , Têxteis , Água , Dispositivos Eletrônicos Vestíveis
16.
Proc Natl Acad Sci U S A ; 116(37): 18590-18596, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451630

RESUMO

Biocompatible gold nanoparticles designed to absorb light at wavelengths of high tissue transparency have been of particular interest for biomedical applications. The ability of such nanoparticles to convert absorbed near-infrared light to heat and induce highly localized hyperthermia has been shown to be highly effective for photothermal cancer therapy, resulting in cell death and tumor remission in a multitude of preclinical animal models. Here we report the initial results of a clinical trial in which laser-excited gold-silica nanoshells (GSNs) were used in combination with magnetic resonance-ultrasound fusion imaging to focally ablate low-intermediate-grade tumors within the prostate. The overall goal is to provide highly localized regional control of prostate cancer that also results in greatly reduced patient morbidity and improved functional outcomes. This pilot device study reports feasibility and safety data from 16 cases of patients diagnosed with low- or intermediate-risk localized prostate cancer. After GSN infusion and high-precision laser ablation, patients underwent multiparametric MRI of the prostate at 48 to 72 h, followed by postprocedure mpMRI/ultrasound targeted fusion biopsies at 3 and 12 mo, as well as a standard 12-core systematic biopsy at 12 mo. GSN-mediated focal laser ablation was successfully achieved in 94% (15/16) of patients, with no significant difference in International Prostate Symptom Score or Sexual Health Inventory for Men observed after treatment. This treatment protocol appears to be feasible and safe in men with low- or intermediate-risk localized prostate cancer without serious complications or deleterious changes in genitourinary function.


Assuntos
Terapia a Laser/instrumentação , Nanopartículas Metálicas/administração & dosagem , Neoplasias da Próstata/cirurgia , Idoso , Estudos de Viabilidade , Seguimentos , Ouro/administração & dosagem , Ouro/efeitos da radiação , Humanos , Biópsia Guiada por Imagem/métodos , Raios Infravermelhos , Terapia a Laser/efeitos adversos , Terapia a Laser/métodos , Imagem por Ressonância Magnética Intervencionista/efeitos adversos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imagem por Ressonância Magnética Intervencionista/métodos , Masculino , Nanopartículas Metálicas/efeitos da radiação , Pessoa de Meia-Idade , Imagem Multimodal/efeitos adversos , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Nanoconchas/administração & dosagem , Nanoconchas/efeitos da radiação , Oligopeptídeos , Órgãos em Risco/efeitos da radiação , Ereção Peniana/efeitos da radiação , Projetos Piloto , Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Saúde Sexual , Ultrassonografia de Intervenção/efeitos adversos , Ultrassonografia de Intervenção/instrumentação , Ultrassonografia de Intervenção/métodos , Sistema Urogenital/efeitos da radiação
17.
Nano Lett ; 21(20): 8734-8740, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34623161

RESUMO

Although dry eye is highly prevalent, many challenges exist in diagnosing the symptom and related diseases. For this reason, anionic hydrogel-coated gold nanoshells (AuNSs) were used in the development of a label-free biosensor for detection of high isoelectric point tear biomarkers associated with dry eye. A custom, aldehyde-functionalized oligo(ethylene glycol)acrylate (Al-OEGA) was included in the hydrogel coating to enhance protein recognition through the formation of dynamic covalent (DC) imine bonds with solvent-accessible lysine residues present on the surface of select tear proteins. Our results demonstrated that hydrogel-coated AuNSs, composed of monomers that form ionic and DC bonds with select tear proteins, greatly enhance protein recognition due to changes in the maximum localized surface plasmon resonance wavelength exhibited by AuNSs in noncompetitive and competitive environments. Validation of the developed biosensor in commercially available pooled human tears revealed the potential for clinical translation to establish a method for dry eye diagnosis.


Assuntos
Síndromes do Olho Seco , Nanoconchas , Biomarcadores , Ouro , Humanos , Hidrogéis , Eletricidade Estática
18.
Nano Lett ; 21(1): 68-76, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33306406

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive disease that requires new interventions. A promising approach to improve patient prognosis is to introduce tumor suppressive miR-34a into TNBC cells. Unfortunately, naked miR-34a is not effective therapeutically because it is degraded by nucleases and cannot passively enter cells. Nanocarriers designed to increase miR-34a stability and cellular entry have lacked specificity and potency. To overcome these limitations, we conjugated miR-34a to photoresponsive gold nanoshells (NS), which can release tethered miR-34a upon excitation with continuous wave (CW) or nanosecond (ns) pulsed near-infrared light to facilitate on-demand gene regulation. We demonstrate that miR-34a/NS can regulate downstream miR-34a targets following irradiation to reduce TNBC cell viability, proliferation, and migration. Further, we show ns pulsed light releases miRNA more effectively than CW light, and that released miR-34a is as potent as transfected miR-34a. These findings signify miR-34a/NS as promising tools for precisely controlled gene regulation of TNBC.


Assuntos
MicroRNAs , Nanoconchas , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Prognóstico , Neoplasias de Mama Triplo Negativas/genética
19.
Analyst ; 147(1): 155-164, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34860213

RESUMO

We present core-satellite assemblies comprising a solid gold nanoparticle as the core and hollow decahedral gold nanoshells as satellites for tuning the optical properties of the plasmonic structure for sensing. The core-satellite assemblies were fabricated on a substrate via the layer-by-layer assembly of nanoparticles linked by DNA. We used finite-difference time-domain simulations to help guide the geometrical design, and characterized the optical properties and morphology of the solid-shell nanoparticle assemblies using darkfield microscopy, single-nanostructure spectroscopy, and scanning electron microscopy. Plasmon coupling yielded resonant peaks at longer wavelengths in the red to near-infrared range for solid-shell assemblies compared with solid-solid nanoparticle assemblies. We examined sensing with the solid-shell assemblies using adenosine triphosphate (ATP) as a model target and ATP-aptamer as the linker. Binding of ATP induced disassembly and led to a decrease in the scattering intensity and a color change from red to green. The new morphology of the core-satellite assembly enabled plasmonic color-coding of multiplexed sensors. We demonstrate this potential by fabricating two types of assemblies using DNA linkers that target different molecules - ATP and a model nucleic acid. Our work expands the capability of chip-based plasmonic nanoparticle assemblies for the analysis of multiple, different types of biomolecules in small sample sizes including the microenvironment and single cells.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Ouro , Microscopia Eletrônica de Varredura
20.
J Nanobiotechnology ; 19(1): 297, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593005

RESUMO

BACKGROUND: Photothermal therapy (PTT) is a highly effective treatment for solid tumors and can induce long-term immune memory worked like an in situ vaccine. Nevertheless, PTT inevitably encounters photothermal resistance of tumor cells, which hinders therapeutic effect or even leads to tumor recurrence. Naïve CD8+ T cells are mainly metabolized by oxidative phosphorylation (OXPHOS), followed by aerobic glycolysis after activation. And the differentiate of effector CD8+ T cell (CD8+ Teff) into central memory CD8+ T cell (CD8+ TCM) depends on fatty acid oxidation (FAO) to meet their metabolic requirements, which is regulated by adenosine monophosphate activated protein kinase (AMPK). In addition, the tumor microenvironment (TME) is severely immunosuppressive, conferring additional protection against the host immune response mediated by PTT. METHODS: Metformin (Met) down-regulates NADH/NADPH, promotes the FAO of CD8+ T cells by activating AMPK, increases the number of CD8+ TCM, which boosts the long-term immune memory of tumor-bearing mice treated with PTT. Here, a kind of PLGA microspheres co-encapsulated hollow gold nanoshells and Met (HAuNS-Met@MS) was constructed to inhibit the tumor progress. 2-Deoxyglucose (2DG), a glycolysis inhibitor for cancer starving therapy, can cause energy loss of tumor cells, reduce the heat stress response of tumor cell, and reverse its photothermal resistance. Moreover, 2DG prevents N-glycosylation of proteins that cause endoplasmic reticulum stress (ERS), further synergistically enhance PTT-induced tumor immunogenic cell death (ICD), and improve the effect of immunotherapy. So 2DG was also introduced and optimized here to solve the metabolic competition among tumor cells and immune cells in the TME. RESULTS: We utilized mild PTT effect of HAuNS to propose an in situ vaccine strategy based on the tumor itself. By targeting the metabolism of TME with different administration strategy of 2DG and perdurable action of Met, the thermotolerance of tumor cells was reversed, more CD8+ TCMs were produced and more effective anti-tumor was presented in this study. CONCLUSION: The Step-by-Step starving-photothermal therapy could not only reverse the tumor thermotolerance, but also enhance the ICD and produce more CD8+ TCM during the treatment.


Assuntos
Memória Imunológica , Neoplasias , Terapia Fototérmica , Termotolerância , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Ouro/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoconchas/química , Neoplasias/imunologia , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA