Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.876
Filtrar
1.
An Acad Bras Cienc ; 96(3): e20231121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922258

RESUMO

The study evaluated the use of nano copper in semi-purified diets for laying quails and its effect on performance, metabolic state, and bioavailability. A total of 160 (180-days-old) quails were distributed in a completely randomized design, in a 3x3+1 factorial. The copper sources used were copper sulfate, copper oxide, and nano copper oxide, at levels of 200, 400, and 800 ppm each, totaling nine treatments plus a negative control (with no copper inclusion). The following variables were determined: weight gain, feed intake, egg production, egg weight, hemoglobin, hematocrit, Cu in the tissues and Cu bioavailability. Data were subjected to analysis of variance at 5% probability. The effect of sources and levels, as well as the interaction between the factors were evaluated. When interaction was observed, the effect of sources was evaluated separately by the Tukey's test and the effect of levels by regression, both at 5% probability. Copper nano oxide can be used at up to 800 ppm in the diet of laying quails without altering the productive performance, and with higher bioavailability than conventional copper oxide. Hemoglobin increases with the inclusion of 200 and 400 ppm of nano copper oxide and the hematocrit with 400 ppm.


Assuntos
Ração Animal , Cobre , Animais , Cobre/análise , Cobre/administração & dosagem , Feminino , Ração Animal/análise , Disponibilidade Biológica , Codorniz/fisiologia , Nanopartículas Metálicas/administração & dosagem , Dieta/veterinária
2.
Lasers Med Sci ; 39(1): 168, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954141

RESUMO

PURPOSE: Several treatment options for acne vulgaris are limited by their associated adverse effects. An innovative approach involves introducing light-absorbing nanoparticles into sebaceous follicles before destroying the follicles using selective photothermolysis. We aimed to investigate efficient methods for introducing gold and platinum nanoparticles into sebaceous follicles and to identify suitable laser equipment and parameters for the effective destruction of these follicles. METHODS: We used porcine skin as the experimental model. We compared the efficacies of a thulium laser, ultrasound, and manual massage and evaluated the optimal method for delivering nanoparticles in close proximity to sebaceous follicles. Subsequently, a 1064-nm-wavelength neodymium-doped yttrium aluminum garnet (Nd: YAG) laser was employed to induce selective photothermolysis. We compared different parameters to identify the optimal pulse duration and fluence of the Nd: YAG laser. The extent of penetration and destruction of sebaceous follicles was assessed using hematoxylin and eosin (H&E) staining, and a numerical evaluation was conducted. RESULTS: H&E staining showed that irradiation with a long-pulsed Nd: YAG laser following a combination of thulium laser and sonophoresis effectively destroyed sebaceous follicles, with destruction rates exceeding 50%. These results were valid with a long pulse duration and a high fluence of the Nd: YAG laser. CONCLUSION: This study demonstrated that sebaceous follicles can be effectively destroyed through a mixture of gold and platinum nanoparticle delivery by a combination of microchanneling and sonophoresis, followed by selective thermal damage induced by a 1064-nm long-pulsed high-fluence Nd: YAG laser.


Assuntos
Acne Vulgar , Ouro , Lasers de Estado Sólido , Nanopartículas Metálicas , Platina , Animais , Ouro/administração & dosagem , Suínos , Projetos Piloto , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Acne Vulgar/terapia , Lasers de Estado Sólido/uso terapêutico , Pele/efeitos da radiação , Glândulas Sebáceas/efeitos da radiação , Glândulas Sebáceas/efeitos dos fármacos , Glândulas Sebáceas/patologia
3.
Mol Cell Proteomics ; 20: 100073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757833

RESUMO

Silver nanoparticles (AgNPs) are widely used nanomaterials in both commercial and clinical biomedical applications, but the molecular mechanisms underlying their activity remain elusive. In this study we profiled proteomics and redox proteomics changes induced by AgNPs in two lung cancer cell lines: AgNPs-sensitive Calu-1 and AgNPs-resistant NCI-H358. We show that AgNPs induce changes in protein abundance and reversible oxidation in a time and cell-line-dependent manner impacting critical cellular processes such as protein translation and modification, lipid metabolism, bioenergetics, and mitochondrial dynamics. Supporting confocal microscopy and transmission electron microscopy (TEM) data further emphasize mitochondria as a target of AgNPs toxicity differentially impacting mitochondrial networks and morphology in Calu-1 and NCI-H358 lung cells. Proteomics data are available via ProteomeXchange with identifier PXD021493.


Assuntos
Neoplasias Pulmonares/metabolismo , Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Oxirredução , Proteômica
4.
Proc Natl Acad Sci U S A ; 117(37): 22639-22648, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900936

RESUMO

Despite an abundant literature on gold nanoparticles use for biomedicine, only a few of the gold-based nanodevices are currently tested in clinical trials, and none of them are approved by health agencies. Conversely, ionic gold has been used for decades to treat human rheumatoid arthritis and benefits from 70-y hindsight on medical use. With a view to open up new perspectives in gold nanoparticles research and medical use, we revisit here the literature on therapeutic gold salts. We first summarize the literature on gold salt pharmacokinetics, therapeutic effects, adverse reactions, and the present repurposing of these ancient drugs. Owing to these readings, we evidence the existence of a common metabolism of gold nanoparticles and gold ions and propose to use gold salts as a "shortcut" to assess the long-term effects of gold nanoparticles, such as their fate and toxicity, which remain challenging questions nowadays. Moreover, one of gold salts side effects (i.e., a blue discoloration of the skin exposed to light) leads us to propose a strategy to biosynthesize large gold nanoparticles from gold salts using light irradiation. These hypotheses, which will be further investigated in the near future, open up new avenues in the field of ionic gold and gold nanoparticles-based therapies.


Assuntos
Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanomedicina/tendências , Artrite Reumatoide/tratamento farmacológico , Ouro/efeitos adversos , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanomedicina/métodos
5.
Anal Biochem ; 637: 114449, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762874

RESUMO

Nanoparticles have been used as antibacterial agents in several products. To optimize their effectiveness, synthesis processes and particle modifications have been developed, creating the need for a rapid screening method to investigate their potencies. Owing to the opacity and insolubility of nanoparticles, a classical method to determine antibacterial activity-such as the minimum inhibitory concentration (MIC), which relies on turbidimetry-might not apply to them. In this study, we demonstrate the potential of a dye (resazurin)-based assay as an indicator of bacterial growth to rapidly screen the antibacterial activities of both organic and inorganic nanomaterials against both gram-negative (E. coli) and gram-positive (S. aureus) bacteria. The results indicate that the resazurin-based assay successfully determine the MIC of organic lipid nanocarriers, and several inorganic nanoparticles. However, the use of resazurin require a precaution for nanoparticles with photocatalytic properties, which may cause dye degradation at higher concentrations. In this study, resazurin bleaching was observed at approximately >50 mg/ml of TiO2. In summary, the modified MIC assay with resazurin can evaluate antibacterial activity of nanomaterials, whose turbidity interferer conventional MIC assay. This modification conserves an advantage of MICs assay which are simple and reliable. This would be useful for screening of antibacterial nanomaterials.


Assuntos
Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Nanopartículas/administração & dosagem , Oxazinas/química , Staphylococcus aureus/efeitos dos fármacos , Xantenos/química , Antibacterianos/química , Indicadores e Reagentes/química , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana/métodos , Nanopartículas/química , Nefelometria e Turbidimetria/métodos , Óleos Voláteis/química , Tamanho da Partícula , Prata/química , Titânio/química , Óxido de Zinco/química
6.
Exp Cell Res ; 406(1): 112633, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089726

RESUMO

Sorafenib is a multi-kinase inhibitor that has been highlighted as a tumor suppressor due to its anti-proliferative and anti-angiogenic properties, whereas the clinical application of Sorafenib is restricted by the side effects it may cause. The past decade has witnessed the development of a series of sorafenib derivatives to improve the clinical performance of sorafenib. Gold nanoparticles (AuNPs) have been widely utilized in drug delivery systems due to their unique properties, including biocompatible nature, simple preparation, and easy surface modification. Herein, this study is aimed to investigate the anti-tumor effects of new sorafenib derivatives-capped gold nanoparticles (AuNPs-New Sor) in tumor formation and metastasis as well as the underlying mechanisms. Initially, new sorafenib derivatives were constructed and combined with AuNPs to form AuNPs-New Sor, and the properties of synthesized AuNPs-New Sor were identified in a mouse model of tumorigenesis. The effect of AuNPs-New Sor on tumor vascular normalization was investigated by assessing vascular permeability and perfusion rate. Next, we evaluated the effect of AuNPs-New Sor on migration and viability of tumor cells and human umbilical vein endothelial cells (HUVECs) as well as on HUVEC angiogenesis in vitro. A melanoma mouse model was further established for in vivo substantiation of the anti-tumor effect of AuNPs-New Sor. According to the results, AuNPs could deliver new sorafenib derivatives into tumor tissues and downregulate the expression of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2), thereby suppressing tumor migration, EMT, and angiogenesis in vitro. In addition, AuNPs-New Sor displayed competitive anti-tumor activities in vivo. Taken together, AuNPs-New Sor may attenuate tumor development and angiogenesis through downregulation of EGFR and VEGFR-2.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Nanopartículas Metálicas/química , Neovascularização Patológica/prevenção & controle , Neoplasias Cutâneas/tratamento farmacológico , Sorafenibe/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Antineoplásicos/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Ouro/química , Células HCT116 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Células MCF-7 , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/secundário , Sorafenibe/análogos & derivados , Carga Tumoral/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
7.
Arch Toxicol ; 96(2): 487-498, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34787690

RESUMO

Silver nanoparticles (Ag NPs) are priority substances closely monitored by health and safety agencies. Despite their extensive use, some aspects of their toxicokinetics remain to be documented, in particular following inhalation, the predominant route of exposure in the workplace. A same experimental protocol and exposure conditions were reproduced two times (experiments E1 and E2) to document the kinetic time courses of inhaled Ag NPs. Rats were exposed nose-only to 20 nm Ag NPs during 6 h at a target concentration of 15 mg/m3 (E1: 218,341 ± 85,512 particles/cm3; E2, 154,099 ± 5728 particles/cm3). The generated aerosol showed a uniform size distribution of nanoparticle agglomerates with a geometric mean diameter ± SD of 79.1 ± 1.88 nm in E1 and 92.47 ± 2.19 nm in E2. The time courses of elemental silver in the lungs, blood, tissues and excreta were determined over 14 days following the onset of inhalation. Excretion profiles revealed that feces were the dominant excretion route and represented on average (± SD) 5.1 ± 3.4% (E1) and 3.3 ± 2.5% (E2) of the total inhaled exposure dose. The pulmonary kinetic profile was similar in E1 and E2; the highest percentages of the inhaled dose were observed between the end of the 6-h inhalation up to 6-h following the end of exposure, and reached 1.9 ± 1.2% in E1 and 2.5 ± 1.6% in E2. Ag elements found in the GIT followed the trend observed in lungs, with a peak observed at the end of the 6-h inhalation exposure and representing 6.4 ± 4.9% of inhaled dose, confirming a certain ingestion of Ag NPs from the upper respiratory tract. Analysis of the temporal profile of Ag elements in the liver showed two distinct patterns: (i) progressive increase in values with peak at the end of the 6-h inhalation period followed by a progressive decrease; (ii) second increase in values starting at 72 h post-exposure with maximum levels at 168-h followed by a progressive decrease. The temporal profiles of Ag elements in lymphatic nodes, olfactory bulbs, kidneys and spleen also followed a pattern similar to that of the liver. However, concentrations in blood and extrapulmonary organs were much lower than lung concentrations. Overall, results show that only a small percentage of the inhaled dose reached the lungs-most of the dose likely remained in the upper respiratory tract. The kinetic time courses in the gastrointestinal tract and liver showed that part of the inhaled Ag NPs was ingested; lung, blood and extrapulmonary organ profiles also suggest that a small fraction of inhaled Ag NPs progressively reached the systemic circulation by a direct translocation from the respiratory tract.


Assuntos
Exposição por Inalação , Pulmão/metabolismo , Nanopartículas Metálicas/administração & dosagem , Prata/farmacocinética , Aerossóis , Animais , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Prata/administração & dosagem , Distribuição Tecidual , Toxicocinética
8.
Mar Drugs ; 20(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323481

RESUMO

This study reports on the green and cost-efficient synthesis of gold nanoparticles from three different red algae extracts. The nanoparticles synthesized were fully characterized by UV-Vis spectroscopy, HRTEM, and Z-potential. Relevant components occurring in the extracts, such as polysaccharides or phenolic content, were assessed by analytical techniques such as spectrophotometric assays and liquid chromatography. Finally, the antioxidant, antitumoral, and anti-inflammatory potential of both the extracts and the gold nanoparticles synthesized were analyzed in order to determine a possible synergistic effect on the nanoparticles. The results obtained confirmed the obtainment of gold nanoparticles with significant potential as immunotherapeutic agents. The therapeutic potential of these nanoparticles could be higher than that of inert gold nanoparticles loaded with bioactive molecules since the former would allow for higher accumulation into the targeted tissue.


Assuntos
Antineoplásicos/administração & dosagem , Antioxidantes/administração & dosagem , Misturas Complexas/química , Ouro/administração & dosagem , Fatores Imunológicos/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Rodófitas/química , Antineoplásicos/química , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Ouro/química , Humanos , Fatores Imunológicos/química , Nanopartículas Metálicas/química , Fenóis/análise , Fenóis/farmacologia , Polissacarídeos/análise , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(37): 18590-18596, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451630

RESUMO

Biocompatible gold nanoparticles designed to absorb light at wavelengths of high tissue transparency have been of particular interest for biomedical applications. The ability of such nanoparticles to convert absorbed near-infrared light to heat and induce highly localized hyperthermia has been shown to be highly effective for photothermal cancer therapy, resulting in cell death and tumor remission in a multitude of preclinical animal models. Here we report the initial results of a clinical trial in which laser-excited gold-silica nanoshells (GSNs) were used in combination with magnetic resonance-ultrasound fusion imaging to focally ablate low-intermediate-grade tumors within the prostate. The overall goal is to provide highly localized regional control of prostate cancer that also results in greatly reduced patient morbidity and improved functional outcomes. This pilot device study reports feasibility and safety data from 16 cases of patients diagnosed with low- or intermediate-risk localized prostate cancer. After GSN infusion and high-precision laser ablation, patients underwent multiparametric MRI of the prostate at 48 to 72 h, followed by postprocedure mpMRI/ultrasound targeted fusion biopsies at 3 and 12 mo, as well as a standard 12-core systematic biopsy at 12 mo. GSN-mediated focal laser ablation was successfully achieved in 94% (15/16) of patients, with no significant difference in International Prostate Symptom Score or Sexual Health Inventory for Men observed after treatment. This treatment protocol appears to be feasible and safe in men with low- or intermediate-risk localized prostate cancer without serious complications or deleterious changes in genitourinary function.


Assuntos
Terapia a Laser/instrumentação , Nanopartículas Metálicas/administração & dosagem , Neoplasias da Próstata/cirurgia , Idoso , Estudos de Viabilidade , Seguimentos , Ouro/administração & dosagem , Ouro/efeitos da radiação , Humanos , Biópsia Guiada por Imagem/métodos , Raios Infravermelhos , Terapia a Laser/efeitos adversos , Terapia a Laser/métodos , Imagem por Ressonância Magnética Intervencionista/efeitos adversos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imagem por Ressonância Magnética Intervencionista/métodos , Masculino , Nanopartículas Metálicas/efeitos da radiação , Pessoa de Meia-Idade , Imagem Multimodal/efeitos adversos , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Nanoconchas/administração & dosagem , Nanoconchas/efeitos da radiação , Oligopeptídeos , Órgãos em Risco/efeitos da radiação , Ereção Peniana/efeitos da radiação , Projetos Piloto , Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Saúde Sexual , Ultrassonografia de Intervenção/efeitos adversos , Ultrassonografia de Intervenção/instrumentação , Ultrassonografia de Intervenção/métodos , Sistema Urogenital/efeitos da radiação
10.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163306

RESUMO

Two key concerns exist in contemporary cancer chemotherapy in clinics: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating revolutionary cancer treatment techniques and photo-thermal therapy (PTT) has been proposed by many scholars. A drug for photothermal cancer treatment was synthesized using the hydrothermal method, which has a high light-to-heat conversion efficiency. It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI), computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, gold-doped upconverting nanoparticles (UCNPs) have an exceptionally high target recognition for tumor cells. The gold-doped UCNPs, in particular, are non-toxic to normal tissues, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage the creation of fresh effective imaging-guided approaches to meet the goal of photothermal cancer therapy.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Imagem Multimodal/métodos , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Terapia Combinada/métodos , Liberação Controlada de Fármacos/fisiologia , Feminino , Células HeLa , Humanos , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Técnicas Fotoacústicas/métodos
11.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163150

RESUMO

Two key concerns exist in contemporary cancer chemotherapy in clinic: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating a revolutionary cancer treatment technique, and photodynamic therapy (PDT) has been proposed by many scholars. A drug for photodynamic cancer treatment was synthesized using the hydrothermal method, which has a high efficiency to release reactive oxygen species (ROS). It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI) due to its photothermal effect, computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, Au-doped up-conversion nanoparticles (UCNPs) have an exceptionally high luminous intensity. The Au-doped UCNPs, in particular, are non-toxic to tissues without laser at an 808 nm wavelength, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage fresh effective imaging-guided approaches to meet the goal of photodynamic cancer therapy to be created.


Assuntos
Ouro/química , Nanopartículas Metálicas/administração & dosagem , Imagem Multimodal/métodos , Fotoquimioterapia/métodos , Nanomedicina Teranóstica , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Técnicas Fotoacústicas/métodos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216400

RESUMO

Photodynamic therapy (PDT) and photothermal therapy (PTT) are promising therapeutic methods for cancer treatment; however, as single modality therapies, either PDT or PTT is still limited in its success rate. A dual application of both PDT and PTT, in a combined protocol, has gained immense interest. In this study, gold nanoparticles (AuNPs) were conjugated with a PDT agent, meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer, designed as nanotherapeutic agents that can activate a dual photodynamic/photothermal therapy in SH-SY5Y human neuroblastoma cells. The AuNP-mTHPC complex is biocompatible, soluble, and photostable. PDT efficiency is high because of immediate reactive oxygen species (ROS) production upon mTHPC activation by the 650-nm laser, which decreased mitochondrial membrane potential (∆ψm). Likewise, the AuNP-mTHPC complex is used as a photoabsorbing (PTA) agent for PTT, due to efficient plasmon absorption and excellent photothermal conversion characteristics of AuNPs under laser irradiation at 532 nm. Under the laser irradiation of a PDT/PTT combination, a twofold phototoxicity outcome follows, compared to PDT-only or PTT-only treatment. This indicates that PDT and PTT have synergistic effects together as a combined therapeutic method. Our study aimed at applying the AuNP-mTHPC approach as a potential treatment of cancer in the biomedical field.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fototerapia/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada/métodos , Ouro/química , Humanos , Lasers , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Fotossensibilizantes/química
13.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216406

RESUMO

The possibility for an ecologically friendly and simple production of gold nanoparticles (AuNPs) with Chaga mushroom (Inonotus obliquus) (Ch-AuNPs) is presented in this study. Chaga extract's reducing potential was evaluated at varied concentrations and temperatures. The nanoparticles synthesized were all under 20 nm in size, as measured by TEM, which is a commendable result for a spontaneous synthesis method utilizing a biological source. The Ch-AuNPs showed anti-cancer chemotherapeutic effects on human brain cancer cells which is attributed to the biofunctionalization of the AuNPs with Chaga bioactive components during the synthesis process. Further, the photothermal ablation capability of the as-prepared gold nanoparticles on human brain cancer cells was investigated. It was found that the NIR-laser induced thermal ablation of cancer cells was effective in eliminating over 80% of the cells. This research projects the Ch-AuNPs as promising, dual modal (chemo-photothermal) therapeutic candidates for anti-cancer applications.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Ouro/química , Ouro/farmacologia , Inonotus/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Agaricales/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hipertermia Induzida/métodos
14.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216264

RESUMO

BACKGROUND: Breast cancer is the most common cancer in women globally, and diagnosing it early and finding potential drug candidates against multi-drug resistant metastatic breast cancers provide the possibilities of better treatment and extending life. METHODS: The current study aimed to evaluate the synergistic anti-metastatic activity of Curcumin (Cur) and Paclitaxel (Pacli) individually, the combination of Curcumin-Paclitaxel (CP), and also in conjugation with gold nanoparticles (AuNP-Curcumin (Au-C), AuNP-Paclitaxel (Au-P), and AuNP-Curcumin-Paclitaxel (Au-CP)) in various in vitro and in vivo models. RESULTS: The results from combination treatments of CP and Au-CP demonstrated excellent synergistic cytotoxic effects in triple-negative breast cancer cell lines (MDA MB 231 and 4T1) in in vitro and in vivo mouse models. Detailed mechanistic studies were performed that reveal that the anti-cancer effects were associated with the downregulation of the expression of VEGF, CYCLIN-D1, and STAT-3 genes and upregulation of the apoptotic Caspase-9 gene. The group of mice that received CP combination therapy (with and without gold nanoparticles) showed a significant reduction in the size of tumor when compared to the Pacli alone treatment and control groups. CONCLUSIONS: Together, the results suggest that the delivery of gold conjugated Au-CP formulations may help in modulating the outcomes of chemotherapy. The present study is well supported with observations from cell-based assays, molecular and histopathological analyses.


Assuntos
Carcinogênese/efeitos dos fármacos , Curcumina/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Metástase Neoplásica/tratamento farmacológico , Paclitaxel/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
15.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216249

RESUMO

Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton's Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon-gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4-9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Secretoma/efeitos dos fármacos , Silício/farmacologia , Geleia de Wharton/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Antígenos CD13/metabolismo , Condrogênese/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Secretoma/metabolismo , Antígenos Thy-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Geleia de Wharton/metabolismo
16.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056835

RESUMO

In the present study, Zingiber officinale is used for the synthesis of Zingiber officinale capped silver nanoparticles (ZOE-AgNPs) and compares the antimicrobial efficacy and compressive strength of conventional glass ionomer cement (GIC) combined with ZOE-AgNPs, lyophilized miswak, and chlorhexidine diacetate (CHX) against oral microbes. Five groups of the disc-shaped GIC specimens were prepared. Group A: lyophilized miswak and GIC combination, Group B: ZOE-AgNPs and GIC combinations, Group C: CHX and GIC combination, Group D: ZOE-AgNPs + CHX + GIC; Group E: Conventional GIC. Results confirmed the successful formation of ZOE-AgNPs that was monitored by UV-Vis sharp absorption spectra at 415 nm. The X-ray diffractometer (XRD) and transmission electron microscope (TEM) results revealed the formation of ZOE-AgNPs with a mean size 10.5-14.12 nm. The peaks of the Fourier transform infrared spectroscopy (FTIR) were appearing the involvement of ZOE components onto the surface of ZOE-AgNPs which played as bioreducing, and stabilizing agents. At a 24-h, one-week and three-week intervals, Group D showed the significantly highest mean inhibitory zones compared to Group A, Group B, and Group C. At microbe-level comparison, Streptococcus mutans and Staphylococcus aureus were inhibited significantly by all the specimens tested except group E when compared to Candida albicans. Group D specimens showed slightly higher (45.8 ± 5.4) mean compressive strength in comparison with other groups. The combination of GIC with ZOE-AgNPs and chlorhexidine together enhanced its antimicrobial efficacy and compressive strength compared to GIC with ZOE-AgNPs or lyophilized miswak or chlorhexidine combination alone. The present study revealed that The combination of GIC with active components of ZOE-AgNPs and chlorhexidine paves the way to lead its effective nano-dental materials applications.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Clorexidina/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Salvadoraceae/química , Prata/química , Antibacterianos/química , Zingiber officinale/química , Teste de Materiais , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia
17.
J Mol Recognit ; 34(11): e2916, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34142724

RESUMO

The optimized geometry, FT-Raman, FT-IR, surface-enhanced Raman scattering, UV-Vis spectra, frontier molecular orbital analysis, molecular electrostatic potential analysis, and local and global reactivity descriptors of diphenylhydantoin (DPH) and diphenylhydantoin@AuNPs (DPHA) molecule have been investigated with the help of density functional theory method (B3LYP/6-31++G [d,p] together with LANL2DZ) and was compared and analyzed with the corresponding experimental data in order to identify their structural and bonding features responsible for their bioactivity. In-silico (molecular docking) biological activity screening of the molecules together with the in-vitro (SERS and MTT assay) analysis confirms the anticancer activity of DPH and DPHA molecules. The results of the structure-activity studies and bioactivity studies signify that the DPHA molecule is more active than the DPH molecule against lung cancer.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Simulação de Acoplamento Molecular , Fenitoína/farmacologia , Teoria Quântica , Células A549 , Antineoplásicos/química , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/química , Modelos Moleculares , Fenitoína/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termodinâmica , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
18.
BMC Neurosci ; 22(1): 50, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384370

RESUMO

BACKGROUND: Fibrin as an extracellular matrix feature like biocompatibility, creates a favorable environment for proliferation and migration of cells and it can act as a reservoir for storage and release of growth factors in tissue engineering. METHODS: In this study, the inner surface of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibrous conduit was biofunctionalized with laminin containing brain derived neurotrophic factor (BDNF) and gold nanoparticles in chitosan nanoparticle. The rats were randomly divided into five groups, including autograft group as the positive control, PLGA conduit coated by laminin and filled with DMEM/F12, PLGA conduit coated by laminin and filled with rat-adipose derived stem cells (r-ADSCs), PLGA conduit coated by laminin containing gold-chitosan nanoparticles (AuNPs-CNPs), BDNF-chitosan nanoparticles (BDNF-CNPs) and filled with r-ADSCs or filled with r-ADSCs suspended in fibrin matrix, and they were implanted into a 10 mm rat sciatic nerve gap. Eventually, axonal regeneration and functional recovery were assessed after 12 weeks. RESULTS: After 3 months post-surgery period, the results showed that in the PLGA conduit filled with r-ADSCs without fibrin matrix group, positive effects were obtained as compared to other implanted groups by increasing the sciatic functional index significantly (p < 0.05). In addition, the diameter nerve fibers had a significant difference mean in the PLGA conduit coated by laminin and conduit filled with r-ADSCs in fibrin matrix groups relative to the autograft group (p < 0.001). However, G-ratio and amplitude (AMP) results showed that fibrin matrix might have beneficial effects on nerve regeneration but, immunohistochemistry and real-time RT-PCR outcomes indicated that the implanted conduit which filled with r-ADSCs, with or without BDNF-CNPs and AuNPs-CNPs had significantly higher expression of S100 and MBP markers than other conduit implanted groups (p < 0.05). CONCLUSIONS: It seems, in this study differential effects of fibrin matrix, could be interfered it with other factors thereby and further studies are required to determine the distinctive effects of fibrin matrix combination with other exogenous factors in peripheral nerve regeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Ouro/administração & dosagem , Células-Tronco Mesenquimais , Nanopartículas Metálicas/administração & dosagem , Regeneração Nervosa/fisiologia , Neuropatia Ciática/terapia , Animais , Terapia Combinada , Sistemas de Liberação de Medicamentos/métodos , Quimioterapia Combinada , Fibrina/administração & dosagem , Masculino , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Wistar , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia
19.
IUBMB Life ; 73(2): 398-407, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33372372

RESUMO

Glioblastoma multiforme (GBM) is among the most common adult brain tumors with invariably fatal character. Following the limited conventional therapies, almost all patients, however, presented with symptoms at the time of recurrence. It is dire to develop novel therapeutic strategies to improve the current treatment of GBM. Gallic acid is a well-established antioxidant, presenting a promising new selective anti-cancer drug, while gold nanoparticles (GNPs) can be developed as versatile nontoxic carriers for anti-cancer drug delivery. Here, we prepared gallic acid-GNPs (GA-GNPs) by loading gallic acid onto GNPs, reduction products of tetrachloroauric acid by sodium citrate, through physical and agitation adsorption. GA-GNPs, rather than GNPs alone, significantly inhibited the survival of U251 GBM cells, as well as enhanced radiation-induced cell death. Moreover, GA-GNPs plus radiation arrested the cell cycle of U251 at the S and G2/M phases and triggered apoptotic cell death, which is supported by increased BAX protein levels and decreased expression of BCL-2. Thus, GA-GNPs have great potential in the combination with radiation therapy in future studies for GBM treatment.


Assuntos
Morte Celular , Ácido Gálico/farmacologia , Raios gama , Glioma/radioterapia , Ouro/química , Nanopartículas Metálicas/administração & dosagem , Radiossensibilizantes/farmacologia , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Ciclo Celular , Sistemas de Liberação de Medicamentos , Ácido Gálico/química , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Nanopartículas Metálicas/química , Radiossensibilizantes/química , Células Tumorais Cultivadas
20.
BMC Cancer ; 21(1): 170, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596850

RESUMO

BACKGROUND: The concept of personalized therapy has been proven to be a promising approach. A popular technique is to utilize gold nanoparticles (AuNPs) as drug delivery vectors for cytotoxic drugs and small molecule inhibitors to target and eradicate oral cancer cells in vitro and in vivo. Both drug and nanocarrier designs play important roles in the treatment efficacy. In our study, we standardized the nanosystem regarding NPs type, size, surface ligands and coverage percentage leaving only the drugs mode of action as the confounding variable. We propose that similarly constructed nanoparticles (NPs) can selectively leverage different conjugated drugs irrelevant to their original mode of action. If proven, AuNPs may have a secondary role beyond bypassing cancer cell membrane and delivering their loaded drugs. METHODS: We conjugated 5- fluorouracil (5Fu), camptothecin (CPT), and a fibroblast growth factor receptor1-inhibitor (FGFR1i) to gold nanospheres (AuNSs). We followed their trajectories in Syrian hamsters with chemically induced buccal carcinomas. RESULTS: Flow cytometry and cell cycle data shows that 5Fu- and CPT- induced a similar ratio of S-phase cell cycle arrest as nanoconjugates and in their free forms. On the other hand, FGFR1i-AuNSs induced significant sub-G1 cell population compared with its free form. Despite cell cycle dynamics variability, there was no significant difference in tumor cells' proliferation rate between CPT-, 5Fu- and FGFR1i- AuNSs treated groups. In our in vivo model, FGFR1i-AuNSs induced the highest tumor reduction rates followed by 5Fu- AuNSs. CPT-AuNSs induced significantly lower tumor reduction rates compared with the 5Fu- and FGFR1i- AuNSs despite showing similar proliferative rates in tumor cells. CONCLUSIONS: Our data indicates that the cellular biological events do not predict the outcome seen in our in vivo model. Furthermore, our results suggest that AuNSs selectively enhance the therapeutic effect of small molecule inhibitors such as FGFR1i than potent anticancer drugs. Future studies are required to better understand the underlying mechanism.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ciclo Celular , Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas Metálicas/administração & dosagem , Neoplasias Bucais/tratamento farmacológico , Animais , Camptotecina/administração & dosagem , Fluoruracila/administração & dosagem , Masculino , Mesocricetus , Nanopartículas Metálicas/química , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA