Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
FASEB J ; 38(12): e23736, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865202

RESUMO

Subclinical hypothyroidism (SCH) in pregnancy is the most common form of thyroid dysfunction in pregnancy, which can affect fetal nervous system development and increase the risk of neurodevelopmental disorders after birth. However, the mechanism of the effect of maternal subclinical hypothyroidism on fetal brain development and behavioral phenotypes is still unclear and requires further study. In this study, we constructed a mouse model of maternal subclinical hypothyroidism by exposing dams to drinking water containing 50 ppm propylthiouracil (PTU) during pregnancy and found that its offspring were accompanied by severe cognitive deficits by behavioral testing. Mechanistically, gestational SCH resulted in the upregulation of protein expression and activity of HDAC1/2/3 in the hippocampus of the offspring. ChIP analysis revealed that H3K9ac on the neurogranin (Ng) promoter was reduced in the hippocampus of the offspring of SCH, with a significant reduction in Ng protein, leading to reduced expression levels of synaptic plasticity markers PSD95 (a membrane-associated protein in the postsynaptic density) and SYN (synaptophysin, a specific marker for presynaptic terminals), and impaired synaptic plasticity. In addition, administration of MS-275 (an HDAC1/2/3-specific inhibitor) to SCH offspring alleviated impaired synaptic plasticity and cognitive dysfunction in offspring. Thus, our study suggests that maternal subclinical hypothyroidism may mediate offspring cognitive dysfunction through the HDAC1/2/3-H3K9ac-Ng pathway. Our study contributes to the understanding of the signaling mechanisms underlying maternal subclinical hypothyroidism-mediated cognitive impairment in the offspring.


Assuntos
Disfunção Cognitiva , Histona Desacetilase 1 , Histona Desacetilase 2 , Hipotireoidismo , Neurogranina , Efeitos Tardios da Exposição Pré-Natal , Animais , Neurogranina/metabolismo , Neurogranina/genética , Hipotireoidismo/metabolismo , Feminino , Gravidez , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Regulação para Baixo , Hipocampo/metabolismo , Masculino , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos Endogâmicos C57BL , Plasticidade Neuronal
2.
Mol Psychiatry ; 29(3): 847-857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228892

RESUMO

Alzheimer's disease (AD) is currently constrained by limited clinical treatment options. The initial pathophysiological event, which can be traced back to decades before the clinical symptoms become apparent, involves the excessive accumulation of amyloid-beta (Aß), a peptide comprised of 40-42 amino acids, in extraneuronal plaques within the brain. Biochemical and histological studies have shown that overaccumulation of Aß instigates an aberrant escalation in the phosphorylation and secretion of tau, a microtubule-binding axonal protein. The accumulation of hyperphosphorylated tau into intraneuronal neurofibrillary tangles is in turn correlated with microglial dysfunction and reactive astrocytosis, culminating in synaptic dysfunction and neurodegeneration. As neurodegeneration progresses, it gives rise to mild clinical symptoms of AD, which may eventually evolve into overt dementia. Synaptic loss in AD may develop even before tau alteration and in response to possible elevations in soluble oligomeric forms of Aß associated with early AD. These findings largely rely on post-mortem autopsy examinations, which typically involve a limited number of patients. Over the past decade, a range of fluid biomarkers such as neurogranin, α-synuclein, visinin-like protein 1 (VILIP-1), neuronal pentraxin 2, and ß-synuclein, along with positron emission tomography (PET) markers like synaptic vesicle glycoprotein 2A, have been developed. These advancements have facilitated the exploration of how synaptic markers in AD patients correlate with cognitive impairment. However, fluid biomarkers indicating synaptic loss have only been validated in cerebrospinal fluid (CSF), not in plasma, with the exception of VILIP-1. The most promising PET radiotracer, [11C]UCB-J, currently faces significant challenges hindering its widespread clinical use, primarily due to the necessity of a cyclotron. As such, additional research geared toward the exploration of synaptic pathology biomarkers is crucial. This will not only enable their extensive clinical application, but also refine the optimization process of AD pharmacological trials.


Assuntos
Doença de Alzheimer , Biomarcadores , Tomografia por Emissão de Pósitrons , Humanos , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Proteína C-Reativa , Proteínas do Tecido Nervoso , Neurocalcina/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurogranina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Sinapses/metabolismo , Sinapses/patologia , Proteínas tau/metabolismo
3.
Brain ; 147(7): 2414-2427, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325331

RESUMO

Synaptic dysfunction and degeneration is likely the key pathophysiology for the progression of cognitive decline in various dementia disorders. Synaptic status can be monitored by measuring synaptic proteins in CSF. In this study, both known and new synaptic proteins were investigated and compared as potential biomarkers of synaptic dysfunction, particularly in the context of Alzheimer's disease (AD). Seventeen synaptic proteins were quantified in CSF using two different targeted mass spectrometry assays in the prospective Swedish BioFINDER-2 study. The study included 958 individuals, characterized as having mild cognitive impairment (MCI, n = 205), AD dementia (n = 149) and a spectrum of other neurodegenerative diseases (n = 171), in addition to cognitively unimpaired individuals (CU, n = 443). Synaptic protein levels were compared between diagnostic groups and their associations with cognitive decline and key neuroimaging measures (amyloid-ß-PET, tau-PET and cortical thickness) were assessed. Among the 17 synaptic proteins examined, 14 were specifically elevated in the AD continuum. SNAP-25, 14-3-3 zeta/delta, ß-synuclein, and neurogranin exhibited the highest discriminatory accuracy in differentiating AD dementia from controls (areas under the curve = 0.81-0.93). SNAP-25 and 14-3-3 zeta/delta also had the strongest associations with tau-PET, amyloid-ß-PET and cortical thickness at baseline and were associated with longitudinal changes in these imaging biomarkers [ß(standard error, SE) = -0.056(0.0006) to 0.058(0.005), P < 0.0001]. SNAP-25 was the strongest predictor of progression to AD dementia in non-demented individuals (hazard ratio = 2.11). In contrast, neuronal pentraxins were decreased in all neurodegenerative diseases (except for Parkinson's disease), and NPTX2 showed the strongest associations with subsequent cognitive decline [longitudinal Mini-Mental State Examination: ß(SE) = 0.57(0.1), P ≤ 0.0001; and mPACC: ß(SE) = 0.095(0.024), P ≤ 0.001] across the AD continuum. Interestingly, utilizing a ratio of the proteins that displayed higher levels in AD, such as SNAP-25 or 14-3-3 zeta/delta, over NPTX2 improved the biomarkers' associations with cognitive decline and brain atrophy. We found 14-3-3 zeta/delta and SNAP-25 to be especially promising as synaptic biomarkers of pathophysiological changes in AD. Neuronal pentraxins were identified as general indicators of neurodegeneration and associated with cognitive decline across various neurodegenerative dementias. Cognitive decline and brain atrophy were best predicted by ratios of SNAP-25/NPTX2 and 14-3-3 zeta/delta/NPTX2.


Assuntos
Doença de Alzheimer , Biomarcadores , Disfunção Cognitiva , Doenças Neurodegenerativas , Sinapses , Humanos , Masculino , Feminino , Idoso , Biomarcadores/líquido cefalorraquidiano , Doenças Neurodegenerativas/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Doença de Alzheimer/líquido cefalorraquidiano , Pessoa de Meia-Idade , Sinapses/patologia , Idoso de 80 Anos ou mais , Estudos Prospectivos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Neurogranina/líquido cefalorraquidiano
4.
Biophys J ; 123(12): 1676-1689, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38751114

RESUMO

The best-known mode of action of calmodulin (CaM) is binding of Ca2+ to its N- and C-domains, followed by binding to target proteins. An underappreciated facet of this process is that CaM is typically bound to proteins at basal levels of free Ca2+, including the small, intrinsically disordered, neuronal IQ-motif proteins called PEP-19 and neurogranin (Ng). PEP-19 and Ng would not be effective competitive inhibitors of high-affinity Ca2+-dependent CaM targets at equilibrium because they bind to CaM with relatively low affinity, but they could influence the time course of CaM signaling by affecting the rate of association of CaM with high-affinity Ca2+-dependent targets. This mode of regulation may be domain specific because PEP-19 binds to the C-domain of CaM, whereas Ng binds to both N- and C-domains. In this report, we used a model CaM binding peptide (CKIIp) to characterize the preferred pathway of complex formation with Ca2+-CaM at low levels of free Ca2+ (0.25-1.5 µM), and how PEP-19 and Ng affect this process. We show that the dominant encounter complex involves association of CKIIp with the N-domain of CaM, even though the C-domain has a greater affinity for Ca2+. We also show that Ng greatly decreases the rate of association of Ca2+-CaM with CKIIp due to the relatively slow dissociation of Ng from CaM, and to interactions between the Gly-rich C-terminal region of Ng with the N-domain of CaM, which inhibits formation of the preferred encounter complex with CKIIp. These results provide the general mechanistic paradigms that binding CaM to targets can be driven by its N-domain, and that low-affinity regulators of CaM signaling have the potential to influence the rate of activation of high-affinity CaM targets and potentially affect the distribution of limited CaM among multiple targets during Ca2+ oscillations.


Assuntos
Calmodulina , Neurogranina , Ligação Proteica , Calmodulina/metabolismo , Calmodulina/química , Neurogranina/metabolismo , Cálcio/metabolismo , Peptídeos/metabolismo , Peptídeos/química , Domínios Proteicos , Cinética , Sequência de Aminoácidos , Animais
5.
BMC Med ; 22(1): 138, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528511

RESUMO

BACKGROUND: Synaptic dysfunction with reduced synaptic protein levels is a core feature of Alzheimer's disease (AD). Synaptic proteins play a central role in memory processing, learning, and AD pathogenesis. Evidence suggests that synaptic proteins in plasma neuronal-derived extracellular vesicles (EVs) are reduced in patients with AD. However, it remains unclear whether levels of synaptic proteins in EVs are associated with hippocampal atrophy of AD and whether upregulating the expression of these synaptic proteins has a beneficial effect on AD. METHODS: In this study, we included 57 patients with AD and 56 healthy controls. We evaluated their brain atrophy through magnetic resonance imaging using the medial temporal lobe atrophy score. We measured the levels of four synaptic proteins, including synaptosome-associated protein 25 (SNAP25), growth-associated protein 43 (GAP43), neurogranin, and synaptotagmin 1 in both plasma neuronal-derived EVs and cerebrospinal fluid (CSF). We further examined the association of synaptic protein levels with brain atrophy. We also evaluated the levels of these synaptic proteins in the brains of 5×FAD mice. Then, we loaded rabies virus glycoprotein-engineered EVs with messenger RNAs (mRNAs) encoding GAP43 and SNAP25 and administered these EVs to 5×FAD mice. After treatment, synaptic proteins, dendritic density, and cognitive function were evaluated. RESULTS: The results showed that GAP43, SNAP25, neurogranin, and synaptotagmin 1 were decreased in neuronal-derived EVs but increased in CSF in patients with AD, and the changes corresponded to the severity of brain atrophy. GAP43 and SNAP25 were decreased in the brains of 5×FAD mice. The engineered EVs efficiently and stably delivered these synaptic proteins to the brain, where synaptic protein levels were markedly upregulated. Upregulation of synaptic protein expression could ameliorate cognitive impairment in AD by promoting dendritic density. This marks the first successful delivery of synaptic protein mRNAs via EVs in AD mice, yielding remarkable therapeutic effects. CONCLUSIONS: Synaptic proteins are closely related to AD processes. Delivery of synaptic protein mRNAs via EVs stands as a promising effective precision treatment strategy for AD, which significantly advances the current understanding of therapeutic approaches for the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vesículas Extracelulares , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sinaptotagmina I , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Disfunção Cognitiva/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Atrofia/complicações , Atrofia/patologia , Biomarcadores
6.
J Neuroinflammation ; 21(1): 107, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659061

RESUMO

Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1ß. Moreover, in vitro overexpression of this lncRNA impacts Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced inflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.


Assuntos
HIV-1 , Neurogranina , Doenças Neuroinflamatórias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Neurogranina/metabolismo , Neurogranina/genética , Doenças Neuroinflamatórias/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/genética , Infecções por HIV/patologia , Microglia/metabolismo , Masculino , Animais
7.
J Nutr ; 154(1): 49-59, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984740

RESUMO

BACKGROUND: Developing neurons have high thyroid hormone and iron requirements to support their metabolically demanding growth. Early-life iron and thyroid-hormone deficiencies are prevalent and often coexist, and each independently increases risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid-hormone concentrations and impairs thyroid hormone-responsive gene expression in the neonatal rat brain, but it is unclear whether the effect is cell-intrinsic. OBJECTIVES: This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. METHODS: Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 d in vitro (DIV). At 11DIV and 18DIV, thyroid hormone-regulated gene messenger ribonucleic acid (mRNA)concentrations indexing thyroid hormone homeostasis (Hairless, mu-crystallin, Type II deiodinase, solute carrier family member 1c1, and solute carrier family member 16a2) and neurodevelopment (neurogranin, Parvalbumin, and Krüppel-like factor 9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures, and gene expression and adenosine 5'-triphosphate (ATP) concentrations were quantified at 21DIV. RESULTS: At 11DIV and 18DIV, neuronal iron deficiency decreased neurogranin, Parvalbumin, and mu-crystallin, and by 18DIV, solute carrier family member 16a2, solute carrier family member 1c1, Type II deiodinase, and Hairless were increased, suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal component analysis reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status. Iron repletion from 14-21DIV did not restore ATP concentration, and Principal component analysis suggests that, after iron repletion, cultures maintain a gene expression signature indicative of previous iron deficiency. CONCLUSIONS: These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of the homeostatic response to acutely match neuronal energy production and growth signaling. However, the adaptation to iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.


Assuntos
Deficiências de Ferro , Neurogranina , Humanos , Ratos , Criança , Animais , Camundongos , Neurogranina/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/farmacologia , Cristalinas mu , Neurônios/metabolismo , Hormônios Tireóideos , Hipocampo/metabolismo , Ferro/metabolismo , Trifosfato de Adenosina/metabolismo , Expressão Gênica , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/farmacologia
8.
Alzheimers Dement ; 20(8): 5347-5356, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39030746

RESUMO

INTRODUCTION: We examined whether the aging suppressor KLOTHO gene's functionally advantageous KL-VS variant (KL-VS heterozygosity [KL-VSHET]) confers resilience against deleterious effects of aging indexed by cerebrospinal fluid (CSF) biomarkers of neuroinflammation (interleukin-6 [IL-6], S100 calcium-binding protein B [S100B], triggering receptor expressed on myeloid cells [sTREM2], chitinase-3-like protein 1 [YKL-40], glial fibrillary acidic protein [GFAP]), neurodegeneration (total α-synuclein [α-Syn], neurofilament light chain protein), and synaptic dysfunction (neurogranin [Ng]). METHODS: This Alzheimer disease risk-enriched cohort consisted of 454 cognitively unimpaired adults (Mage = 61.5 ± 7.75). Covariate-adjusted multivariate regression examined relationships between age (mean-split[age ≥ 62]) and CSF biomarkers (Roche/NeuroToolKit), and whether they differed between KL-VSHET (N = 122) and non-carriers (KL-VSNC; N = 332). RESULTS: Older age was associated with a poorer biomarker profile across all analytes (Ps ≤ 0.03). In age-stratified analyses, KL-VSNC exhibited this same pattern (Ps ≤ 0.05) which was not significant for IL-6, S100B, Ng, and α-Syn (Ps ≥ 0.13) in KL-VSHET. Although age-related differences in GFAP, sTREM2, and YKL-40 were evident for both groups (Ps ≤ 0.01), the effect magnitude was markedly stronger for KL-VSNC. DISCUSSION: Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults were attenuated in KL-VSHET. HIGHLIGHTS: Older age was associated with poorer profiles across all cerebrospinal fluid biomarkers of neuroinflammation, neurodegeneration, and synaptic dysfunction. KLOTHO KL-VS non-carriers exhibit this same pattern, which is does not significantly differ between younger and older KL-VS heterozygotes for interleukin-6, S100 calcium-binding protein B, neurogranin, and total α-synuclein. Although age-related differences in glial fibrillary acidic protein, triggering receptor expressed on myeloid cells, and chitinase-3-like protein 1 are evident for both KL-VS groups, the magnitude of the effect is markedly stronger for KL-VS non-carriers. Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults are attenuated in KL-VS heterozygotes.


Assuntos
Envelhecimento , Biomarcadores , Proteína 1 Semelhante à Quitinase-3 , Heterozigoto , Proteínas Klotho , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/líquido cefalorraquidiano , Idoso , Envelhecimento/genética , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3/genética , Glucuronidase/genética , Glucuronidase/líquido cefalorraquidiano , Interleucina-6/líquido cefalorraquidiano , Interleucina-6/genética , Receptores Imunológicos/genética , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/líquido cefalorraquidiano , Subunidade beta da Proteína Ligante de Cálcio S100/líquido cefalorraquidiano , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Estudos de Coortes , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/genética , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , alfa-Sinucleína/líquido cefalorraquidiano , alfa-Sinucleína/genética , Neurogranina/líquido cefalorraquidiano , Neurogranina/genética , Glicoproteínas de Membrana
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732149

RESUMO

Manganese (Mn), a cofactor for various enzyme classes, is an essential trace metal for all organisms. However, overexposure to Mn causes neurotoxicity. Here, we evaluated the effects of exposure to Mn chloride (MnCl2) on viability, morphology, synapse function (based on neurogranin expression) and behavior of zebrafish larvae. MnCl2 exposure from 2.5 h post fertilization led to reduced survival (60%) at 5 days post fertilization. Phenotypical changes affected body length, eye and olfactory organ size, and visual background adaptation. This was accompanied by a decrease in both the fluorescence intensity of neurogranin immunostaining and expression levels of the neurogranin-encoding genes nrgna and nrgnb, suggesting the presence of synaptic alterations. Furthermore, overexposure to MnCl2 resulted in larvae exhibiting postural defects, reduction in motor activity and impaired preference for light environments. Following the removal of MnCl2 from the fish water, zebrafish larvae recovered their pigmentation pattern and normalized their locomotor behavior, indicating that some aspects of Mn neurotoxicity are reversible. In summary, our results demonstrate that Mn overexposure leads to pronounced morphological alterations, changes in neurogranin expression and behavioral impairments in zebrafish larvae.


Assuntos
Comportamento Animal , Larva , Manganês , Neurogranina , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Larva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Neurogranina/metabolismo , Neurogranina/genética , Manganês/toxicidade , Cloretos/toxicidade , Compostos de Manganês
10.
Neurobiol Dis ; 177: 105991, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623608

RESUMO

Neurogranin (Ng), a post-synaptic protein involved in memory formation, has been investigated as a biomarker in the cerebrospinal fluid (CSF) in Alzheimer's disease (AD) and ageing. CSF Ng levels are elevated in AD relative to healthy controls and correlate with cognition; however, few studies have focused on Ng abundance in the brain. Synapse loss in the brain correlates closely with cognitive decline in AD making synaptic biomarkers potentially important for tracking disease progression, but the links between synaptic protein changes in CSF and brain remain incompletely understood. In the current study, Ng abundance was examined in post-mortem human brain tissue across AD, healthy ageing (HA), and mid-life (ML) cohorts. Ng levels were quantified in three brain regions associated with cognitive change found during ageing and neurodegenerative diseases, namely the middle temporal gyrus, primary visual cortex and the posterior hippocampus using immunohistochemistry. To support immunohistochemical analysis, total homogenate and biochemically enriched synaptic fractions from available temporal gyrus tissues were examined by immunoblot. Finally, we examined whether Ng is associated with lifetime cognitive ageing. Ng levels were significantly reduced in AD relative to HA and ML cases across all regions. Additionally Ng was significantly reduced in HA in comparison to ML in the primary visual cortex. Immunoblotting confirms reduced Ng levels in AD cases supporting immunohistochemical results. Interestingly, there was also a significant reduction of synapse-associated Ng in our group who had lifetime cognitive decline in comparison to the group with lifetime cognitive resilience indicating loss of neurogranin in remaining synapses during ageing is associated with cognitive decline. Our findings indicate that increases in CSF Ng reflect loss of brain neurogranin and support the use of CSF Ng as a biomarker of AD and potentially of cognitive decline in healthy ageing.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Neurogranina/líquido cefalorraquidiano , Disfunção Cognitiva/metabolismo , Encéfalo/metabolismo , Biomarcadores/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo
11.
Mol Psychiatry ; 27(4): 1990-1999, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35173266

RESUMO

Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/genética , Biomarcadores , Proteína 1 Semelhante à Quitinase-3/genética , Proteínas de Ligação a DNA , Ácido Ditionitrobenzoico , Humanos , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular , Neurogranina/genética , Fatores de Transcrição , Proteínas tau
12.
Eur J Neurol ; 30(10): 3182-3189, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37431060

RESUMO

BACKGROUND AND PURPOSE: Our aim was to examine the correlation between biomarkers of neuronal and glial cell damage and severity of disease in patients with tick-borne encephalitis. METHODS: One hundred and fifteen patients with tick-borne encephalitis diagnosed in Lithuania and Sweden were prospectively included, and cerebrospinal fluid (CSF) and serum samples were obtained shortly after hospitalization. Using pre-defined criteria, cases were classified as mild, moderate or severe tick-borne encephalitis. Additionally, the presence of spinal nerve paralysis (myelitis) and/or cranial nerve affection were noted. Concentrations of the brain cell biomarkers glial fibrillary acidic protein (GFAP), YKL-40, S100B, neurogranin, neurofilament light (NfL) and tau were analysed in CSF and, in addition, NfL, GFAP and S100B levels were measured in serum. The Jonckheere-Terpstra test was used for group comparisons of continuous variables and Spearman's partial correlation test was used to adjust for age. RESULTS: Cerebrospinal fluid and serum concentrations of GFAP and NfL correlated with disease severity, independent of age, and with the presence of nerve paralysis. The markers neurogranin, YKL-40, tau and S100B in CSF and S100B in serum were detected, but their concentrations did not correlate with disease severity. CONCLUSIONS: Neuronal cell damage and astroglial cell activation with increased NfL and GFAP in CSF and serum were associated with a more severe disease, independent of age. Increased GFAP and NfL concentrations in CSF and NfL in serum were also indicative of spinal and/or cranial nerve damage. NfL and GFAP are promising prognostic biomarkers in tick-borne encephalitis, and future studies should focus on determining the association between these biomarkers and long-term sequelae.


Assuntos
Lesões Encefálicas , Encefalite Transmitida por Carrapatos , Humanos , Proteína 1 Semelhante à Quitinase-3 , Lituânia , Suécia , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Filamentos Intermediários , Neurogranina , Biomarcadores , Encéfalo , Gravidade do Paciente , Proteínas de Neurofilamentos
13.
Alzheimers Dement ; 19(5): 1775-1784, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36239248

RESUMO

INTRODUCTION: Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. METHOD: Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). RESULTS: Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). DISCUSSION: Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. HIGHLIGHTS: A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/genética , Neurogranina , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano
14.
Alzheimers Dement ; 19 Suppl 9: S115-S125, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37491668

RESUMO

INTRODUCTION: One goal of the Longitudinal Early Onset Alzheimer's Disease Study (LEADS) is to define the fluid biomarker characteristics of early-onset Alzheimer's disease (EOAD). METHODS: Cerebrospinal fluid (CSF) concentrations of Aß1-40, Aß1-42, total tau (tTau), pTau181, VILIP-1, SNAP-25, neurogranin (Ng), neurofilament light chain (NfL), and YKL-40 were measured by immunoassay in 165 LEADS participants. The associations of biomarker concentrations with diagnostic group and standard cognitive tests were evaluated. RESULTS: Biomarkers were correlated with one another. Levels of CSF Aß42/40, pTau181, tTau, SNAP-25, and Ng in EOAD differed significantly from cognitively normal and early-onset non-AD dementia; NfL, YKL-40, and VILIP-1 did not. Across groups, all biomarkers except SNAP-25 were correlated with cognition. Within the EOAD group, Aß42/40, NfL, Ng, and SNAP-25 were correlated with at least one cognitive measure. DISCUSSION: This study provides a comprehensive analysis of CSF biomarkers in sporadic EOAD that can inform EOAD clinical trial design.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3 , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Estudos Longitudinais , Biomarcadores/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano
15.
J Stroke Cerebrovasc Dis ; 32(2): 106889, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36481578

RESUMO

OBJECTIVES: Stroke is a frequently encountered life-threatening medical condition in emergency departments (EDs). Despite all worldwide efforts, a reliable circulating biomarker has not been identified yet. This study investigates the diagnostic and prognostic value of neurogranin (Ng) in acute ischemic stroke (AIS). METHODS: This prospective case-control study was conducted on ED patients with AIS and healthy volunteers. We collected the basic demographics, measured serum Ng levels of the patients vs. controls, and followed up the patient group for 6-month by phone or clinical notes to assess the functional outcomes. RESULTS: Data analysis was completed with 142 subjects (86 patients vs. 55 controls). The groups did not differ in terms of age and gender. The median serum Ng level of the patient group was significantly higher compared to the control group [160.00 (75.93) vs. 121.26 (90.35) ng/mL and p Ë‚ 0.001, respectively]. Serum Ng level of 25 patients admitted to the ED within the first 6 hours from the onset of AIS was 177.93 (24.03) ng/mL, while serum Ng level of 61 patients admitted to the ED within 6-24 hours was 131.84 (76.44) ng/mL. AUROC results were 0.717 vs. 0.868 vs. 0.874 for stroke patients admitted during the first 24 hours, 6 hours, and 4.5 hours after the onset, respectively. Lesion volume, NIHSS, and modified Rankin Scale scores (mRS) at admission showed no significant correlation with Ng levels as well as 6-month mortality and 6-month mRS. CONCLUSIONS: Timely AIS diagnosis is still a challenge for emergency departments due to the dependency on imaging. Serum Ng can be a promising diagnostic biomarker for AIS patients admitted in the first 24 hours. Even it outperformed in the first 4.5 and 6-hour time windows. However, it did not show a significant prognostic value.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Neurogranina , Acidente Vascular Cerebral , Humanos , Biomarcadores , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/terapia , Estudos de Casos e Controles , AVC Isquêmico/diagnóstico , AVC Isquêmico/terapia , Neurogranina/sangue , Neurogranina/química , Prognóstico , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia
16.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685973

RESUMO

In addition to amyloid and tau pathology in the central nervous system (CNS), inflammatory processes and synaptic dysfunction are highly important mechanisms involved in the development and progression of dementia diseases. In the present study, we conducted a comparative analysis of selected pro-inflammatory proteins in the CNS with proteins reflecting synaptic damage and core biomarkers in mild cognitive impairment (MCI) and early Alzheimer's disease (AD). To our knowledge, no studies have yet compared CXCL12 and CX3CL1 with markers of synaptic disturbance in cerebrospinal fluid (CSF) in the early stages of dementia. The quantitative assessment of selected proteins in the CSF of patients with MCI, AD, and non-demented controls (CTRL) was performed using immunoassays (single- and multiplex techniques). In this study, increased CSF concentration of CX3CL1 in MCI and AD patients correlated positively with neurogranin (r = 0.74; p < 0.001, and r = 0.40; p = 0.020, respectively), ptau181 (r = 0.49; p = 0.040), and YKL-40 (r = 0.47; p = 0.050) in MCI subjects. In addition, elevated CSF levels of CXCL12 in the AD group were significantly associated with mini-mental state examination score (r = -0.32; p = 0.040). We found significant evidence to support an association between CX3CL1 and neurogranin, already in the early stages of cognitive decline. Furthermore, our findings indicate that CXCL12 might be a useful marker for tract severity of cognitive impairment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores , Sistema Nervoso Central , Quimiocina CXCL12 , Proteína 1 Semelhante à Quitinase-3 , Neurogranina , Quimiocina CX3CL1
17.
Biochem Biophys Res Commun ; 623: 89-95, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878428

RESUMO

Neurogranin (Ng) is a calmodulin (CaM) binding protein that negatively regulates calcineurin - a Ca2+/CaM-dependent phosphatase that can mitigate the slow-to-fast fibre type shift observed with muscle unloading. Here, we questioned whether heterozygous deletion of Ng (Ng+/-) would enhance calcineurin activity, thereby minimizing the slow-to-fast fibre type shift caused by muscle unloading. As expected, soleus muscles from young adult (3-4 months old) Ng± mice had lowered Ng content and enhanced calcineurin activity when compared to soleus muscles obtained from male age-matched wild-type (WT) mice. Two weeks after tenotomy surgery, where the soleus and gastrocnemius tendons were severed, soleus total fibre count were found to be similarly reduced across both genotypes. However, significant reductions in myofibre cross-sectional area were only found in WT mice and not Ng± mice. Furthermore, while soleus muscles from both WT and Ng± mice exhibited a slow-to-fast fibre type shift with tenotomy, soleus muscles from Ng± mice, in both sham and tenotomized conditions, had a greater proportion of oxidative fibres (type I and IIA) compared with that of WT mice. Corresponding well with this, we found that soleus muscles from Ng± mice were more fatigue resistant compared with those obtained from their WT counterparts. Collectively, these findings show that heterozygous Ng deletion increases calcineurin activation, preserves myofibre size in response to unloading, and promotes the oxidative fibre type to ultimately enhance fatigue resistance. This study demonstrates the role of Ng in regulating calcineurin in vivo and its influence on skeletal muscle form and function.


Assuntos
Calcineurina , Tenotomia , Animais , Calcineurina/genética , Calcineurina/metabolismo , Inibidores de Calcineurina , Heterozigoto , Masculino , Camundongos , Fadiga Muscular , Músculo Esquelético/metabolismo , Neurogranina/genética , Neurogranina/metabolismo
18.
Acta Neuropathol ; 144(5): 843-859, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35895141

RESUMO

Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aß plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n = 119) compared to control individuals (n = 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-ß. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-ß positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T + N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína GAP-43/metabolismo , Galectina 3 , Humanos , Camundongos , Neurogranina , Placa Amiloide/patologia , beta-Galactosidase/metabolismo , Proteínas tau/metabolismo
19.
Exp Mol Pathol ; 127: 104815, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35870494

RESUMO

Intracellular Ca2+-calmodulin (CaM) signaling plays an important role in Ca2+-CaM-dependent kinase (CaMKII) and calcineurin (CaN)-mediated cardiac biology. While neurogranin (Ng) is known as a major Ca2+-CaM modulator in the brain, its pathophysiological role in cardiac hypertrophy has never been studied before. In the present study, we report that Ng is expressed in the heart and depletion of Ng dysregulates Ca2+ homeostasis and promotes cardiac failure in mice. 10-month-old Ng null mice demonstrate significantly increased heart-to-body weight ratios compared to wild-type. Using histological approaches, we identified that depletion of Ng increases cardiac hypertrophy, fibrosis, and collagen deposition near perivascular areas in the heart tissue of Ng null mice. Ca2+ spark experiments revealed that cardiac myocytes isolated from Ng null mice have decreased spark frequency and width, while the duration of sparks is significantly increased. We also identified that a lack of Ng increases CaMKIIδ signaling and periostin protein expression in these mouse hearts. Overall, we are the first study to explore how Ng expression in the heart plays an important role in Ca2+ homeostasis in cardiac myocytes as well as the pathophysiology of cardiac hypertrophy and fibrosis.


Assuntos
Cálcio , Neurogranina , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Cardiomegalia/metabolismo , Fibrose , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Neurogranina/genética , Neurogranina/metabolismo
20.
Am J Emerg Med ; 54: 147-150, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35152125

RESUMO

AIM: The aim of this study was to determine the level of serum NGRN in epilepsy patients presenting at the Emergency Department with complaints of an epileptic seizure, and to thus evaluate the utility of this biomarker in the differentiation of epilepsy and PNES patients from each other. MATERIAL METHODS: The study included patients aged >18 years who had experienced an epileptic seizure or were experiencing an epileptic seizure proven with EEG. All patients with brain disease of structural or infectious cause were excluded from the study (dementia, stroke, intracranial mass, meningitis, encephalitis, Creutzfeldt-Jacobs disease, abscess, etc). Patients were also excluded if they had traumatic brain injury or a severe systemic disease such as sepsis, which was thought to impair brain blood flow. The control group was formed of completely healthy volunteers. RESULTS: Evaluation was made of a total of 49 patients, comprising 19 (38.78%) males and 30 (61.22%) females, and a control group of 53 healthy volunteers comprising 28 (52.83%) males and 25 (47.17%) females. The serum neurogranin value was median 184.16 ng/dl (range: 110.1-1172.98) in the patient group and 97.90 ng/dl (range: 73.71-282. 11) in the control group. The serum neurogranin value was determined to be statistically significantly higher in the patient group than in the control group (p < 0.005). CONCLUSION: The differential diagnosis of ES from PNES remains a challenging situation for emergency service physicians. Based on the findings of this study, it can be said that the serum NRGN level is high in patients who have experienced an epileptic seizure. Therefore, this new biomarker can be considered for use in the differential diagnosis of epileptic seizure and PNES.


Assuntos
Epilepsia , Neurogranina , Adolescente , Biomarcadores , Diagnóstico Diferencial , Eletroencefalografia , Epilepsia/diagnóstico , Feminino , Humanos , Masculino , Convulsões/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA