Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294405

RESUMO

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Assuntos
Endorribonucleases/metabolismo , Monócitos/imunologia , Neutrófilos/imunologia , RNA Bacteriano/metabolismo , RNA de Protozoário/metabolismo , Receptor 8 Toll-Like/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Endorribonucleases/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Escherichia coli/química , Escherichia coli/imunologia , Edição de Genes/métodos , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/imunologia , Monócitos/microbiologia , Monócitos/parasitologia , Neutrófilos/microbiologia , Neutrófilos/parasitologia , Plasmodium falciparum/química , Plasmodium falciparum/imunologia , Cultura Primária de Células , Estabilidade de RNA , RNA Bacteriano/imunologia , RNA de Protozoário/imunologia , Serratia marcescens/química , Serratia marcescens/imunologia , Staphylococcus aureus/química , Staphylococcus aureus/imunologia , Streptococcus/química , Streptococcus/imunologia , Células THP-1 , Receptor 8 Toll-Like/imunologia
2.
PLoS Pathog ; 16(11): e1008674, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137149

RESUMO

There is substantial experimental evidence to indicate that Leishmania infections that are transmitted naturally by the bites of infected sand flies differ in fundamental ways from those initiated by needle inocula. We have used flow cytometry and intravital microscopy (IVM) to reveal the heterogeneity of sand fly transmission sites with respect to the subsets of phagocytes in the skin that harbor L. major within the first hours and days after infection. By flow cytometry analysis, dermis resident macrophages (TRMs) were on average the predominant infected cell type at 1 hr and 24 hr. By confocal IVM, the co-localization of L. major and neutrophils varied depending on the proximity of deposited parasites to the presumed site of vascular damage, defined by the highly localized swarming of neutrophils. Some of the dermal TRMs could be visualized acquiring their infections via transfer from or efferocytosis of parasitized neutrophils, providing direct evidence for the "Trojan Horse" model. The role of neutrophil engulfment by dermal TRMs and the involvement of the Tyro3/Axl/Mertk family of receptor tyrosine kinases in these interactions and in sustaining the anti-inflammatory program of dermal TRMs was supported by the effects observed in neutrophil depleted and in Axl-/-Mertk-/- mice. The Axl-/-Mertk-/- mice also displayed reduced parasite burdens but more severe pathology following L. major infection transmitted by sand fly bite.


Assuntos
Insetos Vetores/parasitologia , Leishmania major/fisiologia , Leishmaniose Cutânea/parasitologia , Phlebotomus/parasitologia , Animais , Derme/imunologia , Derme/parasitologia , Feminino , Citometria de Fluxo , Leishmaniose Cutânea/patologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Neutrófilos/imunologia , Neutrófilos/parasitologia , Fagocitose
3.
PLoS Pathog ; 16(8): e1008781, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810179

RESUMO

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that has a heterogeneous population composed of a pool of strains with distinct characteristics, including variable levels of virulence. In previous work, transcriptome analyses of parasite genes after infection of human foreskin fibroblasts (HFF) with virulent (CL Brener) and non-virulent (CL-14) clones derived from the CL strain, revealed a reduced expression of genes encoding parasite surface proteins in CL-14 compared to CL Brener during the final steps of the intracellular differentiation from amastigotes to trypomastigotes. Here we analyzed changes in the expression of host genes during in vitro infection of HFF cells with the CL Brener and CL-14 strains by analyzing total RNA extracted from cells at 60 and 96 hours post-infection (hpi) with each strain, as well as from uninfected cells. Similar transcriptome profiles were observed at 60 hpi with both strains compared to uninfected samples. However, at 96 hpi, significant differences in the number and expression levels of several genes, particularly those involved with immune response and cytoskeleton organization, were observed. Further analyses confirmed the difference in the chemokine/cytokine signaling involved with the recruitment and activation of immune cells such as neutrophils upon T. cruzi infection. These findings suggest that infection with the virulent CL Brener strain induces a more robust inflammatory response when compared with the non-virulent CL-14 strain. Importantly, the RNA-Seq data also exposed an unexplored role of fibroblasts as sentinel cells that may act by recruiting neutrophils to the initial site of infection. This role for fibroblasts in the regulation of the inflammatory response during infection by T. cruzi was corroborated by measurements of levels of different chemokines/cytokines during in vitro infection and in plasma from Chagas disease patients as well as by neutrophil activation and migration assays.


Assuntos
Doença de Chagas/metabolismo , Fibroblastos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Ativação de Neutrófilo , Neutrófilos , Trypanosoma cruzi/metabolismo , Doença de Chagas/genética , Doença de Chagas/patologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Fibroblastos/patologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Neutrófilos/patologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
PLoS Pathog ; 16(8): e1008230, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797076

RESUMO

Neutrophil extracellular traps (NETs) evolved as a unique effector mechanism contributing to resistance against infection that can also promote tissue damage in inflammatory conditions. Malaria infection can trigger NET release, but the mechanisms and consequences of NET formation in this context remain poorly characterized. Here we show that patients suffering from severe malaria had increased amounts of circulating DNA and increased neutrophil elastase (NE) levels in plasma. We used cultured erythrocytes and isolated human neutrophils to show that Plasmodium-infected red blood cells release macrophage migration inhibitory factor (MIF), which in turn caused NET formation by neutrophils in a mechanism dependent on the C-X-C chemokine receptor type 4 (CXCR4). NET production was dependent on histone citrullination by peptidyl arginine deiminase-4 (PAD4) and independent of reactive oxygen species (ROS), myeloperoxidase (MPO) or NE. In vitro, NETs functioned to restrain parasite dissemination in a mechanism dependent on MPO and NE activities. Finally, C57/B6 mice infected with P. berghei ANKA, a well-established model of cerebral malaria, presented high amounts of circulating DNA, while treatment with DNAse increased parasitemia and accelerated mortality, indicating a role for NETs in resistance against Plasmodium infection.


Assuntos
Eritrócitos/imunologia , Armadilhas Extracelulares/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Malária/imunologia , Neutrófilos/imunologia , Plasmodium/imunologia , Receptores CXCR4/metabolismo , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/parasitologia , Humanos , Malária/metabolismo , Malária/parasitologia , Malária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Parasitemia/imunologia , Parasitemia/metabolismo , Parasitemia/parasitologia , Parasitemia/patologia
5.
J Cell Physiol ; 236(4): 2255-2267, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33345353

RESUMO

Neutrophils with their array of microbicidal activities are the first innate immune cells to guard against infection. They are also most crucial for the host's initial defense against Leishmania parasites which cause clinically diverse diseases ranging from self-healing cutaneous leishmaniasis (CL) to a more severe visceral form, visceral leishmaniasis (VL). Neutrophils are recruited in large numbers at the infection site after bite of sandfly, which is the vector for the disease. The initial interaction of neutrophils with the parasites may modulate the subsequent innate and adaptive immune responses and hence affect the disease outcome. The purpose of this review is to comprehensively appraise the role of neutrophils during the early stages of Leishmania infection with a focus on the visceral form of the disease. In the past decade, new insights regarding the role of neutrophils in VL have surfaced which have been extensively elaborated in the present review. In addition, since much of the information regarding neutrophil-Leishmania early interaction has accumulated through studies on mouse models of CL, these studies are also revisited. We begin by reviewing the factors which drive the recruitment of neutrophils at the site of injection by the sandfly. We then discuss the studies delineating the molecular mechanisms involved in the uptake of the Leishmania parasite by neutrophils and how the parasite subverts their microbicidal functions. In the end, the interaction of infected neutrophils with macrophages and dendritic cells is summarized.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Animais , Comunicação Celular , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Interações Hospedeiro-Patógeno , Humanos , Insetos Vetores , Leishmania donovani/patogenicidade , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Macrófagos/metabolismo , Macrófagos/parasitologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Psychodidae/parasitologia
6.
Exp Parasitol ; 220: 108034, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33188795

RESUMO

Eimeria ninakohlyakimovae represents a highly pathogenic coccidian parasite causing severe haemorrhagic typhlocolitis in goat kids worldwide. NETosis was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites in vitro and in vivo. In vitro interactions of caprine PMN with parasitic stages of E. ninakohlyakimovae (i. e. oocysts and sporozoites) as well as soluble oocyst antigens (SOA) were analyzed at different ratios, concentrations and time spans. Extracellular DNA staining was used to illustrate classical molecules induced during caprine NETosis [i. e. histones (H3) and neutrophil elastase (NE)] via antibody-based immunofluorescence analyses. Functional inhibitor treatments with DPI and DNase I were applied to unveil role of NADPH oxidase (NOX) and characterize DNA-backbone composition of E. ninakohlyakimovae-triggered caprine NETosis. Scanning electron microscopy (SEM)- and immunofluorescence-analyses demonstrated that caprine PMN underwent NETosis upon contact with sporozoites and oocysts of E. ninakohlyakimovae, ensnaring filaments which firmly entrapped parasites. Detailed co-localization studies of E. ninakohlyakimovae-induced caprine NETosis revealed presence of PMN-derived DNA being adorned with nuclear H3 and NE corroborating molecular characteristics of NETosis. E. ninakohlyakoimovae-induced caprine NETosis was found to be NOX-independent since DPI inhibition led to a slight decrease of NETosis. Exposure of caprine PMN to vital E. ninakohlyakimovae sporozoites as well as SOA resulted in up-regulation of IL-12, TNF-α, IL-6, CCL2 and iNOS gene transcription in stimulated PMN. Since vital E. ninakohlyakimovae-sporozoites induced caprine NETosis, this effective entrapment mechanism might reduce initial sporozoite epithelial host cell invasion during goat coccidiosis ultimately resulting in less macromeront formation and reduced merozoites I production.


Assuntos
Coccidiose/veterinária , Citocinas/genética , Eimeria/imunologia , Doenças das Cabras/parasitologia , Neutrófilos/parasitologia , Análise de Variância , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Coccidiose/imunologia , Coccidiose/parasitologia , Colite/parasitologia , Colite/veterinária , Citocinas/metabolismo , Eimeria/genética , Eimeria/ultraestrutura , Hemorragia Gastrointestinal/parasitologia , Hemorragia Gastrointestinal/veterinária , Doenças das Cabras/imunologia , Cabras , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Microscopia Eletrônica de Varredura/veterinária , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Neutrófilos/ultraestrutura , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oocistos/genética , Oocistos/imunologia , Reação em Cadeia da Polimerase/veterinária , Esporozoítos/genética , Esporozoítos/imunologia , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Tiflite/parasitologia , Tiflite/veterinária , Regulação para Cima
7.
Cell Mol Life Sci ; 75(8): 1363-1376, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29218601

RESUMO

Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.


Assuntos
Regulação da Expressão Gênica/imunologia , Neoplasias Hematológicas/imunologia , Malária/imunologia , Mielopoese/imunologia , Neutrófilos/imunologia , Animais , Ciclo Celular/genética , Ciclo Celular/imunologia , Diferenciação Celular , Proliferação de Células , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/imunologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Interferons/genética , Interferons/imunologia , Interleucina-1/genética , Interleucina-1/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/genética , Interleucinas/imunologia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/imunologia , Malária/genética , Malária/parasitologia , Malária/patologia , Camundongos , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/parasitologia , Células Progenitoras Mieloides/patologia , Mielopoese/genética , Neutrófilos/parasitologia , Neutrófilos/patologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/imunologia
8.
Exp Parasitol ; 207: 107770, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31586454

RESUMO

Neutrophils respond differently to violations of the body's physiological barriers during infections. Extracellular traps comprise one of the mechanisms used by these cells to reduce the spread of pathogens to neighboring tissues, as well as ensure a high concentration of antimicrobial agents at the site of infection. To date, this innate defense mechanism has not been previously demonstrated in neutrophils of cats exposed to Toxoplasma gondii. The aim of this study was to characterize the in vitro release of neutrophil extracellular traps (NETs) when neutrophils isolated from cats were exposed to T. gondii. First, cellular viability was tested at different time points after parasite exposure. The production of reactive oxygen species (ROS) and lactate dehydrogenase and the amount of extracellular DNA were quantified. In addition, the number of parasites associated with neutrophils was determined, and the observed NETs formed were microscopically characterized. Results showed that (i) in culture, neutrophils isolated from cats presented diminished cellular viability after 4 h of incubation, and when neutrophils were incubated with T. gondii, they displayed cytotoxic effects after 3 h of interaction; (ii) neutrophils were able to release structures composed of DNA and histones, characterized as NETs under optical, immunofluorescence, and electron scanning microscopy, when stimulated with T. gondii; (iii) only 11.4% of neutrophils were able to discharge NETs during 3 h of incubation; however, it was observed through extracellular quantification of DNA that this small number of cells were able to display different behavior compared to a negative control (no parasite) group; (iv) significant differences in ROS production were observed in neutrophils exposed to T. gondii. In conclusion, our results showed that neutrophils isolated from cats exposed to T. gondii release structures composed of DNA and histones, similar to what has already been described in other neutrophil species infected with the parasite.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/parasitologia , Toxoplasma/imunologia , Animais , Gatos , Sobrevivência Celular , Chlorocebus aethiops , DNA/análise , Formazans/metabolismo , L-Lactato Desidrogenase/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Neutrófilos/imunologia , Neutrófilos/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/análise , Sais de Tetrazólio/metabolismo , Células Vero
10.
PLoS Pathog ; 11(5): e1004929, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26020515

RESUMO

The protozoan Leishmania mexicana parasite causes chronic non-healing cutaneous lesions in humans and mice with poor parasite control. The mechanisms preventing the development of a protective immune response against this parasite are unclear. Here we provide data demonstrating that parasite sequestration by neutrophils is responsible for disease progression in mice. Within hours of infection L. mexicana induced the local recruitment of neutrophils, which ingested parasites and formed extracellular traps without markedly impairing parasite survival. We further showed that the L. mexicana-induced recruitment of neutrophils impaired the early recruitment of dendritic cells at the site of infection as observed by intravital 2-photon microscopy and flow cytometry analysis. Indeed, infection of neutropenic Genista mice and of mice depleted of neutrophils at the onset of infection demonstrated a prominent role for neutrophils in this process. Furthermore, an increase in monocyte-derived dendritic cells was also observed in draining lymph nodes of neutropenic mice, correlating with subsequent increased frequency of IFNγ-secreting T helper cells, and better parasite control leading ultimately to complete healing of the lesion. Altogether, these findings show that L. mexicana exploits neutrophils to block the induction of a protective immune response and impairs the control of lesion development. Our data thus demonstrate an unanticipated negative role for these innate immune cells in host defense, suggesting that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing.


Assuntos
Células Dendríticas/imunologia , Leishmania mexicana/imunologia , Leishmaniose Cutânea/imunologia , Monócitos/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/parasitologia , Animais , Células Cultivadas , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/parasitologia , Citometria de Fluxo , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/parasitologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
FASEB J ; 30(3): 1135-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581600

RESUMO

Leishmania donovani is an intracellular parasite that infects professional phagocytes and causes visceral leishmaniasis (VL). The immune response during VL has been extensively studied in the context of T-helper (Th)1 and Th2 responses. Immunity against this parasite is dependent on IFN-γ production and subsequent macrophage activation, and the Th2 response promotes granuloma formation. The cytokine IL-17A is associated with neutrophilic inflammation. Depletion of neutrophils during experimental VL results in enhanced parasitic loads. Furthermore, although patients resistant to VL showed enhanced levels of IL-17A in circulation, little is known about the role of IL-17A during VL infection. Here, we used IL-17A-deficient mice and IL-17A reporter mice to address the role of IL-17A during VL. IL-17A(-/-) mice were highly resistant to VL infection, showing decreased parasites in the liver and spleen. This unexpected phenotype was associated with enhanced IFN-γ production by T cells and decreased accumulation of neutrophils and monocytes, resulting in reduced number of granulomas. We also found γδ T and Th17 cells as the main IL-17A(+) cells during VL infection. Our data reveal an unexpected role of IL-17A rendering susceptibility against L. donovani by regulating the IFN-γ response and promoting detrimental inflammation.


Assuntos
Interleucina-17/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Animais , Suscetibilidade a Doenças , Granuloma/imunologia , Granuloma/parasitologia , Interferon gama/imunologia , Leishmaniose Visceral/parasitologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/parasitologia , Neutrófilos/imunologia , Neutrófilos/parasitologia , Receptores de Interleucina-17/imunologia , Células Th1/imunologia , Células Th1/parasitologia , Células Th2/imunologia , Células Th2/parasitologia
12.
Immunity ; 29(3): 487-96, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18718768

RESUMO

Although the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning-laser microscopy to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We found that neutrophils formed both small, transient and large, persistent swarms via a coordinated migration pattern. We provided evidence that cooperative action of neutrophils and parasite egress from host cells could trigger swarm formation. Neutrophil swarm formation coincided in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses.


Assuntos
Linfonodos/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Movimento Celular , Linfonodos/citologia , Linfonodos/parasitologia , Macrófagos/citologia , Macrófagos/parasitologia , Camundongos , Neutrófilos/citologia , Neutrófilos/parasitologia
13.
Infect Immun ; 84(10): 2982-94, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481245

RESUMO

Neisseria gonorrhoeae successfully overcomes host strategies to limit essential nutrients, termed nutritional immunity, by production of TonB-dependent transporters (TdTs)-outer membrane proteins that facilitate nutrient transport in an energy-dependent manner. Four gonococcal TdTs facilitate utilization of iron or iron chelates from host-derived proteins, including transferrin (TbpA), lactoferrin (LbpA), and hemoglobin (HpuB), in addition to xenosiderophores from other bacteria (FetA). The roles of the remaining four uncharacterized TdTs (TdfF, TdfG, TdfH, and TdfJ) remain elusive. Regulatory data demonstrating that production of gonococcal TdfH and TdfJ are unresponsive to or upregulated under iron-replete conditions led us to evaluate the role of these TdTs in the acquisition of nutrients other than iron. In this study, we found that production of gonococcal TdfH is both Zn and Zur repressed. We also found that TdfH confers resistance to calprotectin, an immune effector protein highly produced in neutrophils that has antimicrobial activity due to its ability to sequester Zn and Mn. We found that TdfH directly binds calprotectin, which enables gonococcal Zn accumulation in a TdfH-dependent manner and enhances bacterial survival after exposure to neutrophil extracellular traps (NETs). These studies highlight Zn sequestration by calprotectin as a key functional arm of NET-mediated killing of gonococci. We demonstrate for the first time that N. gonorrhoeae exploits this host strategy in a novel defense mechanism, in which TdfH production hijacks and directly utilizes the host protein calprotectin as a zinc source and thereby evades nutritional immunity.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Armadilhas Extracelulares/metabolismo , Gonorreia/imunologia , Interações Hospedeiro-Parasita/fisiologia , Complexo Antígeno L1 Leucocitário/metabolismo , Neisseria gonorrhoeae/imunologia , Neutrófilos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Humanos , Imunidade Celular/fisiologia , Neisseria gonorrhoeae/crescimento & desenvolvimento , Neisseria gonorrhoeae/metabolismo , Neutrófilos/parasitologia , Sulfato de Zinco/metabolismo
15.
PLoS Pathog ; 10(2): e1003923, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516388

RESUMO

Neutrophils are the host's first line of defense against infections, and their extracellular traps (NET) were recently shown to kill Leishmania parasites. Here we report a NET-destroying molecule (Lundep) from the salivary glands of Lutzomyia longipalpis. Previous analysis of the sialotranscriptome of Lu. longipalpis showed the potential presence of an endonuclease. Indeed, not only was the cloned cDNA (Lundep) shown to encode a highly active ss- and dsDNAse, but also the same activity was demonstrated to be secreted by salivary glands of female Lu. longipalpis. Lundep hydrolyzes both ss- and dsDNA with little sequence specificity with a calculated DNase activity of 300000 Kunitz units per mg of protein. Disruption of PMA (phorbol 12 myristate 13 acetate)- or parasite-induced NETs by treatment with recombinant Lundep or salivary gland homogenates increases parasite survival in neutrophils. Furthermore, co-injection of recombinant Lundep with metacyclic promastigotes significantly exacerbates Leishmania infection in mice when compared with PBS alone or inactive (mutagenized) Lundep. We hypothesize that Lundep helps the parasite to establish an infection by allowing it to escape from the leishmanicidal activity of NETs early after inoculation. Lundep may also assist blood meal intake by lowering the local viscosity caused by the release of host DNA and as an anticoagulant by inhibiting the intrinsic pathway of coagulation.


Assuntos
Endonucleases/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Leishmaniose/enzimologia , Psychodidae/enzimologia , Psychodidae/parasitologia , Sequência de Aminoácidos , Animais , Coagulação Sanguínea/fisiologia , Western Blotting , Vetores de Doenças , Endonucleases/imunologia , Fator XIIa/metabolismo , Humanos , Leishmania , Leishmaniose/imunologia , Camundongos , Dados de Sequência Molecular , Neutrófilos/imunologia , Neutrófilos/parasitologia , Reação em Cadeia da Polimerase , Psychodidae/imunologia , Glândulas Salivares/enzimologia , Glândulas Salivares/imunologia
16.
PLoS Pathog ; 10(9): e1004372, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25211233

RESUMO

Mice expressing a Cre recombinase from the lysozyme M-encoding locus (Lyz2) have been widely used to dissect gene function in macrophages and neutrophils. Here, we show that while naïve resident tissue macrophages from IL-4Rαf(lox/delta)LysM(Cre) mice almost completely lose IL-4Rα function, a large fraction of macrophages elicited by sterile inflammatory stimuli, Schistosoma mansoni eggs, or S. mansoni infection, fail to excise Il4rα. These F4/80(hi)CD11b(hi) macrophages, in contrast to resident tissue macrophages, express lower levels of Lyz2 explaining why this population resists LysM(Cre)-mediated deletion. We show that in response to IL-4 and IL-13, Lyz2(lo)IL-4Rα(+) macrophages differentiate into an arginase 1-expressing alternatively-activated macrophage (AAM) population, which slows the development of lethal fibrosis in schistosomiasis. In contrast, we identified Lyz2(hi)IL-4Rα(+) macrophages as the key subset of AAMs mediating the downmodulation of granulomatous inflammation in chronic schistosomiasis. Our observations reveal a limitation on using a LysMCre mouse model to study gene function in inflammatory settings, but we utilize this limitation as a means to demonstrate that distinct populations of alternatively activated macrophages control inflammation and fibrosis in chronic schistosomiasis.


Assuntos
Fibrose/imunologia , Inflamação/imunologia , Macrófagos Peritoneais/imunologia , Receptores de Superfície Celular/fisiologia , Schistosoma mansoni/patogenicidade , Esquistossomose/imunologia , Animais , Células Cultivadas , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose/parasitologia , Fibrose/patologia , Inflamação/parasitologia , Inflamação/patologia , Integrases/metabolismo , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Neutrófilos/parasitologia , Neutrófilos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquistossomose/parasitologia , Esquistossomose/patologia
17.
PLoS Pathog ; 10(9): e1004414, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25255103

RESUMO

African trypanosomiasis is a chronic debilitating disease affecting the health and economic well-being of many people in developing countries. The pathogenicity associated with this disease involves a persistent inflammatory response, whereby M1-type myeloid cells, including Ly6C(high) inflammatory monocytes, are centrally implicated. A comparative gene analysis between trypanosusceptible and trypanotolerant animals identified MIF (macrophage migrating inhibitory factor) as an important pathogenic candidate molecule. Using MIF-deficient mice and anti-MIF antibody treated mice, we show that MIF mediates the pathogenic inflammatory immune response and increases the recruitment of inflammatory monocytes and neutrophils to contribute to liver injury in Trypanosoma brucei infected mice. Moreover, neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to increased pathogenic liver TNF production and liver injury during trypanosome infection. MIF deficient animals also featured limited anemia, coinciding with increased iron bio-availability, improved erythropoiesis and reduced RBC clearance during the chronic phase of infection. Our data suggest that MIF promotes the most prominent pathological features of experimental trypanosome infections (i.e. anemia and liver injury), and prompt considering MIF as a novel target for treatment of trypanosomiasis-associated immunopathogenicity.


Assuntos
Anemia/imunologia , Apoptose/imunologia , Eritrócitos/imunologia , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Macrófagos/imunologia , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/imunologia , Anemia/metabolismo , Anemia/parasitologia , Anemia/patologia , Animais , Western Blotting , Medula Óssea/imunologia , Medula Óssea/parasitologia , Medula Óssea/patologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Eritrócitos/patologia , Feminino , Citometria de Fluxo , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/parasitologia , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Neutrófilos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/imunologia , Baço/metabolismo , Baço/parasitologia , Baço/patologia , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/patologia
18.
Exp Parasitol ; 169: 90-101, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27466057

RESUMO

The parasympathetic nervous system has a crucial role in immunomodulation of the vagus nerve, its structure provides a pathogen detection system, and a negative feedback to the immune system after the pathogenic agent has been eliminated. Amebiasis is a disease caused by the protozoan parasite Entamoeba histolytica, considered the third leading cause of death in the world. The rats are used as a natural resistance model to amoebic liver infection. The aim of this study is to analyze the interaction of Entamoeba histolytica with neutrophils, macrophages, and NK cells in livers of intact and vagotomized rats. Six groups were studied (n = 4): Intact (I), Intact + amoeba (IA), Sham (S), Sham + amoeba (SA), Vagotomized (V) and Vagotomized + amoeba (VA). Animals were sacrificed at 8 h post-inoculation of E. histolytica. Then, livers were obtained and fixed in 4% paraformaldehyde. Tissue liver slides were stained with H-E, PAS and Masson. The best development time for E. histolytica infection was at 8 h. Amoeba was identified with a monoclonal anti-220 kDa E. histolytica lectin. Neutrophils (N) were identified with rabbit anti-human neutrophil myeloperoxidase, macrophages (Mɸ) with anti-CD68 antibody and NK cells (NK) with anti-NK. Stomachs weight and liver glycogen were higher in V. Collagen increased in VA, whereas vascular and neutrophilic areas were decreased. There were fewer N, Mɸ, NK around the amoeba in the following order IA > SA > VA (p < 0.05 between IA and VA). In conclusion, these results suggest that the absence of parasympathetic innervation affects the participation of neutrophils, macrophages and NK cells in the innate immune response, apparently by parasympathetic inhibition on the cellular functions and probably for participation in sympathetic activity.


Assuntos
Entamoeba histolytica/imunologia , Imunidade Inata/fisiologia , Abscesso Hepático Amebiano/imunologia , Nervo Vago/fisiologia , Animais , Colágeno/metabolismo , Imunofluorescência , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/parasitologia , Cinética , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Fígado/ultraestrutura , Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Neutrófilos/imunologia , Neutrófilos/parasitologia , Coelhos , Ratos , Ratos Wistar , Vagotomia , Nervo Vago/cirurgia
19.
Exp Parasitol ; 160: 54-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26688099

RESUMO

Visceral leishmaniasis (VL) is an infectious disease responsible for several deaths in malnourished children due to impaired cell-mediated immunity, which is accompanied by low circulating leptin levels. The cytokine function of leptin is implicated for several immune regulation activities such as hematopoiesis, angiogenesis, innate and adaptive immunity. Its deficiency associated with polarization of Th2 response, which coincides with VL pathogenesis. To determine the cytokine role of leptin in case of experimental VL, we tested the leptin associated Th1/Th2 type cytokine profile at mRNA level from Leishmania donovani infected human monocytic leukemia cell line (THP-1) and peripheral blood mononuclear cells (PBMCs). We also tested the effect of leptin on macrophages activation (viz. studying the phosphorylation of signaling moieties), phagocytic activity and intracellular reactive oxygen species (ROS) production during infection. We observed that leptin induced Th1 specific response by upregulation of IL-1α, IL-1ß, IL-8 and TNF-α in THP-1 and IFN-γ, IL-12 and IL-2 in PBMCs. We also observed the downregulation of Th2 type cytokine i.e. IL-10 in THP-1 and unaltered expression of cytokines i.e. TGF-ß, IL-10 and IL-4 in PBMCs. In addition, leptin stimulates the macrophages by inducing phosphorylation of Erk1/2 and Akt which are usually dephosphorylated in L. donovani infection. In concordance, leptin also induces the macrophage phagocytic activity by enhancing the intracellular ROS generation which helps in phagolysosome formation and oxidative killing of the parasite. In compilation, leptin is able to maintain the defensive environment against L. donovani infection through the classical macrophage activity.


Assuntos
Citocinas/efeitos dos fármacos , Leishmania donovani/imunologia , Leptina/farmacologia , Macrófagos/parasitologia , Neutrófilos/parasitologia , Fagocitose/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Neutrófilos/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/imunologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/análise , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA