RESUMO
After the end-Cretaceous extinction, placental mammals quickly diversified1, occupied key ecological niches2,3 and increased in size4,5, but this last was not true of other therians6. The uniquely extended gestation of placental young7 may have factored into their success and size increase8, but reproduction style in early placentals remains unknown. Here we present the earliest record of a placental life history using palaeohistology and geochemistry, in a 62 million-year-old pantodont, the clade including the first mammals to achieve truly large body sizes. We extend the application of dental trace element mapping9,10 by 60 million years, identifying chemical markers of birth and weaning, and calibrate these to a daily record of growth in the dentition. A long gestation (approximately 7 months), rapid dental development and short suckling interval (approximately 30-75 days) show that Pantolambda bathmodon was highly precocial, unlike non-placental mammals and known Mesozoic precursors. These results demonstrate that P. bathmodon reproduced like a placental and lived at a fast pace for its body size. Assuming that P. bathmodon reflects close placental relatives, our findings suggest that the ability to produce well-developed, precocial young was established early in placental evolution, and that larger neonate sizes were a possible mechanism for rapid size increase in early placentals.
Assuntos
Fósseis , Características de História de Vida , Mamíferos , Filogenia , Animais , Tamanho Corporal , Dentição , História Antiga , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Oligoelementos/análise , DesmameRESUMO
The characterization of Neandertals' diets has mostly relied on nitrogen isotope analyses of bone and tooth collagen. However, few nitrogen isotope data have been recovered from bones or teeth from Iberia due to poor collagen preservation at Paleolithic sites in the region. Zinc isotopes have been shown to be a reliable method for reconstructing trophic levels in the absence of organic matter preservation. Here, we present the results of zinc (Zn), strontium (Sr), carbon (C), and oxygen (O) isotope and trace element ratio analysis measured in dental enamel on a Pleistocene food web in Gabasa, Spain, to characterize the diet and ecology of a Middle Paleolithic Neandertal individual. Based on the extremely low δ66Zn value observed in the Neandertal's tooth enamel, our results support the interpretation of Neandertals as carnivores as already suggested by δ15N isotope values of specimens from other regions. Further work could help identify if such isotopic peculiarities (lowest δ66Zn and highest δ15N of the food web) are due to a metabolic and/or dietary specificity of the Neandertals.
Assuntos
Carnívoros , Homem de Neandertal , Dente , Oligoelementos , Animais , Carbono/análise , Isótopos de Carbono/análise , Colágeno , Esmalte Dentário/química , Dieta , Isótopos de Nitrogênio/análise , Oxigênio/análise , Espanha , Estrôncio/análise , Dente/química , Oligoelementos/análise , Zinco/análise , Isótopos de Zinco/análiseRESUMO
Whether trace metals modify breast density, the strongest predictor for breast cancer, during critical developmental stages such as puberty remains understudied. Our study prospectively evaluated the association between trace metals at Tanner breast stage B1 (n = 291) and at stages both B1 and B4 (n = 253) and breast density at 2 years post-menarche among Chilean girls from the Growth and Obesity Cohort Study. Dual-energy x-ray absorptiometry assessed the volume of dense breast tissue (absolute fibroglandular volume [FGV]) and percent breast density (%FGV). Urine trace metals included arsenic, barium, cadmium, cobalt, cesium, copper, magnesium, manganese, molybdenum, nickel, lead, antimony, selenium, tin, thallium, vanadium, and zinc. At B1, a doubling of thallium concentration resulted in 13.69 cm3 increase in absolute FGV (ß: 13.69, 95% confidence interval [CI]: 2.81, 24.52), while a doubling of lead concentration resulted in a 7.76 cm3 decrease in absolute FGV (ß: -7.76, 95%CI: -14.71, -0.73). At B4, a doubling of barium concentration was associated with a 10.06 cm3 increase (ß: 10.06, 95% CI: 1.44, 18.60), copper concentration with a 12.29 cm3 increase (ß: 12.29, 95% CI: 2.78, 21.56), lead concentration with a 9.86 cm3 increase (ß: 9.86, 95% CI: 0.73, 18.98), antimony concentration with a 12.97 cm3 increase (ß: 12.97, 95% CI: 1.98, 23.79) and vanadium concentration with a 13.14 cm3 increase in absolute FGV (ß: 13.14, 95% CI: 2.73, 23.58). Trace metals may affect pubertal breast density at varying developmental stages with implications for increased susceptibility for breast cancer.
Assuntos
Absorciometria de Fóton , Densidade da Mama , Oligoelementos , Humanos , Feminino , Chile/epidemiologia , Adolescente , Densidade da Mama/efeitos dos fármacos , Oligoelementos/análise , Oligoelementos/urina , Estudos Prospectivos , Criança , Mama/efeitos dos fármacos , Mama/crescimento & desenvolvimento , Neoplasias da Mama/epidemiologiaRESUMO
Trace element concentrations in toenail clippings have increasingly been used to measure trace element exposure in epidemeological research. Conventional methods such as inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography ICP-MS (HPLC-ICP-MS) are commonly used to measure trace elements and their speciation in toenails. However, the impact of the removal of external contamination on trace element quantification has not been thoroughly studied. In this work, the microdistribution of trace elements (As, Ca, Co, Cu, Fe, K, Mn, Ni, Rb, S, Sr, Ti, and Zn) in dirty and washed toenails and the speciation of As in situ in toenails were investigated using synchrotron X-ray fluorescence microscopy (XFM) and laterally resolved X-ray absorption near edge spectroscopy (XANES). XFM showed different distribution patterns for each trace element, consistent with their binding properties and nail structure. External (terrestrial) contamination was identified and distinguished from the endogenous accumulation of trace elements in toenailsâcontaminated areas were characterized by the co-occurrence of Co, Fe, and Mn with elements such as Ti and Rb (i.e., indicators of terrestrial contamination). The XANES spectra showed the presence of one As species in washed toenails, corresponding to As bound to sulfhydryl groups. In dirty specimens, a mixed speciation was found in localized areas, containing AsIII-S species and AsV species. ArsenicV is thought to be associated with surface contamination and exogenous As. These findings provide new insights into the speciation of arsenic in toenails, the microdistribution of trace elements, and the effectiveness of a cleaning protocol in removing external contamination.
Assuntos
Arsênio , Oligoelementos , Arsênio/análise , Oligoelementos/análise , Unhas/química , Espectroscopia por Absorção de Raios XRESUMO
Maize (Zea mays L.), a staple food and significant economic crop, is enriched with riboflavin, micronutrients and other compounds that are beneficial for human health. As emphasis on the nutritional quality of crops increases maize research has expanded to focus on both yield and quality. This study exploreed the genetic factors influencing micronutrient levels in maize kernels through a comprehensive genome-wide association study (GWAS). We utilized a diverse panel of 244 inbred maize lines and approximately 3 million single nucleotide polymorphisms (SNPs) to investigate the accumulation of essential and trace elements including cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), selenium (Se) and zinc (Zn). Our analysis identified 842 quantitative trait loci (QTLs), with 12 QTLs shared across multiple elements and pinpointed 524 potential genes within a 100 kb radius of these QTLs. Notably ZmHMA3 has emerged as a key candidate gene previously reported to influence the Cd accumulation. We highlighted ten pivotal genes associated with trace element transport including those encoding heavy metal ATPases, MYB transcription factors, ABC transporters and other crucial proteins involved in metal handling. Additionally, haplotype analysis revealed that eight inbred linesaccumulated relatively high levels of beneficial elements while harmful elements were minimized. These findings elucidate the genetic mechanisms underlying trace element accumulation in maize kernels and provide a foundation for the breeding of nutritionally enhanced maize varieties.
Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Oligoelementos , Zea mays , Zea mays/genética , Zea mays/metabolismo , Oligoelementos/metabolismo , Oligoelementos/análise , Sementes/genética , Sementes/metabolismo , HaplótiposRESUMO
KEY MESSAGE: One hundred and fifty-five QTL for trace element concentrations in foxtail millet were identified using a genome-wide association study, and a candidate gene associated with Ni-Co-Cr concentrations was detected. Foxtail millet (Setaria italica) is an important regional crop known for its rich mineral nutrient content, which has beneficial effects on human health. We assessed the concentrations of ten trace elements (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) in the grain of 408 foxtail millet accessions. Significant differences in the concentrations of five elements (Ba, Co, Ni, Sr, and Zn) were observed between two subpopulations of spring- and summer-sown foxtail millet varieties. Moreover, 84.4% of the element pairs exhibited significant correlations. To identify the genetic factors influencing trace element accumulation, a comprehensive genome-wide association study was conducted, identifying 155 quantitative trait locus (QTL) for the ten trace elements across three different environments. Among them, ten QTL were consistently detected in multiple environments, including qZn2.1, qZn4.4, qCr4.1, qFe6.3, qFe6.5, qCo6.1, qPb7.3, qPb7.5, qBa9.1, and qNi9.1. Thirteen QTL clusters were detected for multiple elements, which partially explained the correlations between elements. Additionally, the different concentrations of five elements between foxtail millet subpopulations were caused by the different frequencies of high-concentration alleles associated with important marker-trait associations. Haplotype analysis identified a candidate gene SETIT_036676mg associated with Ni accumulation, with the GG haplotype significantly increasing Ni-Co-Cr concentrations in foxtail millet. A cleaved amplified polymorphic sequence marker (cNi6676) based on the two haplotypes of SETIT_036676mg was developed and validated. Results of this study provide valuable reference information for the genetic research and improvement of trace element content in foxtail millet.
Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Setaria (Planta) , Oligoelementos , Setaria (Planta)/genética , Oligoelementos/análise , Mapeamento Cromossômico , Fenótipo , Polimorfismo de Nucleotídeo Único , GenótipoRESUMO
OBJECTIVE: The aim of the study was to determine the heavy metal and trace element (HMTE) profile in patients with migraine (PwM) and to compare it to that of healthy individuals without migraine. BACKGROUND: Migraine is a universal disease that affects more than 10% of the world's population; however, its pathophysiology is still obscure. METHODS: A total of 100 participants were included in this prospective matched case-control study (50 PwM during acute attack and 50 age- and sex-matched healthy controls). The study was conducted in the university hospital in Yozgat, Turkey, where the inductively coupled plasma mass spectrometry system was used to measure the HMTE profile. The calibration curve was created with 11 points for heavy metals (arsenic [As], cadmium [Cd], cobalt [Co], lead [Pb], mercury [Hg], nickel [Ni], and tin [Sn]) and trace elements (antimony [Sb], chromium [Cr], copper [Cu], iron [Fe], magnesium [Mg], manganese [Mn], molybdenum [Mo], and zinc [Zn]). RESULTS: The median age was 27 (23-37) years, and the female/male ratio was 37/13 for both groups. The PwM group had significantly higher As, Co, Pb, and Ni levels among the heavy metals (p = 0.033, 0.017, 0.022, and 0.021, respectively). Also, PwM had significantly lower Cr, Mg, and Zn levels among the trace elements (p = 0.007, 0.024, and < 0.001, respectively). The only trace element that was elevated in the PwM group was Mn (p = 0.001). The PwM and control groups did not differ in terms of Cd, Sn, Sb, Cu, Fe, and Mo (p = 0.165, 0.997, 0.195, 0.408, 0.440, and 0.252, respectively). CONCLUSION: Some HMTE parameters are altered in PwM, which may provide additional insight into understanding migraine etiology.
Assuntos
Metais Pesados , Transtornos de Enxaqueca , Oligoelementos , Humanos , Feminino , Masculino , Adulto , Oligoelementos/análise , Estudos de Casos e Controles , Adulto Jovem , Estudos ProspectivosRESUMO
Wildfires at the wildland-urban interface (WUI) are increasing in frequency and intensity, driven by climate change and anthropogenic ignitions. Few studies have characterized the variability in the metal content in ash generated from burned structures in order to determine the potential risk to human and environmental health. Using inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed leachable trace metal concentration in soils and ash from structures burned by the Marshall Fire, a WUI fire that destroyed over 1000 structures in Boulder County, Colorado. Acid digestion revealed that ash derived from structures contained 22 times more Cu and 3 times more Pb on average than surrounding soils on a mg/kg basis. Ash liberated 12 times more Ni (mg/kg) and twice as much Cr (mg/kg) as soils in a water leach. By comparing the amount of acid-extractable metals to that released by water and simulated epithelial lung fluid (SELF), we estimated their potential for environmental mobility and human bioaccessibility. The SELF leach showed that Cu and Ni were more bioaccessible (mg of leachable metal/mg of acid-extractable metal) in ash than in soils. These results suggest that structure ash is an important source of trace metals that can negatively impact the health of both humans and the environment.
Assuntos
Metais Pesados , Oligoelementos , Incêndios Florestais , Humanos , Oligoelementos/análise , Metais/análise , Solo/química , Água , Metais Pesados/químicaRESUMO
OBJECTIVES: The aim of the present study was to establish the population- and laboratory-specific reference intervals (RIs) for the Slovenian adult population for 24 trace elements (TEs) in blood, plasma and erythrocytes and to evaluate the impact of gender, age, seafood consumption, smoking habits and amalgam fillings on TEs levels. METHODS: TEs (Mn, Co, Cu, Zn, Se and Mo, Li, Be, V, Cr, Ni, Ga, As, Rb, Sr, Ag, Cd, Sn, Cs, Au, Hg, Tl, Pb and U) were determined in 192 a priori selected blood donors (107 women and 85 men, aged 18-65 years), using inductively coupled plasma mass spectrometry (ICP-MS) with the Octopole Reaction System. Participants filled out a questionnaire, and RIs were established according to the Clinical and Laboratory Standards Institute (CLSI) guidelines for TEs. RESULTS: Uniform RIs for non-essential and gender-specific for essential TEs in blood, plasma and erythrocytes were established. In our population, higher blood and plasma Cu, and erythrocyte Mn levels in women were found. In men, blood Zn, plasma Zn, Mn and Se, and erythrocyte Cu levels were higher. Zn levels were higher in 30-39 years age group. Pb and Sr increased with age. Smoking positively affected Cd, Pb, Cs and Rb; seafood consumption increased As, Hg and Zn; and amalgam increased Hg, Ag and Cu levels. CONCLUSIONS: Essential TEs were inside recommended levels, and the non-essential ones were far below critical levels. Established RIs will provide an important foundation for clinical diagnostics, safety erythrocyte transfusions assessment, toxicology and epidemiological studies.
Assuntos
Mercúrio , Oligoelementos , Adulto , Masculino , Humanos , Feminino , Espectrometria de Massas/métodos , Oligoelementos/análise , Cádmio , Chumbo , Eritrócitos/químicaRESUMO
OBJECTIVES: Trace elements (TEs) are ubiquitous. TE concentrations vary among individuals and countries, depending on factors such as living area, workplaces and diet. Deficit or excessive TEs concentrations have consequences on the proper functioning of human organism so their biomonitoring is important. The aim of this project was to provide reference values for TEs concentrations in the Swiss population. METHODS: The 1,078 participants to the SKiPOGH cohort included in this study were aged 18-90 years. Their 24-h urine and/or plasma samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine 24 TEs concentrations: Ag, Al, As, Be, Bi, Cd, Co, Cr, Cu, Hg, I, Li, Mn, Mo, Ni, Pb, Pd, Pt, Sb, Se, Sn, Tl, V and Zn. Statistical tests were performed to evaluate the influence of covariates (sex, age, BMI, smoking) on these results. Reference intervals for the Swiss adult population were also defined. RESULTS: TEs concentrations were obtained for respectively 994 and 903 persons in plasma and urine matrices. It was possible to define percentiles of interest (P50 and P95) for almost all the TEs. Differences in TEs distribution between men and women were noticed in both matrices; age was also a cofactor. CONCLUSIONS: This first Swiss biomonitoring of a large TEs-panel offers reference values in plasma and in urine for the Swiss population. The results obtained in this study were generally in line with clinical recommendations and comparable to levels reported in other population-based surveys.
Assuntos
Oligoelementos , Humanos , Valores de Referência , Adulto , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Oligoelementos/sangue , Oligoelementos/urina , Oligoelementos/análise , Suíça , Adolescente , Estudos de Coortes , Idoso de 80 Anos ou mais , Adulto Jovem , Espectrometria de Massas/normas , Monitoramento BiológicoRESUMO
Volumetric absorptive micro-sampling (VAMS) has emerged as a simple and safe tool for collecting and storing blood samples in clinical and bioanalytical fields. This study presents a novel method for determining essential and non-essential trace elements (As, Be, Cd, Cs, Cu, Fe, Mg, P, Pb, S, Sb, Se, Tl, V, U) in VAMS-collected blood samples using microwave-assisted digestion with diluted acid as sample preparation method and an inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ) as determination technique. While certain elements posed challenges due to VAMS tip background issues (Al, Ti, Cr, Mn, Co, Ni, Sn, Mo, Ba), the method demonstrated high precision and accuracy for the targeted analytes. It was demonstrated that 4.5 mol L-1 HNO3 plus 100 µL H2O2 30% (w/w) was suitable for an efficiency of digestion for further elemental determination using micro-analysis (spending less than 300 µL analytical solution) by ICP-QQQ, given that the residual carbon content (RCC) after the digestion procedure was lower than 5%. All the results higher than limit of quantification (LOQ) were in agreement with reference values for all analytes. Accuracy was assessed through reference material analysis and recovery tests using spiked samples. Moreover, suitable agreements (p > 0.05) between this method (VAMS-M) and the comparative method (liquid sampling method) were obtained for all analytes >LOQ. Furthermore, all results >LOQ showed good precision according to precision requirements (Horwitz equation). In this way, with the use of dilute acid, low dilution factor (30-fold), and excellent digestion efficiency (>95%), the proposed method was able to achieve an excellent detection limit, precision, and accuracy for 15 elements: As, Be, Cd, Cs, Cu, Fe, Mg, P, Pb, S, Sb, Se, Tl, V, and U using ICP-MS/MS, without the need for matrix-matched calibration curves. This research showcases an innovative analytical approach using VAMS for blood samples, offering biosafety, practicality, sensitivity, versatility, and robustness. This method contributes to the advancement of trace element analysis in biomedical research and clinical applications.
Assuntos
Espectrometria de Massas em Tandem , Oligoelementos , Peróxido de Hidrogênio , Cádmio , Chumbo , Oligoelementos/análiseRESUMO
Speciation analysis plays a key role in understanding the biological activity and toxicity of an element. So far, classical speciation analysis focused only on the dissolved fraction of an elemental species, whereas nanoparticle forms of analytes are being widely found in consumer and industrial products. A significant contributor to human exposure to nanoparticles is through food into which nanoparticles can be incorporated from endogenous sources or they may be formed naturally in the living organisms. Nanoparticles often undergo changes in the food matrices and upon consumption, in the gastrointestinal tract, which present a significant challenge to their characterisation. Therefore, a combination of both classical and nanoparticle speciation analytical techniques is needed for the characterisation of both dissolved and particulate forms of the chemical species. This article presents and discusses the current trends in analysis of nanoparticle behaviour in the gastrointestinal tract and formation and characterisation of biogenic nanoparticles.
Assuntos
Nanopartículas , Oligoelementos , Humanos , Oligoelementos/análise , Nanopartículas/químicaRESUMO
In the last decades, the determination of trace elements in biological materials has emerged as an important area of study because of its relevance to human health and the environment. Inductively coupled plasma mass spectrometry (ICP-MS) has proven to be a powerful tool for trace element analysis, owing to its high sensitivity and ability to determine several elements in a single measurement. However, given the complex nature of biological matrices and the presence of elements, most of them at ultratrace levels, it becomes crucial to complement ICP-MS with preconcentration techniques to increase the sensitivity and selectivity of analytical methods. This article presents an exhaustive overview of liquid- and solid-phase preconcentration techniques used in combination with ICP-MS for trace element determination in different biological samples from 2000 to the present. An in-depth discussion of the advances on the application of state-of-the-art solvents and materials in trace element extraction and preconcentration is presented. Special attention is given to different strategies for elemental speciation analysis, employing both chromatographic and non-chromatographic techniques. The role of automation in these methodologies is also described. Finally, future trends and challenges related to this topic are discussed.
Assuntos
Oligoelementos , Humanos , Oligoelementos/análise , Espectrometria de Massas/métodos , Análise Espectral , SolventesRESUMO
Innate immune systems alter the concentrations of trace elements in host niches in response to invading pathogens during infection. This work reports the interplay between d-block metal ions and their associated biomolecules using hyphenated elemental techniques to spatially quantify both elemental distributions and the abundance of specific transport proteins. Here, lung tissues were collected for analyses from naïve and Streptococcus pneumoniae-infected mice fed on a zinc-restricted or zinc-supplemented diet. Spatiotemporal distributions of manganese (55Mn), iron (56Fe), copper (63Cu), and zinc (66Zn) were determined by quantitative laser ablation-inductively coupled plasma-mass spectrometry. The murine transport proteins ZIP8 and ZIP14, which are associated with zinc transport, were also imaged by incorporation of immunohistochemistry techniques into the analytical workflow. Collectively, this work demonstrates the potential of a single instrumental platform suitable for multiplex analyses of tissues and labelled antibodies to investigate complex elemental interactions at the host-pathogen interface. Further, these methods have the potential for broad application to investigations of biological pathways where concomitant measurement of elements and biomolecules is crucial to understand the basis of disease and aid in development of new therapeutic approaches.
Assuntos
Infecções Bacterianas , Oligoelementos , Camundongos , Animais , Proteínas de Transporte , Espectrometria de Massas/métodos , Oligoelementos/análise , Zinco/análise , Cobre/análiseRESUMO
The utilization of supramolecular deep eutectic solvent eddy-assisted liquid-liquid microextraction utilizing 2-hydroxypropyl ß-cyclodextrin (SUPRADES) has been identified as a successful method for pre-enriching Cu, Zn, and Mn in vegetable oil samples. Determination of each element was conducted by inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion of metal-enriched phases. Various parameters were examined, including the composition of SUPRADES species [2HP-ß-CD: DL-lactic acid], a cyclodextrin mass ratio of 20 wt%, a water bath temperature of 75 °C, an extractor volume of 800 µL, a dispersant volume of 50 µL, and an eddy current time of 5 min. Optimal conditions resulted in extraction rates of 99.6% for Cu, 105.2% for Zn, and 101.5% for Mn. The method exhibits a broad linear range spanning from 10 to 20,000 µg L-1, with determination coefficients exceeding 0.99 for all analytes. Enrichment coefficients of 24, 21, and 35 were observed. Limits of detection ranged from 0.89 to 1.30 µg L-1, while limits of quantification ranged from 3.23 to 4.29 µg L-1. The unique structural characteristics of the method enable the successful determination of trace elements in a variety of edible vegetable oils.
Assuntos
Óleos de Plantas , Solventes , Oligoelementos , Óleos de Plantas/química , Oligoelementos/análise , Solventes/química , Microextração em Fase Líquida/métodos , Limite de Detecção , 2-Hidroxipropil-beta-Ciclodextrina/química , Contaminação de Alimentos/análise , Metais/química , Metais/análiseRESUMO
From organs to subcellular organelles, trace element (TE) homeostasis is fundamental for many physiological processes. While often overlooked in early stages, manifested TE disbalance can have severe health consequences, particularly in the context of aging or pathological conditions. Monitoring TE concentrations at the mitochondrial level could identify organelle-specific imbalances, contributing to targeted diagnostics and a healthier aging process. However, mitochondria isolation from frozen tissue is challenging, as it poses the risk of TE losses from the organelles due to cryodamage, but would significantly ease routine laboratory work. To address this, a novel method to isolate an enriched mitochondria fraction (EMF) from frozen tissue was adapted from already established protocols. Validation of manganese (Mn), iron (Fe), and copper (Cu) quantification via inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) showed sufficiently low quantification limits for EMF TE analysis. Successful mitochondrial enrichment from frozen liver samples was confirmed via immunoblots and transmission electron microscopy (TEM) revealed sufficient structural integrity of the EMFs. No significant differences in EMF TEs between frozen and fresh tissue were evident for Mn and Cu and only slight decreases in EMF Fe. Consequently, EMF TEs were highly comparable for isolates from both tissue states. In application, this method effectively detected dietary differences in EMF Fe of a murine feeding study and identified the disease status in a Wilson disease rat model based on drastically increased EMF Cu. In summary, the present method is suitable for future applications, facilitating sample storage and high-throughput analyses of mitochondrial TEs.
Assuntos
Fígado , Espectrometria de Massas em Tandem , Oligoelementos , Animais , Fígado/química , Fígado/metabolismo , Oligoelementos/análise , Camundongos , Espectrometria de Massas em Tandem/métodos , Mitocôndrias Hepáticas/metabolismo , Congelamento , Manganês/análise , Camundongos Endogâmicos C57BL , Masculino , Cobre/análise , Cobre/metabolismo , Ferro/análise , Ferro/metabolismoRESUMO
The ability of marine filter feeders to accumulate metals could help monitor the health of the marine environment. This study examined the concentration of metallic trace elements (MTE) in two marine sponges, Rhabdastrella globostellata and Hyrtios erectus, from three sampling zones of the semi-enclosed Bouraké Lagoon (New Caledonia, South West Pacific). MTE in sponge tissues, seawater, and surrounding sediments was measured using inductively coupled plasma with optical emission spectroscopy. The variability in sponge MTE concentrations between species and sampling zones was visually discriminated using a principal component analysis (PCA). Sponges showed Fe, Mn, Cr, Ni, and Zn concentrations 2 to 10 times higher than in the surrounding sediments and seawater. Hyrtios erectus accumulated 3 to 20 times more MTE than R. globostellata, except for Zn. Average bioconcentration factors in sponge tissues were (in decreasing order) Zn > Ni > Mn > Fe > Cr relate to sediments and Fe > Ni > Mn > Cr > Zn relate to seawater. The PCA confirmed higher MTE concentrations in H. erectus compared to R. globostellata. Our results confirm that marine sponges can accumulate MTE to some extent and could be used as a tool for assessing metals contamination in lagoon ecosystems, particularly in New Caledonia, where 40% of the lagoon is classified as a UNESCO World Heritage Site.
Assuntos
Metais Pesados , Poríferos , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/análise , Ecossistema , Monitoramento Ambiental/métodos , Metais , Sedimentos Geológicos/análise , Sedimentos Geológicos/químicaRESUMO
This study aimed to analyze the serum and salivary levels of copper (Cu), zinc (Zn), iron (Fe), chromium (Cr), manganese (Mn) and the Cu/Zn ratio and investigate the association between LOX gene variants (rs18800449 and rs2288393) and oral submucosal fibrosis (OSMF). A total of 250 subjects were included in the study: OSMF patients (n = 50), areca nut chewers without OSMF (n = 100) and controls (n = 100). Trace metals were measured using an atomic absorption spectrophotometer, while LOX gene variants were genotyped using the tetra primer amplification refractory mutation system (tetra ARMS) polymerase chain reaction (PCR) method. The results showed significant variations in serum and salivary Cu, Zn, Fe and Cr levels and serum Mn concentrations among the three groups (p < 0.0001). Serum Cu levels were significantly higher in OSMF patients, while serum Zn levels were significantly lower. Both serum and salivary Cu/Zn ratios demonstrated a statistically significant difference (p < 0.0001) and diagnostic potential to differentiate OSMF from chewers and controls. However, LOX gene variants did not show an association between OSMF and chewers, except for rs1800449 genotypes, which showed a significant and increased risk with the AA genotype in OSMF patients compared to controls (OR = 7.58; 95%CI 2.30-24.97). The study suggests that trace elements and genetic variants may impact the etiology of OSMF. The findings may aid in early diagnosis, suitable treatment, and as a prognostic indicator for disease progression.
Assuntos
Fibrose Oral Submucosa , Oligoelementos , Humanos , Zinco/análise , Fibrose Oral Submucosa/etiologia , Oligoelementos/análise , Cobre , Manganês , Cromo , BiomarcadoresRESUMO
The processed forms of milk, branded liquid, and power milk available in Dhaka city, the capital of Bangladesh, were investigated for essential and trace metal/metalloids regarding nutritional and human health risk aspects. For this, the potential nutritional contribution, estimated daily intake (EDI) and non-carcinogenic risk for six different life stages with male and female categories, as well as the carcinogenic risk for children and adults of both genders, were addressed. In total, 46 branded liquid and powder milk samples were considered for this analysis employing atomic absorption spectroscopy. The concentration of essential elements showed the trends of K > Ca > Na > Mg > Fe > Zn > Mn > Cu and K > Ca > Na > Mg > Fe > Cu > Mn > Zn for liquid and powder milk samples, respectively, but the potentially hazardous one showed the same trends (Cr > Pb > Hg > As > Cd) for both items. Except for Cr, Hg, and Fe, the elemental compositions of both milk categories differed considerably (< 0.05). Compared to the threshold values for milk samples (liquid and powder), Fe (19% and 27%), Mn (100% and 63%), Cu (0% and 23%), Zn (94% and 0%), Pb (25% and 13%), and Cr (0% and 3%) showed above the permissible limits. The nutrient input was the highest for Ca (27.2% and 18.7%), followed by Mg, K, and Na. The EDI of studied elements was within the daily permissible limit in both the milk category (except age group (≤ 3) and the female category). The non-carcinogenic risk assessment showed that the age groups ≤ 3 for liquid milk and ≤ 3 and 3 < X ≤ 14 with female categories for powder milk exceeded the threshold level (> 1) in the case of Cr, Cd, As, Zn, and Mn. The probable carcinogenic risks indicated an unacceptable risk level (< 1.00E-04) for the ingestion of Cr through powder milk samples for children in male and female categories. Finally, it believes that green cow farming practices and green milk processing technology, as well as continuous monitoring of toxic metals, can limit the ultimate risk worldwide.
Assuntos
Leite , Oligoelementos , Humanos , Bangladesh , Leite/química , Animais , Feminino , Masculino , Criança , Adulto , Oligoelementos/análise , Medição de Risco , Pré-Escolar , Metaloides/análise , Contaminação de Alimentos/análise , Adolescente , Lactente , Metais/análise , Adulto Jovem , Pós/químicaRESUMO
BACKGROUND: In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population. METHODS: In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass. RESULTS: The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters. DISCUSSION: and Conclusions. Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.