Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.166
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Genet ; 53: 117-147, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31537104

RESUMO

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.


Assuntos
Mamíferos/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Animais , Bovinos , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Cabras/genética , Humanos , Camundongos , Polimorfismo Genético , Doenças Priônicas/etiologia , Proteínas Priônicas/metabolismo , Seleção Genética , Ovinos/genética
2.
Proc Natl Acad Sci U S A ; 121(27): e2322291121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913905

RESUMO

Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.


Assuntos
Altitude , Animais , Ovinos/genética , Tibet , Variação Estrutural do Genoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica , Genoma , Aclimatação/genética
3.
EMBO J ; 41(23): e112338, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254605

RESUMO

A defining characteristic of mammalian prions is their capacity for self-sustained propagation. Theoretical considerations and experimental evidence suggest that prion propagation is modulated by cell-autonomous and non-autonomous modifiers. Using a novel quantitative phospholipase protection assay (QUIPPER) for high-throughput prion measurements, we performed an arrayed genome-wide RNA interference (RNAi) screen aimed at detecting cellular host-factors that can modify prion propagation. We exposed prion-infected cells in high-density microplates to 35,364 ternary pools of 52,746 siRNAs targeting 17,582 genes representing the majority of the mouse protein-coding transcriptome. We identified 1,191 modulators of prion propagation. While 1,151 modified the expression of both the pathological prion protein, PrPSc , and its cellular counterpart, PrPC , 40 genes selectively affected PrPSc . Of the latter 40 genes, 20 augmented prion production when suppressed. A prominent limiter of prion propagation was the heterogeneous nuclear ribonucleoprotein Hnrnpk. Psammaplysene A (PSA), which binds Hnrnpk, reduced prion levels in cultured cells and protected them from cytotoxicity. PSA also reduced prion levels in infected cerebellar organotypic slices and alleviated locomotor deficits in prion-infected Drosophila melanogaster expressing ovine PrPC . Hence, genome-wide QUIPPER-based perturbations can discover actionable cellular pathways involved in prion propagation. Further, the unexpected identification of a prion-controlling ribonucleoprotein suggests a role for RNA in the generation of infectious prions.


Assuntos
Doenças Priônicas , Príons , Camundongos , Animais , Ovinos/genética , Príons/genética , Príons/metabolismo , Drosophila melanogaster/genética , Ribonucleoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/patologia , Mamíferos/genética
4.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38606789

RESUMO

Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.


Assuntos
Borboletas , Camundongos , Humanos , Animais , Ovinos/genética , Borboletas/genética , Cromossomos/genética , Meiose/genética , Centrômero , Translocação Genética/genética , Mamíferos
5.
Genome Res ; 33(10): 1690-1707, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37884341

RESUMO

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Assuntos
Metagenoma , Microbiota , Ovinos/genética , Animais , Transcriptoma , Rúmen , Ruminantes/genética
6.
Genome Res ; 33(3): 463-477, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37310928

RESUMO

Structural variations (SVs) are a major contributor to genetic diversity and phenotypic variations, but their prevalence and functions in domestic animals are largely unexplored. Here we generated high-quality genome assemblies for 15 individuals from genetically diverse sheep breeds using Pacific Biosciences (PacBio) high-fidelity sequencing, discovering 130.3 Mb nonreference sequences, from which 588 genes were annotated. A total of 149,158 biallelic insertions/deletions, 6531 divergent alleles, and 14,707 multiallelic variations with precise breakpoints were discovered. The SV spectrum is characterized by an excess of derived insertions compared to deletions (94,422 vs. 33,571), suggesting recent active LINE expansions in sheep. Nearly half of the SVs display low to moderate linkage disequilibrium with surrounding single-nucleotide polymorphisms (SNPs) and most SVs cannot be tagged by SNP probes from the widely used ovine 50K SNP chip. We identified 865 population-stratified SVs including 122 SVs possibly derived in the domestication process among 690 individuals from sheep breeds worldwide. A novel 168-bp insertion in the 5' untranslated region (5' UTR) of HOXB13 is found at high frequency in long-tailed sheep. Further genome-wide association study and gene expression analyses suggest that this mutation is causative for the long-tail trait. In summary, we have developed a panel of high-quality de novo assemblies and present a catalog of structural variations in sheep. Our data capture abundant candidate functional variations that were previously unexplored and provide a fundamental resource for understanding trait biology in sheep.


Assuntos
Estudo de Associação Genômica Ampla , Cauda , Animais , Ovinos/genética , Regiões 5' não Traduzidas , Alelos , Fenótipo
7.
PLoS Genet ; 19(2): e1010615, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821549

RESUMO

The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.


Assuntos
Aclimatação , Carneiro Doméstico , Ovinos/genética , Animais , Carneiro Doméstico/genética , Haplótipos/genética , Irã (Geográfico) , Fenótipo
8.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552245

RESUMO

Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.


Assuntos
Estudo de Associação Genômica Ampla , Multiômica , Humanos , Feminino , Ovinos/genética , Animais , Tibet , Proteômica , Reprodução , Mutação
9.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266195

RESUMO

The cross-species characterization of evolutionary changes in the functional genome can facilitate the translation of genetic findings across species and the interpretation of the evolutionary basis underlying complex phenotypes. Yet, this has not been fully explored between cattle, sheep, goats, and other mammals. Here, we systematically characterized the evolutionary dynamics of DNA methylation and gene expression in 3 somatic tissues (i.e. brain, liver, and skeletal muscle) and sperm across 7 mammalian species, including 3 ruminant livestock species (cattle, sheep, and goats), humans, pigs, mice, and dogs, by generating and integrating 160 DNA methylation and transcriptomic data sets. We demonstrate dynamic changes of DNA hypomethylated regions and hypermethylated regions in tissue-type manner across cattle, sheep, and goats. Specifically, based on the phylo-epigenetic model of DNA methylome, we identified a total of 25,074 hypomethylated region extension events specific to cattle, which participated in rewiring tissue-specific regulatory network. Furthermore, by integrating genome-wide association studies of 50 cattle traits, we provided novel insights into the genetic and evolutionary basis of complex phenotypes in cattle. Overall, our study provides a valuable resource for exploring the evolutionary dynamics of the functional genome and highlights the importance of cross-species characterization of multiomics data sets for the evolutionary interpretation of complex phenotypes in cattle livestock.


Assuntos
Bovinos , Metilação de DNA , Cabras , Ovinos , Animais , Bovinos/genética , Cães , Humanos , Masculino , Camundongos , Estudo de Associação Genômica Ampla , Cabras/genética , Herança Multifatorial , Ovinos/genética , Suínos
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042793

RESUMO

Sheep and goats (caprines) were domesticated in Southwest Asia in the early Holocene, but how and in how many places remain open questions. This study investigates the initial conditions and trajectory of caprine domestication at Asikli Höyük, which preserves an unusually high-resolution record of the first 1,000 y of Neolithic existence in Central Anatolia. Our comparative analysis of caprine age and sex structures and related evidence reveals a local domestication process that began around 8400 cal BC. Caprine management at Asikli segued through three viable systems. The earliest mode was embedded within a broad-spectrum foraging economy and directed to live meat storage on a small scale. This was essentially a "catch-and-grow" strategy that involved seasonal capture of wild lambs and kids from the surrounding highlands and raising them several months prior to slaughter within the settlement. The second mode paired modest levels of caprine reproduction on site with continued recruitment of wild infants. The third mode shows the hallmarks of a large-scale herding economy based on a large, reproductively viable captive population but oddly directed to harvesting adult animals, contra to most later Neolithic practices. Wild infant capture likely continued at a low level. The transitions were gradual but, with time, gave rise to early domesticated forms and monumental differences in human labor organization, settlement layout, and waste accumulation. Asikli was an independent center of caprine domestication and thus supports the multiple origins evolutionary model.


Assuntos
Criação de Animais Domésticos/métodos , Domesticação , Agricultura , Animais , Animais Domésticos , Arqueologia , Geografia , Cabras/genética , História Antiga , Humanos , Seleção Artificial/história , Ovinos/genética , Turquia
11.
Genomics ; 116(2): 110818, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431032

RESUMO

Sheep breeds with hair-shedding traits have many advantages over non-shedding sheep breeds, not only because of reduced shearing labor and feeding management costs but also because it reduces in vitro parasites and improves adaptability to summer heat stress. The wool of Dorper sheep naturally sheds in spring due to the periodic growth of hair follicles. CircRNAs primarily regulate the morphogenesis of hair follicles through the ceRNA mechanism. In this study, five 2-year-old Dorper ewes with extreme hair-shedding phenotype (S) and three Dorper ewes with non-shedding (N) phenotype were selected for subsequent analyses. For RNA extraction, skin tissues were collected on 27th September 2019 (S1, N1), 3rd January 2020 (S2, N2), and 17th March 2020 (S3, N3), which were then subjected to RNA-seq. RNA-seq technology revealed 20,185 novel circRNAs in the hair follicles of Dorper sheep. Among them, 1450 circRNAs were differentially expressed (DE). Clustering heatmap and expression pattern analyses were performed on DE circRNAs, which indicated 78 circRNAs with T pattern (Telogen, highly expressed in telogen), and the source genes for candidate circRNAs were further screened by functional enrichment analysis, which identified 13 crucial genes enriched in pathways associated with hair follicle development. Additionally, a ceRNA regulatory network comprising 4 circRNAs, 11 miRNAs, and 13 target genes was constructed. Overall, this study screened circRNAs that may be associated with the telogen phase of hair follicles in sheep, providing a relevant theoretical basis for wool shedding in sheep and for breeding Dorper sheep with automatic wool shedding.


Assuntos
MicroRNAs , RNA Circular , Ovinos/genética , Animais , Feminino , RNA Circular/metabolismo , RNA Endógeno Competitivo , Folículo Piloso/metabolismo , Carneiro Doméstico/genética , MicroRNAs/metabolismo
12.
Genomics ; 116(4): 110873, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38823464

RESUMO

Goat milk exhibits a robust and distinctive "goaty" flavor. However, the underlying genetic basis of goaty flavor remains elusive and requires further elucidation at the genomic level. Through comparative genomics analysis, we identified divergent signatures of certain proteins in goat, sheep, and cow. MMUT has undergone a goat-specific mutation in the B12 binding domain. We observed the goat FASN exhibits nonsynonymous mutations in the acyltransferase domain. Structural variations in these key proteins may enhance the capacity for synthesizing goaty flavor compounds in goat. Integrated omics analysis revealed the catabolism of branched-chain amino acids contributed to the goat milk flavor. Furthermore, we uncovered a regulatory mechanism in which the transcription factor ZNF281 suppresses the expression of the ECHDC1 gene may play a pivotal role in the accumulation of flavor substances in goat milk. These findings provide insights into the genetic basis underlying the formation of goaty flavor in goat milk. STATEMENT OF SIGNIFICANCE: Branched-chain fatty acids (BCFAs) play a crucial role in generating the distinctive "goaty" flavor of goat milk. Whether there is an underlying genetic basis associated with goaty flavor is unknown. To begin deciphering mechanisms of goat milk flavor development, we collected transcriptomic data from mammary tissue of goat, sheep, cow, and buffalo at peak lactation for cross-species transcriptome analysis and downloaded nine publicly available genomes for comparative genomic analysis. Our data indicate that the catabolic pathway of branched-chain amino acids (BCAAs) is under positive selection in the goat genome, and most genes involved in this pathway exhibit significantly higher expression levels in goat mammary tissue compared to other species, which contributes to the development of flavor in goat milk. Furthermore, we have elucidated the regulatory mechanism by which the transcription factor ZNF281 suppresses ECHDC1 gene expression, thereby exerting an important influence on the accumulation of flavor compounds in goat milk. These findings provide insights into the genetic mechanisms underlying flavor formation in goat milk and suggest further research to manipulate the flavor of animal products.


Assuntos
Cabras , Leite , Animais , Cabras/genética , Cabras/metabolismo , Leite/metabolismo , Leite/química , Paladar , Genômica , Transcriptoma , Feminino , Ovinos/genética , Ovinos/metabolismo , Bovinos/genética , Bovinos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo
13.
Genomics ; 116(3): 110851, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692440

RESUMO

Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-ß and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Ovinos/genética , Desenvolvimento Muscular/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , RNA-Seq , Transdução de Sinais , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proliferação de Células
14.
Dev Biol ; 501: 104-110, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37182733

RESUMO

A healthy mammary gland is a necessity for milk production of dairy goats. The role of chi-miR-3880 in goat lactation is illustrated in our previous study. Among the differentially expressed genes regulated by chi-miR-3880, one seventh were interferon stimulated genes, including MX1, MX2, IFIT3, IFI44L, and DDX58. As the inflammatory cytokine interferon gamma (IFNγ) has been identified as a potential marker of caseous lymphadenitis in lactating sheep, the interaction between IFNγ and immune-related microRNAs was explored in this study. Chi-miR-3880 was found to be one of the microRNAs downregulated by IFNγ in goat mammary epithelial cells (GMECs). The study illustrated that IFNγ/chi-miR-3880/DDX58 axis modulates GMEC proliferation and lipid formation through PI3K/AKT/mTOR pathway, and regulates apoptosis through Caspase-3 and Bcl-2/Bax pathways. The role of the axis in mammary involution was reflected by the expression of p53 and NF-κB. In conclusion, IFNγ/chi-miR-3880/DDX58 axis plays an important part in lactation.


Assuntos
Lactação , MicroRNAs , Feminino , Animais , Ovinos/genética , Lactação/genética , Interferon gama/farmacologia , Interferon gama/metabolismo , Cabras/genética , Cabras/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , MicroRNAs/metabolismo , Glândulas Mamárias Animais/metabolismo
15.
BMC Genomics ; 25(1): 606, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886664

RESUMO

BACKGROUND: Gangba sheep as a famous breed of Tibetan sheep, its wool color is mainly white and black. Gangba wool is economically important as a high-quality raw material for Tibetan blankets and Tibetan serge. However, relatively few studies have been conducted on the wool color of Tibetan sheep. RESULTS: To fill this research gap, this study conducted an in-depth analysis of two populations of Gangba sheep (black and white wool color) using whole genome resequencing to identify genetic variation associated with wool color. Utilizing PCA, Genetic Admixture, and N-J Tree analyses, the present study revealed a consistent genetic relationship and structure between black and white wool colored Gangba sheep populations, which is consistent with their breed history. Analysis of selection signatures using multiple methods (FST, π ratio, Tajima's D), 370 candidate genes were screened in the black wool group (GBB vs GBW); among them, MC1R, MLPH, SPIRE2, RAB17, SMARCA4, IRF4, CAV1, USP7, TP53, MYO6, MITF, MC2R, TET2, NF1, JAK1, GABRR1 genes are mainly associated with melanin synthesis, melanin delivery, and distribution. The enrichment results of the candidate genes identified 35 GO entries and 19 KEGG pathways associated with the formation of the black phenotype. 311 candidate genes were screened in the white wool group (GBW vs GBB); among them, REST, POU2F1, ADCY10, CCNB1, EP300, BRD4, GLI3, and SDHA genes were mainly associated with interfering with the differentiation of neural crest cells into melanocytes, affecting the proliferation of melanocytes, and inhibiting melanin synthesis. 31 GO entries and 22 KEGG pathways were associated with the formation of the white phenotype. CONCLUSIONS: This study provides important information for understanding the genetic mechanism of wool color in Gangba, and provides genetic knowledge for improving and optimizing the wool color of Tibetan sheep. Genetic improvement and selective breeding to produce wool of specific colors can meet the demand for a diversity of wool products in the Tibetan wool textile market.


Assuntos
Polimorfismo de Nucleotídeo Único , , Animais , Ovinos/genética , Seleção Genética , Pigmentação/genética , Estudo de Associação Genômica Ampla
16.
BMC Genomics ; 25(1): 681, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982349

RESUMO

Analyzing the genetic diversity and selection characteristics of sheep (Ovis aries) holds significant value in understanding their environmental adaptability, enhancing breeding efficiency, and achieving effective conservation and rational utilization of genetic resources. In this study, we utilized Illumina Ovine SNP 50 K BeadChip data from four indigenous sheep breeds from the southern margin of the Taklamakan Desert (Duolang sheep: n = 36, Hetian sheep: n = 74, Kunlun sheep: n = 27, Qira black sheep: n = 178) and three foreign meat sheep breeds (Poll Dorset sheep: n = 105, Suffolk sheep: n = 153, Texel sheep: n = 150) to investigate the population structure, genetic diversity, and genomic signals of positive selection within the indigenous sheep. According to the Principal component analysis (PCA), the Neighbor-Joining tree (NJ tree), and Admixture, we revealed distinct clustering patterns of these seven sheep breeds based on their geographical distribution. Then used Cross Population Extended Haplotype Homozygosity (XP-EHH), Fixation Index (FST), and Integrated Haplotype Score (iHS), we identified a collective set of 32 overlapping genes under positive selection across four indigenous sheep breeds. These genes are associated with wool follicle development and wool traits, desert environmental adaptability, disease resistance, reproduction, and high-altitude adaptability. This study reveals the population structure and genomic selection characteristics in the extreme desert environments of native sheep breeds from the southern edge of the Taklimakan Desert, providing new insights into the conservation and sustainable use of indigenous sheep genetic resources in extreme environments. Additionally, these findings offer valuable genetic resources for sheep and other mammals to adapt to global climate change.


Assuntos
Clima Desértico , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Ovinos/genética , Genética Populacional , Haplótipos , Variação Genética , Cruzamento
17.
BMC Genomics ; 25(1): 70, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233814

RESUMO

BACKGROUND: Dorper and Tan sheep are renowned for their rapid growth and exceptional meat quality, respectively. Previous research has provided evidence of the impact of gut microbiota on breed characteristics. The precise correlation between the gastrointestinal tract and peripheral organs in each breed is still unclear. Investigating the metabolic network of the intestinal organ has the potential to improve animal growth performance and enhance economic benefits through the regulation of intestinal metabolites. RESULTS: In this study, we identified the growth advantage of Dorper sheep and the high fat content of Tan sheep. A transcriptome study of the brain, liver, skeletal muscle, and intestinal tissues of both breeds revealed 3,750 differentially expressed genes (DEGs). The genes PPARGC1A, LPL, and PHGDH were found to be highly expressed in Doper, resulting in the up-regulation of pathways related to lipid oxidation, glycerophospholipid metabolism, and amino acid anabolism. Tan sheep highly express the BSEP, LDLR, and ACHE genes, which up-regulate the pathways involved in bile transport and cholesterol homeostasis. Hindgut content analysis identified 200 differentially accumulated metabolites (DAMs). Purines, pyrimidines, bile acids, and fatty acid substances were more abundant in Dorper sheep. Based on combined gene and metabolite analyses, we have identified glycine, serine, and threonine metabolism, tryptophan metabolism, bile secretion, cholesterol metabolism, and neuroactive ligand-receptor interaction as key factors contributing to the differences among the breeds. CONCLUSIONS: This study indicates that different breeds of sheep exhibit unique breed characteristics through various physiological regulatory methods. Dorper sheep upregulate metabolic signals related to glycine, serine, and threonine, resulting in an increase in purine and pyrimidine substances. This, in turn, promotes the synthesis of amino acids and facilitates body development, resulting in a faster rate of weight gain. Tan sheep accelerate bile transport, reduce bile accumulation in the intestine, and upregulate cholesterol homeostasis signals in skeletal muscles. This promotes the accumulation of peripheral and intramuscular fat, resulting in improved meat quality. This work adopts a joint analysis method of multi-tissue transcriptome and gut metabolome, providing a successful case for analyzing the mechanisms underlying the formation of various traits.


Assuntos
Melhoramento Vegetal , Transcriptoma , Ovinos/genética , Animais , Metaboloma , Glicina , Serina , Treonina , Colesterol
18.
BMC Genomics ; 25(1): 739, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080522

RESUMO

BACKGROUND: Elucidating the genetic variation underlying phenotypic diversity will facilitate improving production performance in livestock species. The Tibetan sheep breed in China holds significant historical importance, serving as a fundamental pillar of Qinghai's animal husbandry sector. The Plateau-type Tibetan sheep, comprising 90% of the province's population, are characterized by their tall stature and serve as the primary breed among Tibetan sheep. In contrast, Zhashijia sheep exhibit larger size and superior meat quality. These two species provide an excellent model for elucidating the genetic basis of body size variation. Therefore, this study aims to conduct a comprehensive genome-wide association study on these two Tibetan sheep breeds to identify single nucleotide polymorphism loci and regulatory genes that influence body size traits in Tibetan sheep. RESULT: In this study, the phenotypic traits of body weight, body length, body height, chest circumference, chest depth, chest width, waist angle width, and pipe circumference were evaluated in two Tibetan sheep breeds: Plateau-type sheep and Zhashijia Tibetan sheep. Whole genome sequencing generated 48,215,130 high-quality SNPs for genome-wide association study. Four methods were applied and identified 623 SNPs significantly associated with body size traits. The significantly associated single nucleotide polymorphisms identified in this study are located near or within 111 candidate genes. These genes exhibit enrichment in the cAMP and Rap1 signaling pathways, significantly affecting animal growth, and body size. Specifically, the following genes were associated: ASAP1, CDK6, FRYL, NAV2, PTPRM, GPC6, PTPRG, KANK1, NTRK2 and ADCY8. CONCLUSION: By genome-wide association study, we identified 16 SNPs and 10 candidate genes associated with body size traits in Tibetan sheep, which hold potential for application in genomic selection breeding programs in sheep. Identifying these candidate genes will establish a solid foundation for applying molecular marker-assisted selection in sheep breeding and improve our understanding of body size control in farmed animals.


Assuntos
Tamanho Corporal , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Animais , Tamanho Corporal/genética , Ovinos/genética , Ovinos/anatomia & histologia , Tibet , Locos de Características Quantitativas
19.
BMC Genomics ; 25(1): 641, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937677

RESUMO

BACKGROUND: The Alpine Merino is a new breed of fine-wool sheep adapted to the cold and arid climate of the plateau in the world. It has been popularized in Northwest China due to its superior adaptability as well as excellent production performance. Those traits related to body weight, wool yield, and wool fiber characteristics, which are economically essential traits in Alpine Merino sheep, are controlled by QTL (Quantitative Trait Loci). Therefore, the identification of QTL and genetic markers for these key economic traits is a critical step in establishing a MAS (Marker-Assisted Selection) breeding program. RESULTS: In this study, we constructed the high-density genetic linkage map of Alpine Merino sheep by sequencing 110 F1 generation individuals using WGR (Whole Genome Resequencing) technology. 14,942 SNPs (Single Nucleotide Polymorphism) were identified and genotyped. The map spanned 2,697.86 cM, with an average genetic marker interval of 1.44 cM. A total of 1,871 high-quality SNP markers were distributed across 27 linkage groups, with an average of 69 markers per LG (Linkage Group). Among them, the smallest genetic distance is 19.62 cM for LG2, while the largest is 237.19 cM for LG19. The average genetic distance between markers in LGs ranged from 0.24 cM (LG2) to 3.57 cM (LG17). The marker density in the LGs ranged from LG14 (39 markers) to LG1 (150 markers). CONCLUSIONS: The first genetic map of Alpine Merino sheep we constructed included 14,942 SNPs, while 46 QTLs associated with body weight, wool yield and wool fiber traits were identified, laying the foundation for genetic studies and molecular marker-assisted breeding. Notably, there were QTL intervals for overlapping traits on LG4 and LG8, providing potential opportunities for multi-trait co-breeding and further theoretical support for selection and breeding of ultra-fine and meaty Alpine Merino sheep.


Assuntos
Peso Corporal , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , , Animais , Peso Corporal/genética , Lã/crescimento & desenvolvimento , Ovinos/genética , Ligação Genética , Marcadores Genéticos , Sequenciamento Completo do Genoma , Fenótipo , Carneiro Doméstico/genética , Genótipo
20.
BMC Genomics ; 25(1): 480, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750582

RESUMO

Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.


Assuntos
Tamanho da Ninhada de Vivíparos , Sequenciamento Completo do Genoma , Animais , Tamanho da Ninhada de Vivíparos/genética , Ovinos/genética , Seleção Genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Cruzamento , Feminino , Fertilidade/genética , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA