Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 597
Filtrar
1.
Annu Rev Biochem ; 83: 641-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905788

RESUMO

The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.


Assuntos
Regulação Enzimológica da Expressão Gênica , PTEN Fosfo-Hidrolase/fisiologia , Animais , Ciclo Celular , Movimento Celular , Núcleo Celular/metabolismo , Polaridade Celular , Proliferação de Células , Sobrevivência Celular , Ativação Enzimática , Humanos , Lipídeos/química , Neoplasias/metabolismo , Oxigênio/química , PTEN Fosfo-Hidrolase/química , Fosforilação , Prognóstico , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Ubiquitina/química
2.
Nat Rev Mol Cell Biol ; 13(5): 283-96, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22473468

RESUMO

The importance of the physiological function of phosphatase and tensin homologue (PTEN) is illustrated by its frequent disruption in cancer. By suppressing the phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) pathway through its lipid phosphatase activity, PTEN governs a plethora of cellular processes including survival, proliferation, energy metabolism and cellular architecture. Consequently, mechanisms regulating PTEN expression and function, including transcriptional regulation, post-transcriptional regulation by non-coding RNAs, post-translational modifications and protein-protein interactions, are all altered in cancer. The repertoire of PTEN functions has recently been expanded to include phosphatase-independent activities and crucial functions within the nucleus. Our increasing knowledge of PTEN and pathologies in which its function is altered will undoubtedly inform the rational design of novel therapies.


Assuntos
Regulação da Expressão Gênica , Neoplasias/enzimologia , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Núcleo Celular/enzimologia , Humanos , Mutação , Neoplasias/patologia , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/fisiologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Conformação Proteica , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31015337

RESUMO

In contrast to other B-cell antigen receptor (BCR) classes, the function of IgD BCR on mature B cells remains largely elusive as mature B cells co-express IgM, which is sufficient for development, survival, and activation of B cells. Here, we show that IgD expression is regulated by the forkhead box transcription factor FoxO1, thereby shifting the responsiveness of mature B cells towards recognition of multivalent antigen. FoxO1 is repressed by phosphoinositide 3-kinase (PI3K) signaling and requires the lipid phosphatase Pten for its activation. Consequently, Pten-deficient B cells expressing knock-ins for BCR heavy and light chain genes are unable to upregulate IgD. Furthermore, in the presence of autoantigen, Pten-deficient B cells cannot eliminate the autoreactive BCR specificity by secondary light chain gene recombination. Instead, Pten-deficient B cells downregulate BCR expression and become unresponsive to further BCR-mediated stimulation. Notably, we observed a delayed germinal center (GC) reaction by IgD-deficient B cells after immunization with trinitrophenyl-ovalbumin (TNP-Ova), a commonly used antigen for T-cell-dependent antibody responses. Together, our data suggest that the activation of IgD expression by Pten/FoxO1 results in mature B cells that are selectively responsive to multivalent antigen and are capable of initiating rapid GC reactions and T-cell-dependent antibody responses.


Assuntos
Linfócitos B/fisiologia , Centro Germinativo/fisiologia , Imunoglobulina D/genética , PTEN Fosfo-Hidrolase/fisiologia , Receptores de Antígenos de Linfócitos B/genética , Animais , Células Cultivadas , Proteína Forkhead Box O1/fisiologia , Regulação da Expressão Gênica/imunologia , Centro Germinativo/metabolismo , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
4.
Am J Pathol ; 191(12): 2195-2202, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34809787

RESUMO

The present study aimed to explore the roles of casein kinase 1α (CK1α) in endometriosis and its underlying mechanisms. Endometrial specimen were collected from the patients and healthy volunteers. The expression patterns of CK1α, phosphatase and tensin homolog (PTEN), and autophagy-related proteins were determined using immunohistochemistry staining, Western blot analysis, and quantitative RT-PCR. Besides, the CK1α-overexpressing cells and PTEN knockdown cells were constructed in the endometrial stromal cells isolated from endometriosis patients. In addition, the cells were transfected with pcDNA3.1-CK1α or pcDNA3.1-CK1α plus siRNA- PTEN. The expressions of CK1α, PTEN, and autophagy-related proteins were determined using Western blot and quantitative RT-PCR. The expressions of CK1α and autophagy-related 7 (Atg7) were significantly decreased in the ectopic endometrium compared with the eutopic endometrium. Spearman rank correlation analysis revealed positive correlations between CK1α and PTEN, CK1α and Atg7, and PTEN and Atg7. In addition, CK1α, PTEN, and autophagy-related proteins were down-regulated in ectopic endometrium. Interestingly, overexpression of CK1α significantly increased the expressions of autophagy-related proteins, whereas the protein expression of autophagy-related proteins was decreased with PTEN knock-down. CK1α regulated PTEN/Atg7-mediated autophagy in endometriosis.


Assuntos
Autofagia/fisiologia , Caseína Quinase Ialfa/genética , Endometriose/genética , Doenças Uterinas/genética , Adulto , Autofagia/genética , Proteína 7 Relacionada à Autofagia/fisiologia , Estudos de Casos e Controles , Caseína Quinase Ialfa/fisiologia , Regulação para Baixo/genética , Endometriose/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , PTEN Fosfo-Hidrolase/fisiologia , Transdução de Sinais/genética , Doenças Uterinas/patologia , Adulto Jovem
5.
J Neurosci ; 40(11): 2215-2227, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988060

RESUMO

Manipulations that enhance GABAergic inhibition have been associated with improved behavioral phenotypes in autism models, suggesting that autism may be treated by correcting underlying deficits of inhibition. Interneuron transplantation is a method for increasing recipient synaptic inhibition, and it has been considered a prospective therapy for conditions marked by deficient inhibition, including neuropsychiatric disorders. It is unknown, however, whether interneuron transplantation may be therapeutically effective only for conditions marked by reduced inhibition, and it is also unclear whether transplantation improves behavioral phenotypes solely by normalizing underlying circuit defects. To address these questions, we studied the effects of interneuron transplantation in male and female mice lacking the autism-associated gene, Pten, in GABAergic interneurons. Pten mutant mice exhibit social behavior deficits, elevated synaptic inhibition in prefrontal cortex, abnormal baseline and social interaction-evoked electroencephalogram (EEG) signals, and an altered composition of cortical interneuron subtypes. Transplantation of wild-type embryonic interneurons from the medial ganglionic eminence into the prefrontal cortex of neonatal Pten mutants rescued social behavior despite exacerbating excessive levels of synaptic inhibition. Furthermore, transplantation did not normalize recipient EEG signals measured during baseline states. Interneuron transplantation can thus correct behavioral deficits even when those deficits are associated with elevated synaptic inhibition. Moreover, transplantation does not exert therapeutic effects solely by restoring wild-type circuit states. Our findings indicate that interneuron transplantation could offer a novel cell-based approach to autism treatment while challenging assumptions that effective therapies must reverse underlying circuit defects.SIGNIFICANCE STATEMENT Imbalances between neural excitation and inhibition are hypothesized to contribute to the pathophysiology of autism. Interneuron transplantation is a method for altering recipient inhibition, and it has been considered a prospective therapy for neuropsychiatric disorders, including autism. Here we examined the behavioral and physiological effects of interneuron transplantation in a mouse genetic model of autism. They demonstrate that transplantation rescues recipient social interaction deficits without correcting a common measure of recipient inhibition, or circuit-level physiological measures. These findings demonstrate that interneuron transplantation can exert therapeutic behavioral effects without necessarily restoring wild-type circuit states, while highlighting the potential of interneuron transplantation as an autism therapy.


Assuntos
Transtorno Autístico/cirurgia , Transplante de Tecido Encefálico , Transplante de Tecido Fetal , Neurônios GABAérgicos/fisiologia , Interneurônios/transplante , Inibição Neural/fisiologia , PTEN Fosfo-Hidrolase/deficiência , Comportamento Social , Animais , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Eletroencefalografia , Comportamento Exploratório , Feminino , Masculino , Aprendizagem em Labirinto , Eminência Mediana/citologia , Eminência Mediana/embriologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Córtex Pré-Frontal/fisiopatologia , Distribuição Aleatória , Sinapses/fisiologia
6.
Gynecol Oncol ; 163(1): 14-21, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34446268

RESUMO

Somatic PTEN alterations are common in endometrial carcinoma (EC), but in rare cases PTEN mutations are associated with inherited syndromes. Here, we present a case of Cowden syndrome-associated EC. We discuss clinical, pathologic and molecular features of her tumor and PTEN-mutated EC, inherited syndromes predisposing to EC and PTEN-targeted therapies.


Assuntos
Neoplasias do Endométrio/etiologia , Síndrome do Hamartoma Múltiplo/complicações , Mutação , PTEN Fosfo-Hidrolase/genética , Adulto , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia
7.
Arterioscler Thromb Vasc Biol ; 40(8): 1854-1869, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580634

RESUMO

OBJECTIVE: Our recent work demonstrates that PTEN (phosphatase and tensin homolog) is an important regulator of smooth muscle cell (SMC) phenotype. SMC-specific PTEN deletion promotes spontaneous vascular remodeling and PTEN loss correlates with increased atherosclerotic lesion severity in human coronary arteries. In mice, PTEN overexpression reduces plaque area and preserves SMC contractile protein expression in atherosclerosis and blunts Ang II (angiotensin II)-induced pathological vascular remodeling, suggesting that pharmacological PTEN upregulation could be a novel therapeutic approach to treat vascular disease. Approach and Results: To identify novel PTEN activators, we conducted a high-throughput screen using a fluorescence based PTEN promoter-reporter assay. After screening ≈3400 compounds, 11 hit compounds were chosen based on level of activity and mechanism of action. Following in vitro confirmation, we focused on 5-azacytidine, a DNMT1 (DNA methyltransferase-1) inhibitor, for further analysis. In addition to PTEN upregulation, 5-azacytidine treatment increased expression of genes associated with a differentiated SMC phenotype. 5-Azacytidine treatment also maintained contractile gene expression and reduced inflammatory cytokine expression after PDGF (platelet-derived growth factor) stimulation, suggesting 5-azacytidine blocks PDGF-induced SMC de-differentiation. However, these protective effects were lost in PTEN-deficient SMCs. These findings were confirmed in vivo using carotid ligation in SMC-specific PTEN knockout mice treated with 5-azacytidine. In wild type controls, 5-azacytidine reduced neointimal formation and inflammation while maintaining contractile protein expression. In contrast, 5-azacytidine was ineffective in PTEN knockout mice, indicating that the protective effects of 5-azacytidine are mediated through SMC PTEN upregulation. CONCLUSIONS: Our data indicates 5-azacytidine upregulates PTEN expression in SMCs, promoting maintenance of SMC differentiation and reducing pathological vascular remodeling in a PTEN-dependent manner.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , PTEN Fosfo-Hidrolase/fisiologia , Remodelação Vascular/efeitos dos fármacos , Animais , Azacitidina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , Fator de Crescimento Derivado de Plaquetas/farmacologia , Regiões Promotoras Genéticas
8.
Cereb Cortex ; 30(2): 505-524, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31240311

RESUMO

Phosphatase and tensin homolog on chromosome 10 (PTEN) is a tumor suppressor and autism-associated gene that exerts an important influence over neuronal structure and function during development. In addition, it participates in synaptic plasticity processes in adulthood. As an attempt to assess synaptic and developmental mechanisms by which PTEN can modulate cognitive function, we studied the consequences of 2 different genetic manipulations in mice: presence of additional genomic copies of the Pten gene (Ptentg) and knock-in of a truncated Pten gene lacking its PDZ motif (Pten-ΔPDZ), which is required for interaction with synaptic proteins. Ptentg mice exhibit substantial microcephaly, structural hypoconnectivity, enhanced synaptic depression at cortico-amygdala synapses, reduced anxiety, and intensified social interactions. In contrast, Pten-ΔPDZ mice have a much more restricted phenotype, with normal synaptic connectivity, but impaired synaptic depression at cortico-amygdala synapses and virtually abolished social interactions. These results suggest that synaptic actions of PTEN in the amygdala contribute to specific behavioral traits, such as sociability. Also, PTEN appears to function as a bidirectional rheostat in the amygdala: reduction in PTEN activity at synapses is associated with less sociability, whereas enhanced PTEN activity accompanies hypersocial behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Plasticidade Neuronal , PTEN Fosfo-Hidrolase/fisiologia , Comportamento Social , Tonsila do Cerebelo/ultraestrutura , Animais , Feminino , Hipocampo/fisiologia , Masculino , Memória/fisiologia , Camundongos Transgênicos , Sinapses/fisiologia , Sinapses/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 115(16): E3722-E3730, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29602807

RESUMO

Cell migration requires the coordination of an excitable signal transduction network involving Ras and PI3K pathways with cytoskeletal activity. We show that expressing activated Ras GTPase-family proteins in cells lacking PTEN or other mutations which increase cellular protrusiveness transforms cells into a persistently activated state. Leading- and trailing-edge markers were found exclusively at the cell perimeter and the cytosol, respectively, of the dramatically flattened cells. In addition, the lifetimes of dynamic actin puncta were increased where they overlapped with actin waves, suggesting a mechanism for the coupling between these two networks. All of these phenotypes could be reversed by inhibiting signal transduction. Strikingly, maintaining cells in this state of constant activation led to a form of cell death by catastrophic fragmentation. These findings provide insight into the feedback loops that control excitability of the signal transduction network, which drives migration.


Assuntos
Dictyostelium/fisiologia , Proteínas de Protozoários/fisiologia , Transdução de Sinais/fisiologia , Citoesqueleto de Actina/fisiologia , Citoesqueleto de Actina/ultraestrutura , Adesão Celular , Movimento Celular , Forma Celular , Quimiotaxia , Dictyostelium/genética , Dictyostelium/ultraestrutura , Ativação Enzimática , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Mutação de Sentido Incorreto , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Fenótipo , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/fisiologia
10.
Carcinogenesis ; 41(11): 1605-1615, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32221533

RESUMO

Human papillomavirus (HPV) infection is necessary but insufficient for progression of epithelial cells from dysplasia to carcinoma-in situ (CIS) to invasive cancer. The combination of mutant cellular and viral oncogenes that regulate progression of cervical cancer (CC) remains unclear. Using combinations of HPV16 E6/E7 (E+), mutant Kras (mKras) (K+) and/or loss of Pten (P-/-), we generated autochthonous models of CC without exogenous estrogen, carcinogen or promoters. Furthermore, intravaginal instillation of adenoCre virus enabled focal activation of the oncogenes/inactivation of the tumor suppressor gene. In P+/+ mice, E6/E7 alone (P+/+E+K-) failed to cause premalignant changes, while mKras alone (P+/+E-K+) caused persistent mucosal abnormalities in about one-third of mice, but no cancers. To develop cancer, P+/+ mice needed both E6/E7 and mKras expression. Longitudinal endoscopies of P+/+E+K+ mice predicted carcinoma development by detection of mucosal lesions, found on an average of 23 weeks prior to death, unlike longitudinal quantitative PCRs of vaginal lavage samples from the same mice. Endoscopy revealed that individual mice differed widely in the time required for mucosal lesions to appear after adenoCre and in the time required for these lesions to progress to cancer. These cancers developed in the transition zone that extends, unlike in women, from the murine cervix to the distal vagina. The P-/-E+K+ genotype led to precipitous cancer development within a few weeks and E6/E7-independent cancer development occurred in the P-/-E-K+ genotype. In the P-/-E+K- genotype, mice only developed CIS. Thus, distinct combinations of viral and cellular oncogenes are involved in distinct steps in cervical carcinogenesis.


Assuntos
Carcinógenos/toxicidade , Endoscopia/métodos , Estrogênios/toxicidade , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias Vaginais/patologia , Animais , Carcinogênese , Feminino , Papillomavirus Humano 16/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , PTEN Fosfo-Hidrolase/fisiologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias Vaginais/diagnóstico por imagem , Neoplasias Vaginais/etiologia , Neoplasias Vaginais/metabolismo
11.
J Cell Mol Med ; 24(18): 11012-11017, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744427

RESUMO

Traumatic nerve injuries have become a common clinical problem, and axon regeneration is a critical process in the successful functional recovery of the injured nervous system. In this study, we found that peripheral axotomy reduces PTEN expression in adult sensory neurons; however, it did not alter the expression level of PTEN in IB4-positive sensory neurons. Additionally, our results indicate that the artificial inhibition of PTEN markedly promotes adult sensory axon regeneration, including IB4-positive neuronal axon growth. Thus, our results provide strong evidence that PTEN is a prominent repressor of adult sensory axon regeneration, especially in IB4-positive neurons.


Assuntos
Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Crescimento Neuronal/fisiologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fenantrenos/farmacologia , Lectinas de Plantas/análise , Neuropatia Ciática/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Crescimento Neuronal/efeitos dos fármacos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/efeitos dos fármacos
12.
Crit Rev Clin Lab Sci ; 57(7): 470-483, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32306805

RESUMO

Phosphatase and tensin homolog (PTEN) is a potent tumor suppressor gene that antagonizes the proto-oncogenic phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway and governs basic cellular metabolic processes. Recently, its role in cell growth, metabolism, architecture, and motility as an intramolecular and regulatory mediator has gained widespread research interest as it applies to non-tumorous diseases, such as insulin resistance (IR) and diabetic nephropathy (DN). DN is characterized by renal tubulointerstitial fibrosis (TIF) and epithelial-mesenchymal transition (EMT), and PTEN plays a significant role in the regulation of both. Epigenetics and microRNAs (miRNAs) are novel players in post-transcriptional regulation and research evidence demonstrates that they reduce the expression of PTEN by acting as key regulators of autophagy and TIF through activation of the Akt/mammalian target of rapamycin (mTOR) signaling pathway. These regulatory processes might play an important role in solving the complexities of DN pathogenesis and IR, as well as the therapeutic management of DN with the help of PTEN K27-linked polyubiquitination. Currently, there are no comprehensive reviews citing the role PTEN plays in the development of DN and its regulation via miRNA and epigenetic modifications. The present review explores these facets of PTEN in the pathogenesis of IR and DN.


Assuntos
Nefropatias Diabéticas/metabolismo , Resistência à Insulina/genética , PTEN Fosfo-Hidrolase/metabolismo , Autofagia/genética , Nefropatias Diabéticas/fisiopatologia , Epigênese Genética/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Fibrose/genética , Humanos , Masculino , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
13.
Neurobiol Dis ; 134: 104703, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838155

RESUMO

Pten, a gene associated with autism spectrum disorder, is an upstream regulator of receptor tyrosine kinase intracellular signaling pathways that mediate extracellular cues to inform cellular development and activity-dependent plasticity. We therefore hypothesized that Pten loss would interfere with activity dependent dendritic growth. We investigated the effects of this interaction on the maturation of retrovirally labeled postnatally generated wild-type and Pten knockout granule neurons in male and female mouse dentate gyrus while using chemogenetics to manipulate the activity of the perforant path afferents. We find that enhancing network activity accelerates the dendritic outgrowth of wild-type, but not Pten knockout, neurons. This was specific to immature neurons during an early developmental window. We also examined synaptic connectivity and physiological measures of neuron maturation. The input resistance, membrane capacitance, dendritic spine morphology, and frequency of spontaneous synaptic events were not differentially altered by activity in wild-type versus Pten knockout neurons. Therefore, Pten and its downstream signaling pathways regulate the activity-dependent sculpting of the dendritic arbor during neuronal maturation.


Assuntos
Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Giro Denteado/patologia , Giro Denteado/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Sinapses/patologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética
14.
Proc Natl Acad Sci U S A ; 114(13): E2689-E2698, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289190

RESUMO

Life history events, such as traumatic stress, illness, or starvation, can influence us through molecular changes that are recorded in a pattern of characteristic chromatin modifications. These modifications are often associated with adaptive adjustments in gene expression that can persist throughout the lifetime of the organism, or even span multiple generations. Although these adaptations may confer some selective advantage, if they are not appropriately regulated they can also be maladaptive in a context-dependent manner. We show here that during periods of acute starvation in Caenorhabditis elegans larvae, the master metabolic regulator AMP-activated protein kinase (AMPK) plays a critical role in blocking modifications to the chromatin landscape. This ensures that gene expression remains inactive in the germ-line precursors during adverse conditions. In its absence, critical chromatin modifications occur in the primordial germ cells (PGCs) of emergent starved L1 larvae that correlate with compromised reproductive fitness of the generation that experienced the stress, but also in the subsequent generations that never experienced the initial event. Our findings suggest that AMPK regulates the activity of the chromatin modifying COMPASS complex (complex proteins associated with Set1) to ensure that chromatin marks are not established until nutrient/energy contingencies are satisfied. Our study provides molecular insight that links metabolic adaptation to transgenerational epigenetic modification in response to acute periods of starvation.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Estresse Fisiológico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diapausa/genética , Epigênese Genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Reprodução/genética , Inanição
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(9): 1009-1014, 2020.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-33051413

RESUMO

OBJECTIVES: To investigate the effect of HBV infection on PTEN expression, and to explore the possible molecular mechanisms. METHODS: HepG2 cells and HepG2.2.15 cells were cultured under suitable conditions for 48 hours, and the expressions of PTEN, Nrf2 and pGSK3ß in HepG2 and HepG2.2.15 cells were detected by Western blotting. After the blank plasmid (EV) and the plasmid pWXL-Nrf2 were transiently transfected into HepG2 and HepG2.2.15 cells, respectively, the HepG2 and HepG2.2.15 cells were treated with the selective inhibitor of GSK3ß (25 nmol/L LiCl). After 48 h, the expressions of Nrf2, pGSK3ß and PTEN in HepG2 and HepG2.2.15 cells were examined by Western blotting. RESULTS: Expression of PTEN was reduced and the levels of Nrf2 and pGSK3ß were increased in HepG2.2.15 cells compared with those in the HepG2 cells (all P<0.05). After transfection with pWXL-Nrf2, the protein expression of Nrf2 and pGSK3ß in cells were significantly increased while the protein expression of PTEN was decreased (all P<0.05). Furthermore, LiCl treatment up-regulated the protein expression of Nrf2 and pGSK3ß, and eventually suppressed the production of PTEN (all P<0.05). CONCLUSIONS: HBV may down-regulate PTEN expression via Nrf2/GSK3ß signaling pathway, which may provide new ideas for the targeting therapy of hepatocellular carcinoma.


Assuntos
Neoplasias Hepáticas , Fator 2 Relacionado a NF-E2 , PTEN Fosfo-Hidrolase , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Vírus da Hepatite B/genética , Humanos , Fator 2 Relacionado a NF-E2/genética , PTEN Fosfo-Hidrolase/fisiologia , Transdução de Sinais
16.
J Neurosci ; 38(35): 7635-7648, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30030400

RESUMO

Memory retrieval induces a transient period of increased transcriptional and translational regulation in neurons called reconsolidation, which is regulated by the protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway. However, it is currently unknown how activation of the AKT-mTOR pathway is regulated during the reconsolidation process. Here, we found that in male rats retrieval of a contextual fear memory transiently increased Enhancer of Zeste Homolog 2 (EZH2) levels along with increased histone H3 lysine 27 trimethylation (H3K27me3) levels, which correlated with decreased levels of phosphatase and tensin homolog (PTEN), a potent inhibitor of AKT-mTOR-dependent signaling in the hippocampus. Further experiments found increased H3K27me3 levels and DNA methylation across the Pten promoter and coding regions, indicating transcriptional silencing of the Pten gene. Pten H3K27me3 levels did not change following training or after the retrieval of a remote (old) fear memory, suggesting that this mechanism of Pten repression was specific to the reconsolidation of a new memory. In vivo siRNA-mediated knockdown of Ezh2 in the hippocampus abolished retrieval-induced increases in H3K27me3 and prevented decreases in PTEN levels. Ezh2 knockdown attenuated increases in the phosphorylation of AKT and mTOR following retrieval, which could be restored by simultaneously reducing Pten, suggesting that H3K27me3 regulates AKT-mTOR phosphorylation via repression of Pten Consistent with these results, knockdown of Ezh2 in area CA1 before retrieval impaired memory on later tests. Collectively, these results suggest that EZH2-mediated H3K27me3 plays a critical role in the repression of Pten transcription necessary for AKT-mTOR activation and memory reconsolidation following retrieval.SIGNIFICANCE STATEMENT Understanding how critical translation pathways, like mTOR-mediated protein synthesis, are regulated during the memory storage process is necessary for improving memory impairments. This study tests whether mTOR activation is coupled to epigenetic mechanisms in the hippocampus following the retrieval of a contextual fear memory. Specifically, this study evaluates the role of epigenetic modifications in the form of histone methylation in downstream mTOR translational control during learning-dependent synaptic plasticity in neurons. Considering the broad implications of transcriptional and translational mechanisms in synaptic plasticity, psychiatric, and neurological and neurodegenerative disorders, these data are of interest to the neuroscience community due to the robust and specific regulation of mTOR signaling we found to be dependent on repressive histone methylation.


Assuntos
Região CA1 Hipocampal/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Medo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Imunoprecipitação da Cromatina , Eletrochoque , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histonas/genética , Masculino , Consolidação da Memória/fisiologia , Rememoração Mental , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
17.
Carcinogenesis ; 40(1): 41-51, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30475985

RESUMO

High-grade serous ovarian cancer (HGSOC) can originate in the fallopian tube epithelium (FTE), but the role of the ovary in these tumors is unclear. Tumorigenic murine oviductal epithelial (MOE) cells allografted in the ovarian bursa resulted in aggressive tumors that spread throughout the peritoneum whereas intraperitoneal xenografting the same number of cells did not form tumors, indicating that colonization of the ovary may play a role in metastasis. Physical tearing of the ovarian surface to mimic rupture of the ovary during ovulation (independent of hormonal changes) resulted in more MOE and HGSOC cells adhering to the ovary compared with intact ovaries. More MOE cells also adhered to three-dimensional (3D) collagen and primary ovarian stromal cells than to ovarian surface epithelia, indicating that FTE cells adhered to the extracellular matrix exposed during ovulation. However, plating cells on 3D collagen reduced the viability of normal FTE but not cancer cells. Mutation of p53 (R273H or R248W) and activation of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) (G12V) did not increase the viability of MOE cells on 3D collagen. In contrast, loss of phosphatase and tensin homolog (PTEN) allowed MOE cells to retain normal viability on 3D collagen. Loss of PTEN activated AKT and RAC1/c-jun N-terminal kinase signaling that each contributed to the increased viability, invasion and attachment in the collagen rich ovarian microenvironment. These results show that loss of PTEN activates multiple pathways that together enhance colonization of the ovary due to access to 3D collagen, which is a critical organ in the colonization of FTE-derived HGSOC.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias das Tubas Uterinas/patologia , Ovário/patologia , Animais , Linhagem Celular Tumoral , Feminino , MAP Quinase Quinase 4/fisiologia , Camundongos , Metástase Neoplásica , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia
18.
Am J Pathol ; 188(11): 2688-2702, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30165041

RESUMO

This study aimed to shed light on the molecular and cellular mechanisms responsible for initiation and progression of liver malignancies by examining the role of phosphatase and tensin homolog on chromosome 10 (Pten) in liver tumor progression in miR-122a (Mir122a)-null mice. We generated and monitored liver tumor initiation in Mir122a-null Pten heterozygous (Mir122a-/-;Pten+/- and Mir122a-/-;Alb-Cre;Ptenfx/+) mice and compared the results with those in Mir122a-/- mice. Both Mir122a-/-;Pten+/- and Mir122a-/-;Alb-Cre;Ptenfx/+ mice developed visible liver tumor nodules at 6 months of age. In premalignant livers of Mir122a-/-;Pten+/- mice, decreased PTEN and increased phosphorylated AKT were specifically observed in periportal cells, associated with inflammatory and fibrotic microenvironments. Furthermore, IL-1ß and tumor necrosis factor-α levels significantly increased in Mir122a-/-;Pten+/- premalignant livers at 6 months of age. Oval cells expressing A6, epithelial cell adhesion molecule, keratin (K) 8, K19, and SRY (sex determining region Y)-box 9 (SOX9) were present in both Mir122a-/- and Mir122a-/-;Pten+/- livers. Interestingly, a hybrid hepatocyte-like population with intermediate levels of K8, HNF4α, and SOX9 was located proximally to the oval cells in Mir122a-/-;Pten+/- livers. Lineage-tracing experiments revealed that these intermediate levels of K8 hepatocyte-like cells may be the cells of origin for Mir122a-/-;Pten+/- liver tumors. These findings suggest that inflammatory microenvironments in the periportal area of Mir122a-null mice may locally cause Pten down-regulation and expand tumor-initiating cells, causing hepatocellular carcinoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Hepatócitos/patologia , Neoplasias Hepáticas Experimentais/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/fisiologia , Microambiente Tumoral/imunologia , Animais , Feminino , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Queratina-8/genética , Queratina-8/metabolismo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
19.
Immunity ; 33(4): 597-606, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20933441

RESUMO

Dendritic cells (DCs) comprise distinct functional subsets including CD8⁻ and CD8(+) classical DCs (cDCs) and interferon-secreting plasmacytoid DCs (pDCs). The cytokine Flt3 ligand (Flt3L) controls the development of DCs and is particularly important for the pDC and CD8(+) cDC and their CD103(+) tissue counterparts. We report that mammalian target of rapamycin (mTOR) inhibitor rapamycin impaired Flt3L-driven DC development in vitro, with the pDCs and CD8(+)-like cDCs most profoundly affected. Conversely, deletion of the phosphoinositide 3-kinase (PI3K)-mTOR negative regulator Pten facilitated Flt3L-driven DC development in culture. DC-specific Pten targeting in vivo caused the expansion of CD8(+) and CD103(+) cDC numbers, which was reversible by rapamycin. The increased CD8(+) cDC numbers caused by Pten deletion correlated with increased susceptibility to the intracellular pathogen Listeria. Thus, PI3K-mTOR signaling downstream of Flt3L controls DC development, and its restriction by Pten ensures optimal DC pool size and subset composition.


Assuntos
Células Dendríticas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Antígenos CD/análise , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cadeias alfa de Integrinas/análise , Listeriose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
20.
Neurochem Res ; 44(11): 2658-2669, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31612303

RESUMO

Subarachnoid hemorrhage (SAH) is a form of stroke associated with high mortality and morbidity. Despite advances in treatment for SAH, the prognosis remains poor. We have previously demonstrated that glycine, a non-essential amino acid is involved in neuroprotection following intracerebral hemorrhage via the Phosphatase and tensin homolog (PTEN)/protein kinase B (AKT) signaling pathway. However, whether it has a role in inducing neuroprotection in SAH is not known. The present study was designed to investigate the role of glycine in SAH. In this study, we show that glycine can reduce brain edema and protect neurons in SAH via a novel pathway. Following a hemorrhagic episode, there is evidence of downregulation of S473 phosphorylation of AKT (p-AKT), and this can be reversed with glycine treatment. We also found that administration of glycine can reduce neuronal cell death in SAH by activating the AKT pathway. Glycine was shown to upregulate miRNA-26b, which led to PTEN downregulation followed by AKT activation, resulting in inhibition of neuronal death. Inhibition of miRNA-26b, PTEN or AKT activation suppressed the neuroprotective effects of glycine. Glycine treatment also suppressed SAH-induced M1 microglial polarization and thereby inflammation. Taken together, we conclude that glycine has neuroprotective effects in SAH and is mediated by the miRNA-26b/PTEN/AKT signaling pathway, which may be a therapeutic target for treatment of SAH injury.


Assuntos
Glicina/farmacologia , MicroRNAs/fisiologia , Fármacos Neuroprotetores/farmacologia , PTEN Fosfo-Hidrolase/fisiologia , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/fisiopatologia , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA