RESUMO
Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.
Assuntos
Interleucina 22 , Interleucinas , Pancreatite , Humanos , Interleucinas/metabolismo , Pancreatite/metabolismo , Pancreatite/imunologia , Animais , Doença AgudaRESUMO
PURPOSE OF REVIEW: Diabetes mellitus (DM) is relatively common following acute pancreatitis (AP), even after mild acute pancreatitis (MAP), the most frequent AP presentation, in which there is no overt beta cell injury. Post-AP related diabetes is widely misdiagnosed, resulting in potentially inappropriate treatment and worse outcomes than type 2 diabetes (T2D). Thus, it is important to understand risk across the spectrum of AP severity. RECENT FINDINGS: Biological mechanisms are unclear and may include local and systemic inflammation leading to beta cell dysfunction and insulin resistance, altered gut barrier and/or gut peptides and possibly islet autoimmunity, though no studies have specifically focused on MAP. While studies examining clinical risk factors on MAP exclusively are lacking, there are studies which include MAP. These studies vary in scientific rigor, approaches to rule out preexisting diabetes, variable AP severity, diagnostic testing methods, and duration of follow-up. Overall, disease related factors, including AP severity, as well as established T2D risk factors are reported to contribute to the risk for DM following AP. SUMMARY: Though numerous studies have explored risk factors for DM after AP, few studies specifically focused on MAP, highlighting a key knowledge gap that is relevant to the majority of patients with AP.
Assuntos
Diabetes Mellitus Tipo 2 , Pancreatite , Índice de Gravidade de Doença , Humanos , Fatores de Risco , Pancreatite/diagnóstico , Pancreatite/imunologia , Diabetes Mellitus Tipo 2/complicações , Doença AgudaRESUMO
PURPOSE OF REVIEW: Acute pancreatitis is a common acute inflammatory disorder of the pancreas, and its incidence has been increasing worldwide. Approximately 10% of acute pancreatitis progresses to severe acute pancreatitis (SAP), which carries significant morbidity and mortality. Disordered immune response to pancreatic injury is regarded as a key event that mediates systemic injury in SAP. In this article, we review recent developments in immune biomarkers of SAP and future directions for research. RECENT FINDINGS: Given the importance of the NLRP3-inflammasome pathway in mediating systemic inflammatory response syndrome and systemic injury, recent studies have investigated associations of SAP with systemic levels of activators of NLRP3, such as the damage associated molecular patterns (DAMPs) for the first time in human SAP. For example, circulating levels of histones, mitochondrial DNAs, and cell free DNAs have been associated with SAP. A panel of mechanistically relevant immune markers (e.g., panel of Angiopoeitin-2, hepatocyte growth factor, interleukin-8 (IL-8), resistin and sTNF-α R1) carried higher predictive accuracies than existing clinical scores and individual immune markers. Of the cytokines with established relevance to SAP pathogenesis, phase 2 trials of immunotherapies, including tumor necrosis factor (TNF)-alpha inhibition and stimulation of IL-10 production, are underway to determine if altering the immunologic response can reduce the severity of acute pancreatitis (AP). SUMMARY: Circulating systemic levels of various DAMPs and a panel of immune markers that possibly reflect activities of different pathways that drive SAP appear promising as predictive biomarkers for SAP. But larger multicenter studies are needed for external validation. Studies investigating immune cellular pathways driving SAP using immunophenotyping techniques are scarce. Interdisciplinary efforts are also needed to bring some of the promising biomarkers to the bedside for validation and testing for clinical utility. Studies investigating the role of and characterization of altered gut-lymph and gut-microbiota in severe AP are needed.
Assuntos
Biomarcadores , Pancreatite , Humanos , Biomarcadores/sangue , Pancreatite/imunologia , Pancreatite/sangue , Pancreatite/diagnóstico , Citocinas/sangue , Citocinas/imunologia , Índice de Gravidade de Doença , Doença Aguda , Inflamassomos/imunologiaRESUMO
BACKGROUND: Severe acute pancreatitis (SAP) is associated with tremendous systemic inflammation, T-helper 17 (Th17) cells, and regulatory T (Treg) cells play an essential role in the inflammatory responses. Meanwhile, soluble fibrinogen-like protein 2 (Sfgl2) is a critical immunosuppressive effector cytokine of Treg cells and modulates immune responses. However, the impact of SAP induction on Sfgl2 expression and the role of Sfgl2 in immunomodulation under SAP conditions are largely unknown. METHODS: A taurocholate-induced mouse SAP model was established. The ratios of CD4+CD25+Foxp3+ Treg cells or CD4+IL-17+ Th17 cells in blood and pancreatic tissues as well as surface expression of CD80, CD86, and major histocompatibility complex class II (MHC-II) were determined by flow cytometry. Gene mRNA expression was determined by qPCR. Serum amylase and soluble factors were quantitated by commercial kits. Bone marrow-derived dendritic cells (DCs) were generated, and NF-κB/p65 translocation was measured by immunofluorescence staining. RESULTS: SAP induction in mice decreased the Th17/Treg ratio in the pancreatic tissue and increased the Th17/Treg ratio in the peripheral blood. In addition, SAP was associated with a reduced level of Sfgl2 in the pancreatic tissue and blood: higher levels of serum IL-17, IL-2, IFN-α, and TNF-α, and lower levels of serum IL-4 and IL-10. Furthermore, the SAP-induced reduction in Sfgl2 expression was accompanied by dysregulated maturation of bone marrow-derived DCs. CONCLUSIONS: SAP causes reduced Sfgl2 expression and Th17/Treg imbalance, thus providing critical insights for the development of Sfgl2- and Th17/Treg balance-targeted immunotherapies for patients with SAP.
Assuntos
Modelos Animais de Doenças , Fibrinogênio , Pancreatite , Linfócitos T Reguladores , Ácido Taurocólico , Células Th17 , Animais , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Pancreatite/imunologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Camundongos , Fibrinogênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Regulação para Baixo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Doença Aguda , Pâncreas/imunologia , Pâncreas/patologia , Pâncreas/metabolismoRESUMO
Immunotherapy related adverse events are commonly seen with immune check point inhibitors therapy. We report the case of a 40-year-old female diagnosed with stage IVB endometroid grade III endometrial cancer, on pembrolizumab immunotherapy, an anti-programmed-death-receptor-1 (PD-1) antibody. Patient was referred for 18F-FDG PET/CT for restaging. 18F-FDG PET/CT demonstrated diffuse increased FDG uptake throughout the body of the pancreas associated with fat stranding in the peripancreatic region, suggestive of pembrolizumab-induced pancreatitis. The diagnosis was confirmed by elevated amylase and lipase levels. immune-related adverse events (irAE) are frequently identified on 18F-FDG PET-CT, which may lead to early diagnosis, close clinical follow-up, and appropriate clinical management of immune-related adverse events.
Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos , Fluordesoxiglucose F18 , Pancreatite , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Feminino , Humanos , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Pancreatite/imunologia , Pancreatite/induzido quimicamente , Pancreatite/diagnóstico por imagem , Compostos RadiofarmacêuticosRESUMO
AIM: We aimed to investigate the role and importance of immature granulocyte percentage and neutrophil/lymphocyte ratio in the etiology, diagnosis and follow-up of acute pancreatitis (AP) in patients tentatively diagnosed with AP in the emergency department. We evaluated these factors alongside other established markers proven effective in the diagnosis and follow-up of AP. MATERIAL AND METHODS: A total of 139 patients with a tentative diagnosis of acute pancreatitis who were hospitalized and followed up in the gastroenterology clinic in 2021â2022 were included in the study. In addition, a control group, consisting of 139 individuals admitted to the clinic for various other reasons, was established. The cases were also compared with the control group in terms of NLR, ICG and IG%. RESULTS: There was a significant difference in the NLR, IGC and IG% measurements between the patients in the AP group and the control group. In all three markers, the average values of the patient group were higher than those of the control group. Furthermore, a significant difference in IGC and IG% blood measurements was noted between sub-groups of patients categorized based on the severity of acute pancreatitis, particularly the patients with severe pancreatitis exhibited higher mean IGC and IG% blood measurements compared to those with mild or moderate pancreatitis. CONCLUSION: IGC and IG% values emerged as superior indicators to other acute-phase reactants for detecting inflammation, determining its severity, and establishing prognosis in acute pancreatitis. While the N/L ratio remains an important parameter in acute pancreatitis, our findings indicate that it was not significantly superior to other investigated markers in terms of prognosis (Tab. 5, Ref. 35).
Assuntos
Granulócitos , Linfócitos , Neutrófilos , Pancreatite , Valor Preditivo dos Testes , Humanos , Pancreatite/sangue , Pancreatite/diagnóstico , Pancreatite/imunologia , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Adulto , Granulócitos/patologia , Idoso , Doença Aguda , Contagem de Leucócitos , Biomarcadores/sangue , Índice de Gravidade de Doença , Estudos de Casos e ControlesRESUMO
A more comprehensive understanding of the molecular mechanisms underlying pancreatic diseases, including pancreatitis and cancer, is essential to improve clinical management. MEN1 has established roles in epigenetic regulation and tumor suppression in the endocrine pancreas; however, intriguing recent data suggest MEN1 may also function in the exocrine pancreas. Using physiologically relevant genetic mouse models, we provide direct evidence that Men1 is essential for exocrine pancreas homeostasis in response to inflammation and oncogenic stress. Men1 loss causes increased injury and impaired regeneration following acute caerulein-induced pancreatitis, leading to more severe damage, loss of the normal acinar compartment, and increased cytokeratin 19-positive metaplasias and immune cell infiltration. We further demonstrate the Men1 protein is stabilized in response to insult, and loss of Men1 is associated with the overexpression of proinflammatory Jund target genes, suggesting that loss of Men1-mediated repression of Jund activity is, at least in part, responsible for the impaired response. Finally, we demonstrate that Men1 loss significantly accelerates mutant Kras-dependent oncogenesis. Combined, this work establishes Men1 as an important mediator of pancreas homeostasis in vivo.
Assuntos
Carcinogênese/patologia , Homeostase , Inflamação/patologia , Pâncreas Exócrino/patologia , Neoplasias Pancreáticas/patologia , Pancreatite/patologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Biomarcadores/análise , Carcinogênese/imunologia , Carcinogênese/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Pâncreas Exócrino/imunologia , Pâncreas Exócrino/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/imunologia , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
BACKGROUND AND AIMS: Acute pancreatitis (AP) is an inflammatory disease with mild to severe course that is associated with local and systemic complications and significant mortality. Uncovering inflammatory pathways that lead to progression and recovery will inform ways to monitor and/or develop effective therapies. METHODS: We performed single-cell mass Cytometry by Time Of Flight (CyTOF) analysis to identify pancreatic and systemic inflammatory signals during mild AP (referred to as AP), severe AP (SAP), and recovery using 2 independent experimental models and blood from patients with AP and recurrent AP. Flow cytometric validation of monocytes subsets identified using CyTOF analysis was performed independently. RESULTS: Ly6C+ inflammatory monocytes were the most altered cells in the pancreas during experimental AP, recovery, and SAP. Deep profiling uncovered heterogeneity among pancreatic and blood monocytes and identified 7 novel subsets during AP and recovery, and 6 monocyte subsets during SAP. Notably, a dynamic shift in pancreatic CD206+ macrophage population was observed during AP and recovery. Deeper profiling of the CD206+ macrophage identified 7 novel subsets during AP, recovery, and SAP. Differential expression analysis of these novel monocyte and CD206+ macrophage subsets revealed significantly altered surface (CD44, CD54, CD115, CD140a, CD196, podoplanin) and functional markers (interferon-γ, interleukin 4, interleukin 22, latency associated peptide-transforming growth factor-ß, tumor necrosis factor-α, T-bet, RoRγt) that were associated with recovery and SAP. Moreover, a targeted functional analysis further revealed distinct expression of pro- and anti-inflammatory cytokines by pancreatic CD206+ macrophage subsets as the disease either progressed or resolved. Similarly, we identified heterogeneity among circulating classical inflammatory monocytes (CD14+CD16-) and novel subsets in patients with AP and recurrent AP. CONCLUSIONS: We identified several novel monocyte/macrophage subsets with unique phenotype and functional characteristics that are associated with AP, recovery, and SAP. Our findings highlight differential innate immune responses during AP progression and recovery that can be leveraged for future disease monitoring and targeting.
Assuntos
Imunidade Inata , Macrófagos/imunologia , Monócitos/imunologia , Pâncreas/imunologia , Pancreatite/imunologia , Animais , Biomarcadores/sangue , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Pâncreas/metabolismo , Pancreatite/sangue , Pancreatite/diagnóstico , Fenótipo , Recuperação de Função Fisiológica , Índice de Gravidade de Doença , Fatores de TempoRESUMO
Stringent regulation of the inflammatory response is crucial for normal tissue regeneration. Here, we analyzed the role of Toll-like receptor 3 (TLR3) in pancreatic regeneration after acute pancreatitis (AP). AP was induced by caerulein treatment in mice with global TLR3 deficiency (TLR3OFF ) or in mice re-expressing TLR3 exclusively in the myeloid cell lineage (TLR3Mye ). Compared to WT mice, TLR3OFF mice had a markedly increased formation of acinar-to-ductal metaplasia (ADM) that persisted until day 7 after initiation of AP. Pancreatic tissue of WT mice was completely regenerated after 5 days with no detectable ADM structures. The enhancing effect of TLR3-deficiency on ADM formation was closely linked with an increased and prolonged accumulation of macrophages in pancreata of TLR3OFF mice. Importantly, the phenotype of TLR3OFF mice was rescued in TLR3Mye mice, demonstrating the causative role of myeloid cell selective TLR3 signaling. Moreover, in vitro stimulation of macrophages through TLR3 initiated cell death by a caspase-8-associated mechanism. Therefore, these findings provide evidence that TLR3 signaling in myeloid cells is sufficient to limit inflammation and ADM formation and to promote regeneration after AP. Notably, resolution of inflammation after AP was associated with macrophage sensitivity to TLR3-mediated cell death.
Assuntos
Expressão Gênica , Células Mieloides/metabolismo , Pancreatite/genética , Pancreatite/metabolismo , Receptor 3 Toll-Like/genética , Doença Aguda , Animais , Biomarcadores , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Pancreatite/imunologia , Pancreatite/patologia , Regeneração/genética , Transdução de Sinais , Receptor 3 Toll-Like/metabolismoRESUMO
Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook.f., displays potent anti-inflammatory, antioxidant, and antiproliferative activities. In the present study, the effect of TP on acute pancreatitis and the underlying mechanisms of the disease were investigated using a caerulein-induced animal model of acute pancreatitis (AP) and an in vitro cell model. In vivo, pretreatment with TP notably ameliorated pancreatic damage, shown as the improvement in serum amylase and lipase levels and pancreatic morphology. Meanwhile, TP modulated the infiltration of neutrophils and macrophages (Ly6G staining and CD68 staining) and decreased the levels of proinflammatory factors (TNF-α and IL-6) through inhibiting the transactivation of nuclear factor-κB (NF-κB) in caerulein-treated mice. Furthermore, TP reverted changes in oxidative stress markers, including pancreatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), in acute pancreatitis mice. Additionally, TP pretreatment inhibited intracellular reactive oxygen species (ROS) levels via upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes expression (HO-1, SOD1, GPx1 and NQO1) in vitro. Taken together, our data suggest that TP exert protection against pancreatic inflammation and tissue damage by inhibiting NF-κB transactivation, modulating immune cell responses and activating the Nrf2-mediated antioxidative system, thereby alleviating acute pancreatitis.
Assuntos
Diterpenos/farmacologia , Pancreatite/tratamento farmacológico , Fenantrenos/farmacologia , Doença Aguda , Animais , Antioxidantes/farmacologia , Ceruletídeo/efeitos adversos , Ceruletídeo/farmacologia , China , Modelos Animais de Doenças , Diterpenos/metabolismo , Compostos de Epóxi/metabolismo , Compostos de Epóxi/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/metabolismo , Pancreatite/imunologia , Pancreatite/fisiopatologia , Fenantrenos/metabolismo , Espécies Reativas de OxigênioRESUMO
OBJECTIVE: Long-standing chronic pancreatitis is an established risk factor for pancreatic ductal adenocarcinoma (PDAC). Interleukin-1ß (IL-1ß) has been associated in PDAC with shorter survival. We employed murine models to investigate the mechanisms by which IL-1ß and chronic pancreatitis might contribute to PDAC progression. DESIGN: We crossed LSL-Kras+/G12D;Pdx1-Cre (KC) mice with transgenic mice overexpressing IL-1ß to generate KC-IL1ß mice, and followed them longitudinally. We used pancreatic 3D in vitro culture to assess acinar-to-ductal metaplasia formation. Immune cells were analysed by flow cytometry and immunohistochemical staining. B lymphocytes were adoptively transferred or depleted in Kras-mutant mice. B-cell infiltration was analysed in human PDAC samples. RESULTS: KC-IL1ß mice developed PDAC with liver metastases. IL-1ß treatment increased Kras+/G12D pancreatic spheroid formation. CXCL13 expression and B lymphocyte infiltration were increased in KC-IL1ß pancreata. Adoptive transfer of B lymphocytes from KC-IL1ß mice promoted tumour formation, while depletion of B cells prevented tumour progression in KC-IL1ß mice. B cells isolated from KC-IL1ß mice had much higher expression of PD-L1, more regulatory B cells, impaired CD8+ T cell activity and promoted tumorigenesis. IL-35 was increased in the KC-IL1ß pancreata, and depletion of IL-35 decreased the number of PD-L1+ B cells. Finally, in human PDAC samples, patients with PDAC with higher B-cell infiltration within tumours showed significantly shorter survival. CONCLUSION: We show here that IL-1ß promotes tumorigenesis in part by inducing an expansion of immune-suppressive B cells. These findings point to the growing significance of B suppressor cells in pancreatic tumorigenesis.
Assuntos
Linfócitos B/imunologia , Carcinoma Ductal Pancreático/etiologia , Tolerância Imunológica/imunologia , Neoplasias Pancreáticas/etiologia , Pancreatite/complicações , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Citometria de Fluxo , Interleucina-1beta/efeitos adversos , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/imunologia , Pancreatite/etiologia , Pancreatite/imunologiaRESUMO
BACKGROUND & AIMS: Mutations in the trypsinogen gene (PRSS1) cause human hereditary pancreatitis. However, it is not clear how mutant forms of PRSS1 contribute to disease development. We studied the effects of expressing mutant forms of human PRSS1 in mice. METHODS: We expressed forms of PRSS1 with and without the mutation encoding R122H (PRSS1R122H) specifically in pancreatic acinar cells under control of a full-length pancreatic elastase gene promoter. Mice that did not express these transgenes were used as controls. Mice were given injections of caerulein to induce acute pancreatitis or injections of lipopolysaccharide to induce chronic pancreatitis. Other groups of mice were fed ethanol or placed on a high-fat diet to induce pancreatitis. Pancreata were collected and analyzed by histology, immunoblots, real-time polymerase chain reaction, and immunohistochemistry. Trypsin enzymatic activity and chymotrypsin enzymatic activity were measured in pancreatic homogenates. Blood was collected and serum amylase activity was measured. RESULTS: Pancreata from mice expressing transgenes encoding PRSS1 or PRSS1R122H had focal areas of inflammation; these lesions were more prominent in mice that express PRSS1R122H. Pancreata from mice that express PRSS1 or PRSS1R122H had increased levels of heat shock protein 70 and nuclear factor (erythroid-derived 2)-like 2, and reduced levels of chymotrypsin C compared with control mice. Increased expression of PRSS1 or PRSS1R122H increased focal damage in pancreatic tissues and increased the severity of acute pancreatitis after caerulein injection. Administration of lipopolysaccharide exacerbated inflammation in mice that express PRSS1R122H compared to mice that express PRSS1 or control mice. Mice that express PRSS1R122H developed more severe pancreatitis after ethanol feeding or a high-fat diet than mice that express PRSS1 or control mice. Pancreata from mice that express PRSS1R122H had more DNA damage, apoptosis, and collagen deposition and increased trypsin activity and infiltration by inflammatory cells than mice that express PRSS1 or control mice. CONCLUSIONS: Expression of a transgene encoding PRSS1R122H in mice promoted inflammation and increased the severity of pancreatitis compared with mice that express PRSS1 or control mice. These mice might be used as a model for human hereditary pancreatitis and can be studied to determine mechanisms of induction of pancreatitis by lipopolysaccharide, ethanol, or a high-fat diet.
Assuntos
Imunidade Adaptativa/genética , Expressão Gênica/imunologia , Pancreatite/genética , Transgenes/imunologia , Tripsina/imunologia , Células Acinares/imunologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Pâncreas/imunologia , Pancreatite/imunologia , Tripsinogênio/imunologiaRESUMO
BACKGROUND & AIMS: Pancreatitis starts with primarily sterile local inflammation that induces systemic inflammatory response syndrome, followed by compensatory anti-inflammatory response syndrome (CARS). We investigated the mechanisms of these processes in mice and human serum. METHODS: We induced severe acute pancreatitis by partial duct ligation with caerulein stimulation or intraperitoneal injection of l-arginine in mice with deletion of interleukin (IL)12B, NLRP3, or IL18 and in mice given MCC950, a small molecule inhibitor of the NLRP3-inflammasome. Pancreata were collected from mice and analyzed by histology, and cytokine levels were measured in serum samples. We measured activation of adaptive immune responses in mice with pancreatitis by flow cytometry analysis of T cells (CD25 and CD69) isolated from the spleen. Differentiation of T-helper (Th1) cells, Th2 cells, and T-regulatory cells was determined by nuclear staining for TBET, GATA3, and FOXP3. We performed transcriptome analysis of mouse lymph nodes and bone marrow-derived macrophages after incubation with acini. We measured levels of cytokines in serum samples from patients with mild and severe acute pancreatitis. RESULTS: Activation of the adaptive immune response in mice was initiated by macrophage-derived, caspase 1-processed cytokines and required activation of NLRP3 (confirmed in serum samples from patients with pancreatitis). Spleen cells from mice with pancreatitis had increases in Th2 cells but not in Th1 cells. Bone marrow-derived macrophages secreted IL1B and IL18, but not IL12, after co-incubation with pancreatic acini. T-cell activation and severity of acute pancreatitis did not differ significantly between IL12B-deficient and control mice. In contrast, NLRP3- or IL18-deficient mice had reduced activation of T cells and no increase in Th2 cell-mediated responses compared with control mice. The systemic type 2 immune response was mediated by macrophage-derived cytokines of the IL1 family. Specifically, IL18 induced a Th2 cell-mediated response in the absence of IL12. MCC950 significantly reduced neutrophil infiltration, T-cell activation, and disease severity in mice. CONCLUSIONS: In mice with severe pancreatitis, we found systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome developed in parallel. Infiltrating macrophages promote inflammation and simultaneously induce a Th2 cell-mediated response via IL18. Inhibition of NLRP3 reduces systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome and might be used to treat patients with severe pancreatitis.
Assuntos
Furanos/administração & dosagem , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Pancreatite/imunologia , Sulfonamidas/administração & dosagem , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Células Acinares , Imunidade Adaptativa , Animais , Arginina/toxicidade , Células Cultivadas , Ceruletídeo/toxicidade , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Indenos , Injeções Intraperitoneais , Interleucina-18/imunologia , Interleucina-18/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Cultura Primária de Células , Sulfonas , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Células Th2/imunologia , Células Th2/metabolismoRESUMO
BACKGROUND & AIMS: Calcineurin is a ubiquitously expressed central Ca2+-responsive signaling molecule that mediates acute pancreatitis, but little is known about its effects. We compared the effects of calcineurin expression by hematopoietic cells vs pancreas in mouse models of pancreatitis and pancreatitis-associated lung inflammation. METHODS: We performed studies with mice with hematopoietic-specific or pancreas-specific deletion of protein phosphatase 3, regulatory subunit B, alpha isoform (PPP3R1, also called CNB1), in mice with deletion of CNB1 (Cnb1UBCâ³/â³) and in the corresponding controls for each deletion of CNB1. Acute pancreatitis was induced in mice by administration of caerulein or high-pressure infusion of radiocontrast into biliopancreatic ducts; some mice were also given intraductal infusions of an adeno-associated virus vector that expressed nuclear factor of activated T -cells (NFAT)-luciferase into pancreas. Pancreas, bone marrow, liver, kidney, heart, and lung were collected and analyzed by histopathology, immunohistochemistry, and immunoblots; levels of cytokines were measured in serum. Mouse and human primary pancreatic acinar cells were transfected with a vector that expressed NFAT-luciferase and incubated with an agent that blocks interaction of NFAT with calcineurin; cells were analyzed by immunofluorescence. Calcineurin-mediated neutrophil chemotaxis and reactive oxygen species production were measured in neutrophils from mice. RESULTS: Mice with hematopoietic-specific deletion of CNB1 developed the same level of local pancreatic inflammation as control mice after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts. Cnb1UBCâ³/â³ mice or mice with pancreas-specific deletion of CNB1 developed less severe pancreatitis and reduced pancreatic inflammation after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts compared with control mice. NFAT was activated in pancreas of Swiss Webster mice given caerulein or infusions of radiocontrast into biliopancreatic ducts. Blocking the interaction between calcineurin and NFAT did not reduce pancreatic acinar cell necrosis in response to caerulein or infusions of radiocontrast. Mice with hematopoietic-specific deletion of CNB1 (but not mice with pancreas-specific deletion of CNB1) had reduced infiltration of lung tissues by neutrophils. Neutrophil chemotaxis and production of reactive oxygen species were decreased after incubation with a calcineurin inhibitor. CONCLUSIONS: Hematopoietic and neutrophil expression of calcineurin promotes pancreatitis-associated lung inflammation, whereas pancreatic calcineurin promotes local pancreatic inflammation. The findings indicate that the protective effects of blocking or deleting calcineurin on pancreatitis are mediated by the source of its expression. This information should be used in the development of strategies to inhibit calcineurin for the prevention of pancreatitis and pancreatitis-associated lung inflammation.
Assuntos
Lesão Pulmonar Aguda/imunologia , Inibidores de Calcineurina/uso terapêutico , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Musculares/metabolismo , Pancreatite/imunologia , Células Acinares/metabolismo , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Calcineurina/genética , Calcineurina/imunologia , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Ceruletídeo/administração & dosagem , Ceruletídeo/toxicidade , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/complicações , Pancreatite/tratamento farmacológico , Cultura Primária de CélulasRESUMO
BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that invades surrounding structures and metastasizes rapidly. Although inflammation is associated with tumor formation and progression, little is known about the mechanisms of this connection. We investigate the effects of interleukin (IL) 22 in the development of pancreatic tumors in mice. METHODS: We performed studies with Pdx1-Cre;LSL-KrasG12D;Trp53+/-;Rosa26EYFP/+ (PKCY) mice, which develop pancreatic tumors, and PKCY mice with disruption of IL22 (PKCY Il22-/-mice). Pancreata were collected at different stages of tumor development and analyzed by immunohistochemistry, immunoblotting, real-time polymerase chain reaction, and flow cytometry. Some mice were given cerulean to induce pancreatitis. Pancreatic cancer cell lines (PD2560) were orthotopically injected into C57BL/6 mice or Il22-/-mice, and tumor development was monitored. Pancreatic cells were injected into the tail veins of mice, and lung metastases were quantified. Acini were collected from C57BL/6 mice and resected human pancreata and were cultured. Cell lines and acini cultures were incubated with IL22 and pharmacologic inhibitors, and protein levels were knocked down with small hairpin RNAs. We performed immunohistochemical analyses of 26 PDACs and 5 nonneoplastic pancreas specimens. RESULTS: We observed increased expression of IL22 and the IL22 receptor (IL22R) in the pancreas compared with other tissues in mice; IL22 increased with pancreatitis and tumorigenesis. Flow cytometry indicated that the IL22 was produced primarily by T-helper 22 cells. PKCY Il22-/-mice did not develop precancerous lesions or pancreatic tumors. The addition of IL22 to cultured acinar cells increased their expression of markers of ductal metaplasia; these effects of IL22 were prevented with inhibitors of Janus kinase signaling to signal transducer and activator of transcription (STAT) (ruxolitinib) or mitogen-activated protein kinase kinase (MEK) (trametinib) and with STAT3 knockdown. Pancreatic cells injected into Il22-/- mice formed smaller tumors than those injected into C57BL/6. Incubation of IL22R-expressing PDAC cells with IL22 promoted spheroid formation and invasive activity, resulting in increased expression of stem-associated transcription factors (GATA4, SOX2, SOX17, and NANOG), and increased markers of the epithelial-mesenchymal transition (CDH1, SNAI2, TWIST1, and beta catenin); ruxolitinib blocked these effects. Human PDAC tissues had higher levels of IL22, phosphorylated STAT3, and markers of the epithelial-mesenchymal transition than nonneoplastic tissues. An increased level of STAT3 in IL22R-positive cells was associated with shorter survival times of patients. CONCLUSIONS: We found levels of IL22 to be increased during pancreatitis and pancreatic tumor development and to be required for tumor development and progression in mice. IL22 promotes acinar to ductal metaplasia, stem cell features, and increased expression of markers of the epithelial-mesenchymal transition; inhibitors of STAT3 block these effects. Increased expression of IL22 by PDACs is associated with reduced survival times.
Assuntos
Células Acinares/patologia , Carcinoma Ductal Pancreático/imunologia , Transformação Celular Neoplásica/imunologia , Interleucinas/metabolismo , Neoplasias Pancreáticas/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Células Acinares/imunologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral/transplante , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/imunologia , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/imunologia , Feminino , Células HEK293 , Humanos , Interleucinas/imunologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Masculino , Metaplasia/imunologia , Metaplasia/patologia , Camundongos , Camundongos Knockout , Nitrilas , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Pancreatite/imunologia , Pancreatite/patologia , Pirazóis/farmacologia , Piridonas/farmacologia , Pirimidinas , Pirimidinonas/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Interleucina 22RESUMO
OBJECTIVES: The 2019 ACR/EULAR classification criteria for IgG4-related disease (IgG4-RD) have exclusion criteria including positive disease-specific autoantibodies, and these have been documented to have a high specificity. This study aimed to further validate these criteria as well as identify characteristics of patients showing false-negative results. METHODS: We retrospectively analysed 162 IgG4-RD patients and 130 mimickers. The sensitivity, specificity and fulfilment rates for each criterion were calculated, and intergroup comparisons were performed to characterize the false-negative cases. RESULTS: Both the IgG4-RD patients and mimickers were aged ≥65 years with male predominance. The final diagnoses of mimickers were mainly malignancy, vasculitis, sarcoidosis and aneurysm. The classification criteria had a sensitivity of 72.8% and specificity of 100%. Of the 44 false-negative cases, one did not fulfil the entry criteria, 20 fulfilled one exclusion criterion and 27 did not achieve sufficient inclusion criteria scores. The false-negative cases had fewer affected organs, lower serum IgG4 levels, and were less likely to have received biopsies than the true-positive cases. Notably, positive disease-specific autoantibodies were the most common exclusion criterion fulfilled in 18 patients, only two of whom were diagnosed with a specific autoimmune disease complicated by IgG4-RD. In addition, compared with the true-positive cases, the 18 had comparable serum IgG4 levels, number of affected organs, and histopathology and immunostaining scores despite higher serum IgG and CRP levels. CONCLUSIONS: The ACR/EULAR classification criteria for IgG4-RD have an excellent diagnostic specificity in daily clinical practice. Positive disease-specific autoantibodies may have limited clinical significance for the diagnosis of IgG4-RD.
Assuntos
Autoanticorpos/imunologia , Doença Relacionada a Imunoglobulina G4/diagnóstico , Idoso , Anticorpos Antiproteína Citrulinada/imunologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Anticorpos Antinucleares/imunologia , Aneurisma Aórtico/diagnóstico , Aneurisma Aórtico/imunologia , Doenças da Aorta/diagnóstico , Doenças da Aorta/imunologia , Aortite/diagnóstico , Aortite/imunologia , Hiperplasia do Linfonodo Gigante/diagnóstico , Hiperplasia do Linfonodo Gigante/imunologia , Dacriocistite/diagnóstico , Dacriocistite/imunologia , Diagnóstico Diferencial , Reações Falso-Negativas , Feminino , Humanos , Doença Relacionada a Imunoglobulina G4/imunologia , Nefropatias/diagnóstico , Nefropatias/imunologia , Linfoma/diagnóstico , Linfoma/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/imunologia , Pancreatopatias/diagnóstico , Pancreatopatias/imunologia , Pancreatite/diagnóstico , Pancreatite/imunologia , Estudos Retrospectivos , Doenças das Glândulas Salivares/diagnóstico , Doenças das Glândulas Salivares/imunologia , Sarcoidose/diagnóstico , Sarcoidose/imunologia , Sialadenite/diagnóstico , Sialadenite/imunologiaRESUMO
To investigate whether serum-soluble PD-L1 (sPD-L1) is a potential biomarker for identifying sepsis. This study enrolled 64 septic patients, 29 patients with acute appendicitis, 33 patients with acute pancreatitis and 30 healthy volunteers. Sepsis was defined according to the Sepsis 3.0 criteria.[1] The associated clinical parameters were recorded, blood samples were collected on the first day of diagnosis, and serum sPD-L1 levels were measured using enzyme-linked immunosorbent assays. Compared with the control group, a significant increase in sPD-L1 levels was observed in patients with sepsis (n = 64). Increased sPD-L1 expression correlated strongly with increased clinical inflammatory values (CRP, PCT and WBC) and decreased immunological functional parameters (CD3+ , CD4+ and CD8+ cell counts). The area under the ROC curve (AUC) for sPD-L1 in combination with the sequential organ failure assessment (SOFA) score was superior to the AUC for either sPD-L1 or SOFA score in regard to the diagnosis of sepsis. sPD-L1 may represent a valuable biomarker for the diagnosis of sepsis.
Assuntos
Antígeno B7-H1/sangue , Biomarcadores/sangue , Sepse/sangue , Doença Aguda , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Antígeno B7-H1/imunologia , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Pancreatite/sangue , Pancreatite/imunologia , Prognóstico , Curva ROC , Sepse/imunologia , Adulto JovemRESUMO
Autoimmune pancreatitis (AIP) is a pancreatic manifestation of a recently defined disease form known as IgG4-related disease (AIP/IgG4-RD). AIP/IgG4-RD is characterized by elevated systemic IgG4 antibody concentrations and lesional tissues infiltrated by IgG4-expressing plasmacytes. In addition, recent studies have revealed that, in common with other autoimmune diseases, such as systemic lupus erythematosus (SLE) and psoriasis, AIP/IgG4-RD is associated with increased type I IFN (IFN-I) production by plasmacytoid dendritic cells (pDCs). However, unlike SLE, AIP/IgG4-RD is characterized by elevated IFN-I-dependent IL-33 production, the latter emerging as an important contributor to inflammation and fibrotic responses characterizing this disease. On this basis, we propose that blockade of the IFN-I/IL-33 axis might constitute a successful approach to treating this unique type of autoimmunity.
Assuntos
Doenças Autoimunes/imunologia , Células Dendríticas/imunologia , Doença Relacionada a Imunoglobulina G4/imunologia , Pancreatite/imunologia , Animais , Modelos Animais de Doenças , Humanos , Interferon Tipo I/metabolismo , Interleucina-33/metabolismo , CamundongosRESUMO
The intracellular sensor NOD1 has important host-defense functions relating to a variety of pathogens. Here, we showed that this molecule also participates in the induction of a noninfectious pancreatitis via its response to commensal organisms. Pancreatitis induced by high-dose cerulein (a cholecystokinin receptor agonist) administration depends on NOD1 stimulation by gut microflora. To analyze this NOD1 activity, we induced pancreatitis by simultaneous administration of a low dose of cerulein (that does not itself induce pancreatitis) and FK156, an activator of NOD1 that mimics the effect of gut bacteria that have breached the mucosal barrier. The pancreatitis was dependent on acinar cell production of the chemokine MCP-1 and the intrapancreatic influx of CCR2(+) inflammatory cells. Moreover, MCP-1 production involved activation of the transcription factors NF-κB and STAT3, each requiring complementary NOD1 and cerulein signaling. These studies indicate that gut commensals enable noninfectious pancreatic inflammation via NOD1 signaling in pancreatic acinar cells.
Assuntos
Células Acinares/imunologia , Imunidade nas Mucosas/imunologia , Mucosa/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Pancreatite/imunologia , Acetilmuramil-Alanil-Isoglutamina/efeitos adversos , Animais , Bactérias/imunologia , Ceruletídeo/efeitos adversos , Quimiocina CCL2/biossíntese , Quimiocina CCL2/imunologia , Ácido Diaminopimélico/efeitos adversos , Ácido Diaminopimélico/análogos & derivados , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa/microbiologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Pancreatite/induzido quimicamente , Receptores CCR2/biossíntese , Receptores CCR2/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologiaRESUMO
BACKGROUND: Complications involving internal organs are usually present in Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). However, pancreatic complications are rarely reported and studied. OBJECTIVE: To summarize clinical characteristics of SJS/TEN-associated acute pancreatic injuries and to investigate underlying inflammatory mechanisms. METHODS: Clinical records of 124 inpatients with SJS/TEN were reviewed. Serum levels of tumor necrosis factor α, interleukin (IL) 6, IL-18, IL-15, IL-12p70, and soluble CD56 were determined in 18 healthy donors and 17 patients with SJS/TEN, including 3 with acute pancreatic injuries. RESULTS: Acute pancreatic injury was diagnosed in 7.3% of patients (9/124) in the SJS/TEN cohort. Elevation of serum transaminase level and hypoalbuminemia occurred more frequently in patients with acute pancreatic injuries compared with those without pancreatic symptoms (P = .004 and <.001, respectively). Although acute pancreatic injury did not alter mortality rate of SJS/TEN, it was associated with longer hospitalization stays (P = .008). Within the serum cytokines whose levels were elevated in SJS/TEN, only IL-18 was found to be selectively increased in patients with acute pancreatic injuries compared with those without them (P = .03). LIMITATIONS: Cohort was small. CONCLUSION: Acute pancreatic injury is a gastrointestinal complication of SJS/TEN in which hepatotoxicity is more likely to occur. Overexpression of IL-18 might be involved in this unique entity.