Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.146
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(5): 1026-1038.e20, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868208

RESUMO

Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.


Assuntos
Síndrome de Down , Receptores de N-Metil-D-Aspartato , Microglobulina beta-2 , Animais , Humanos , Camundongos , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacologia , Disfunção Cognitiva/metabolismo , Reações Cruzadas , Parabiose , Proteômica , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Síndrome de Down/sangue , Síndrome de Down/metabolismo
2.
Cell ; 182(3): 625-640.e24, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32702313

RESUMO

The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69+ CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. VIDEO ABSTRACT.


Assuntos
Encéfalo/citologia , Linfócitos T CD4-Positivos/metabolismo , Feto/citologia , Microglia/citologia , Microglia/metabolismo , Sinapses/metabolismo , Adulto , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Escala de Avaliação Comportamental , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Criança , Feminino , Feto/embriologia , Humanos , Lectinas Tipo C/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurogênese/genética , Parabiose , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Análise de Célula Única , Baço/citologia , Baço/metabolismo , Sinapses/imunologia , Transcriptoma
3.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474906

RESUMO

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Assuntos
Meduloblastoma/irrigação sanguínea , Meduloblastoma/patologia , Neoplasias Meníngeas/irrigação sanguínea , Neoplasias Meníngeas/secundário , Aloenxertos , Animais , Linhagem Celular Tumoral , Quimiocina CCL2/metabolismo , Cromossomos Humanos Par 10/genética , Feminino , Humanos , Masculino , Meduloblastoma/genética , Camundongos SCID , Células Neoplásicas Circulantes , Parabiose
4.
Nat Immunol ; 21(10): 1194-1204, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895539

RESUMO

Early atherosclerosis depends upon responses by immune cells resident in the intimal aortic wall. Specifically, the healthy intima is thought to be populated by vascular dendritic cells (DCs) that, during hypercholesterolemia, initiate atherosclerosis by being the first to accumulate cholesterol. Whether these cells remain key players in later stages of disease is unknown. Using murine lineage-tracing models and gene expression profiling, we reveal that myeloid cells present in the intima of the aortic arch are not DCs but instead specialized aortic intima resident macrophages (MacAIR) that depend upon colony-stimulating factor 1 and are sustained by local proliferation. Although MacAIR comprise the earliest foam cells in plaques, their proliferation during plaque progression is limited. After months of hypercholesterolemia, their presence in plaques is overtaken by recruited monocytes, which induce MacAIR-defining genes. These data redefine the lineage of intimal phagocytes and suggest that proliferation is insufficient to sustain generations of macrophages during plaque progression.


Assuntos
Aorta/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Placa Aterosclerótica/imunologia , Túnica Íntima/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Colesterol/metabolismo , Progressão da Doença , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parabiose , Fagocitose
5.
Nat Immunol ; 20(1): 29-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538339

RESUMO

Macrophages promote both injury and repair after myocardial infarction, but discriminating functions within mixed populations remains challenging. Here we used fate mapping, parabiosis and single-cell transcriptomics to demonstrate that at steady state, TIMD4+LYVE1+MHC-IIloCCR2- resident cardiac macrophages self-renew with negligible blood monocyte input. Monocytes partially replaced resident TIMD4-LYVE1-MHC-IIhiCCR2- macrophages and fully replaced TIMD4-LYVE1-MHC-IIhiCCR2+ macrophages, revealing a hierarchy of monocyte contribution to functionally distinct macrophage subsets. Ischemic injury reduced TIMD4+ and TIMD4- resident macrophage abundance, whereas CCR2+ monocyte-derived macrophages adopted multiple cell fates within infarcted tissue, including those nearly indistinguishable from resident macrophages. Recruited macrophages did not express TIMD4, highlighting the ability of TIMD4 to track a subset of resident macrophages in the absence of fate mapping. Despite this similarity, inducible depletion of resident macrophages using a Cx3cr1-based system led to impaired cardiac function and promoted adverse remodeling primarily within the peri-infarct zone, revealing a nonredundant, cardioprotective role of resident cardiac macrophages.


Assuntos
Macrófagos/fisiologia , Infarto do Miocárdio/imunologia , Miocárdio/patologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular , Linhagem da Célula , Autorrenovação Celular , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Parabiose , Receptores CCR2/genética , Receptores CCR2/metabolismo , Análise de Célula Única , Remodelação Ventricular , Proteínas de Transporte Vesicular/metabolismo
6.
Nat Immunol ; 20(6): 677-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110312

RESUMO

Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Proliferação de Células , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Obesidade/tratamento farmacológico , Parabiose , Ligação Proteica , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
Cell ; 164(5): 884-95, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26919427

RESUMO

Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Precondicionamento Isquêmico , Ácidos Cetoglutáricos/metabolismo , Animais , Isquemia/prevenção & controle , Ácido Cinurênico/metabolismo , Fígado/metabolismo , Camundongos , Modelos Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Parabiose
9.
Nat Immunol ; 17(7): 797-805, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135602

RESUMO

Perivascular, subdural meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It was assumed that they have a high turnover from blood-borne monocytes. However, using parabiosis and fate-mapping approaches in mice, we found that CNS macrophages arose from hematopoietic precursors during embryonic development and established stable populations, with the notable exception of choroid plexus macrophages, which had dual origins and a shorter life span. The generation of CNS macrophages relied on the transcription factor PU.1, whereas the MYB, BATF3 and NR4A1 transcription factors were not required.


Assuntos
Sistema Nervoso Central/imunologia , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/fisiologia , Microglia/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Monócitos/imunologia , Parabiose , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
10.
Cell ; 153(4): 828-39, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663781

RESUMO

The most common form of heart failure occurs with normal systolic function and often involves cardiac hypertrophy in the elderly. To clarify the biological mechanisms that drive cardiac hypertrophy in aging, we tested the influence of circulating factors using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation. After 4 weeks of exposure to the circulation of young mice, cardiac hypertrophy in old mice dramatically regressed, accompanied by reduced cardiomyocyte size and molecular remodeling. Reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of parabiosis, implicating a blood-borne factor. Using modified aptamer-based proteomics, we identified the TGF-ß superfamily member GDF11 as a circulating factor in young mice that declines with age. Treatment of old mice to restore GDF11 to youthful levels recapitulated the effects of parabiosis and reversed age-related hypertrophy, revealing a therapeutic opportunity for cardiac aging.


Assuntos
Envelhecimento , Proteínas Morfogenéticas Ósseas/metabolismo , Cardiomegalia/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Miócitos Cardíacos/metabolismo , Parabiose , Animais , Pressão Sanguínea , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia
11.
Nature ; 603(7900): 309-314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236985

RESUMO

The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality1. Although an increasing number of interventions show promise for rejuvenation2, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, haematopoietic stem cells and hepatocytes are among those cell types that are especially responsive. On the pathway level, young blood invokes new gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. We observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it in select cell types. Together, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.


Assuntos
Parabiose , Análise de Célula Única , Adipócitos , Envelhecimento/genética , Transporte de Elétrons/genética , Células-Tronco Hematopoéticas , Hepatócitos , Células-Tronco Mesenquimais , Mitocôndrias , Especificidade de Órgãos/genética , RNA-Seq , Rejuvenescimento
12.
Nat Immunol ; 15(10): 929-937, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25151491

RESUMO

The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2-dependent influx of Ly6C(hi) monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.


Assuntos
Mucosa Intestinal/imunologia , Intestinos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Transplante de Medula Óssea , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Diferenciação Celular/imunologia , Proliferação de Células , Citometria de Fluxo , Expressão Gênica/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Imunológicos , Monócitos/metabolismo , Parabiose , Receptores CCR2/genética , Receptores CCR2/imunologia , Receptores CCR2/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001624

RESUMO

Anatomical positioning of memory lymphocytes within barrier tissues accelerates secondary immune responses and is thought to be essential for protection at mucosal surfaces. However, it remains unclear whether resident memory in the female reproductive tract (FRT) is required for Chlamydial immunity. Here, we describe efficient generation of tissue-resident memory CD4 T cells and memory lymphocyte clusters within the FRT after vaginal infection with Chlamydia Despite robust establishment of localized memory lymphocytes within the FRT, naïve mice surgically joined to immune mice, or mice with only circulating immunity following intranasal immunization, were fully capable of resisting Chlamydia infection via the vaginal route. Blocking the rapid mobilization of circulating memory CD4 T cells to the FRT inhibited this protective response. These data demonstrate that secondary protection in the FRT can occur in the complete absence of tissue-resident immune cells. The ability to confer robust protection to barrier tissues via circulating immune memory provides an unexpected opportunity for vaccine development against infections of the FRT.


Assuntos
Anticorpos Antibacterianos/biossíntese , Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Genitália Feminina/imunologia , Imunização/métodos , Administração Intranasal , Administração Intravaginal , Animais , Antígenos de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/microbiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia muridarum/efeitos dos fármacos , Chlamydia muridarum/crescimento & desenvolvimento , Chlamydia muridarum/patogenicidade , Feminino , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/microbiologia , Imunidade nas Mucosas/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Camundongos , Parabiose/métodos
14.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791505

RESUMO

In contrast to the hypothesis that aging results from cell-autonomous deterioration processes, the programmed longevity theory proposes that aging arises from a partial inactivation of a "longevity program" aimed at maintaining youthfulness in organisms. Supporting this hypothesis, age-related changes in organisms can be reversed by factors circulating in young blood. Concordantly, the endocrine secretion of exosomal microRNAs (miRNAs) by hypothalamic neural stem cells (htNSCs) regulates the aging rate by enhancing physiological fitness in young animals. However, the specific molecular mechanisms through which hypothalamic-derived miRNAs exert their anti-aging effects remain unexplored. Using experimentally validated miRNA-target gene interactions and single-cell transcriptomic data of brain cells during aging and heterochronic parabiosis, we identify the main pathways controlled by these miRNAs and the cell-type-specific gene networks that are altered due to age-related loss of htNSCs and the subsequent decline in specific miRNA levels in the cerebrospinal fluid (CSF). Our bioinformatics analysis suggests that these miRNAs modulate pathways associated with senescence and cellular stress response, targeting crucial genes such as Cdkn2a, Rps27, and Txnip. The oligodendrocyte lineage appears to be the most responsive to age-dependent loss of exosomal miRNA, leading to significant derepression of several miRNA target genes. Furthermore, heterochronic parabiosis can reverse age-related upregulation of specific miRNA-targeted genes, predominantly in brain endothelial cells, including senescence promoting genes such as Cdkn1a and Btg2. Our findings support the presence of an anti-senescence mechanism triggered by the endocrine secretion of htNSC-derived exosomal miRNAs, which is associated with a youthful transcriptional signature.


Assuntos
Envelhecimento , Exossomos , Hipotálamo , MicroRNAs , Células-Tronco Neurais , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Hipotálamo/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Redes Reguladoras de Genes , Senescência Celular/genética , Encéfalo/metabolismo , Camundongos , Parabiose , Oligodendroglia/metabolismo , Transcriptoma , Regulação da Expressão Gênica , Perfilação da Expressão Gênica
15.
Blood ; 137(20): 2770-2784, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33512478

RESUMO

Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.


Assuntos
Células Dendríticas/fisiologia , Inflamação/patologia , Doenças da Imunodeficiência Primária/fisiopatologia , Receptores CXCR4/fisiologia , Verrugas/fisiopatologia , Alphapapillomavirus/genética , Animais , Benzilaminas/farmacologia , Contagem de Células , Diferenciação Celular , Quimiocina CXCL12/fisiologia , Quimiotaxia , Ciclamos/farmacologia , Células Dendríticas/classificação , Epiderme/patologia , Feminino , Técnicas de Introdução de Genes , Genes Virais , Humanos , Inflamação/metabolismo , Células de Langerhans/fisiologia , Tecido Linfoide/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Especificidade de Órgãos , Parabiose , Doenças da Imunodeficiência Primária/sangue , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/patologia , Proteínas Recombinantes/metabolismo , Verrugas/sangue , Verrugas/genética , Verrugas/patologia
16.
PLoS Biol ; 18(2): e3000629, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32097406

RESUMO

Human biology has evolved to keep body fat within a range that supports survival. During the last 25 years, obesity biologists have uncovered key aspects of physiology that prevent fat mass from becoming too low. In contrast, the mechanisms that counteract excessive adipose expansion are largely unknown. Evidence dating back to the 1950s suggests the existence of a blood-borne molecule that defends against weight gain. In this article, we discuss the research supporting an "unidentified factor of overfeeding" and models that explain its role in body weight control. If it exists, revealing the identity of this factor could end a long-lasting enigma of energy balance regulation and facilitate a much-needed breakthrough in the pharmacological treatment of obesity.


Assuntos
Depressores do Apetite/metabolismo , Peso Corporal/fisiologia , Hormônios/metabolismo , Tecido Adiposo/metabolismo , Animais , Depressores do Apetite/sangue , Hormônios/sangue , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Obesidade/genética , Obesidade/metabolismo , Parabiose , Aumento de Peso/fisiologia
17.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902330

RESUMO

Aging is associated with inflammation and oxidative stress in the lacrimal gland (LG). We investigated if heterochronic parabiosis of mice could modulate age-related LG alterations. In both males and females, there were significant increases in total immune infiltration in isochronic aged LGs compared to that in isochronic young LGs. Male heterochronic young LGs were significantly more infiltrated compared to male isochronic young LGs. While both females and males had significant increases in inflammatory and B-cell-related transcripts in isochronic and heterochronic aged LGs compared to levels isochronic and heterochronic young LGs, females had a greater fold expression of some of these transcripts than males. Through flow cytometry, specific subsets of B cells were increased in the male heterochronic aged LGs compared to those in male isochronic aged LGs. Our results indicate that serum soluble factors from young mice were not enough to reverse inflammation and infiltrating immune cells in aged tissues and that there were specific sex-related differences in parabiosis treatment. This suggests that age-related changes in the LG microenvironment/architecture participate in perpetuating inflammation, which is not reversible by exposure to youthful systemic factors. In contrast, male young heterochronic LGs were significantly worse than their isochronic counterparts, suggesting that aged soluble factors can enhance inflammation in the young host. Therapies that aim at improving cellular health may have a stronger impact on improving inflammation and cellular inflammation in LGs than parabiosis.


Assuntos
Dacriocistite , Aparelho Lacrimal , Feminino , Masculino , Camundongos , Animais , Aparelho Lacrimal/metabolismo , Dacriocistite/metabolismo , Envelhecimento , Inflamação/metabolismo , Parabiose
18.
J Neuroinflammation ; 19(1): 295, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494807

RESUMO

BACKGROUND: Characterizing immune cells and conditions that govern their recruitment and function in autoimmune diseases of the nervous system or in neurodegenerative processes is an area of active investigation. We sought to analyze the origin of antigen presenting cells associated with the induction of retinal autoimmunity using a system that relies on spontaneous autoimmunity, thus avoiding uncertainties associated with immunization with adjuvants at remotes sites or adoptive transfer of in vitro activated T cells. METHODS: R161H mice (B10.RIII background), which spontaneously and rapidly develop severe spontaneous autoimmune uveoretinitis (SAU), were crossed to CD11cDTR/GFP mice (B6/J) allowing us to track the recruitment to and/or expansion within the retina of activated, antigen presenting cells (GFPhi cells) in R161H+/- × CD11cDTR/GFP F1 mice relative to the course of SAU. Parabiosis between R161H+/- × CD11cDTR/GFP F1 mice and B10.RIII × B6/J F1 (wild-type recipient) mice was done to explore the origin and phenotype of antigen presenting cells crucial for the induction of autoimmunity. Analysis was done by retinal imaging, flow cytometry, and histology. RESULTS: Onset of SAU in R161H+/- × CD11cDTR/GFP F1 mice was delayed relative to B10.RIII-R161H+/- mice revealing a disease prophase prior to frank autoimmunity that was characterized by expansion of GFPhi cells within the retina prior to any clinical or histological evidence of autoimmunity. Parabiosis between mice carrying the R161H and CD11cDTR/GFP transgenes and transgene negative recipients showed that recruitment of circulating GFPhi cells into retinas was highly correlative with the occurrence of SAU. CONCLUSIONS: Our results here contrast with our previous findings showing that retinal antigen presenting cells expanding in response to either sterile mechanical injury or neurodegeneration were derived from myeloid cells within the retina or optic nerve, thus highlighting a unique facet of retinal autoimmunity.


Assuntos
Doenças Autoimunes , Retina , Camundongos , Animais , Camundongos Transgênicos , Modelos Animais de Doenças , Retina/patologia , Células Apresentadoras de Antígenos , Parabiose , Camundongos Endogâmicos C57BL
19.
Immunity ; 38(4): 792-804, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23601688

RESUMO

Despite accumulating evidence suggesting local self-maintenance of tissue macrophages in the steady state, the dogma remains that tissue macrophages derive from monocytes. Using parabiosis and fate-mapping approaches, we confirmed that monocytes do not show significant contribution to tissue macrophages in the steady state. Similarly, we found that after depletion of lung macrophages, the majority of repopulation occurred by stochastic cellular proliferation in situ in a macrophage colony-stimulating factor (M-Csf)- and granulocyte macrophage (GM)-CSF-dependent manner but independently of interleukin-4. We also found that after bone marrow transplantation, host macrophages retained the capacity to expand when the development of donor macrophages was compromised. Expansion of host macrophages was functional and prevented the development of alveolar proteinosis in mice transplanted with GM-Csf-receptor-deficient progenitors. Collectively, these results indicate that tissue-resident macrophages and circulating monocytes should be classified as mononuclear phagocyte lineages that are independently maintained in the steady state.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pulmão/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Adulto , Animais , Transplante de Medula Óssea , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Homeostase , Humanos , Interleucina-4/metabolismo , Macrófagos/transplante , Camundongos , Camundongos Knockout , Camundongos Mutantes , Parabiose , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
20.
Circ Res ; 127(5): 677-692, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32493166

RESUMO

RATIONALE: Unproven theories abound regarding the long-range uptake and endocrine activity of extracellular blood-borne microRNAs into tissue. In pulmonary hypertension (PH), microRNA-210 (miR-210) in pulmonary endothelial cells promotes disease, but its activity as an extracellular molecule is incompletely defined. OBJECTIVE: We investigated whether chronic and endogenous endocrine delivery of extracellular miR-210 to pulmonary vascular endothelial cells promotes PH. METHODS AND RESULTS: Using miR-210 replete (wild-type [WT]) and knockout mice, we tracked blood-borne miR-210 using bone marrow transplantation and parabiosis (conjoining of circulatory systems). With bone marrow transplantation, circulating miR-210 was derived predominantly from bone marrow. Via parabiosis during chronic hypoxia to induce miR-210 production and PH, miR-210 was undetectable in knockout-knockout mice pairs. However, in plasma and lung endothelium, but not smooth muscle or adventitia, miR-210 was observed in knockout mice of WT-knockout pairs. This was accompanied by downregulation of miR-210 targets ISCU (iron-sulfur assembly proteins)1/2 and COX10 (cytochrome c oxidase assembly protein-10), indicating endothelial import of functional miR-210. Via hemodynamic and histological indices, knockout-knockout pairs were protected from PH, whereas knockout mice in WT-knockout pairs developed PH. In particular, pulmonary vascular engraftment of miR-210-positive interstitial lung macrophages was observed in knockout mice of WT-knockout pairs. To address whether engrafted miR-210-positive myeloid or lymphoid cells contribute to paracrine miR-210 delivery, we studied miR-210 knockout mice parabiosed with miR-210 WT; Cx3cr1 knockout mice (deficient in myeloid recruitment) or miR-210 WT; Rag1 knockout mice (deficient in lymphocytes). In both pairs, miR-210 knockout mice still displayed miR-210 delivery and PH, thus demonstrating a pathogenic endocrine delivery of extracellular miR-210. CONCLUSIONS: Endogenous blood-borne transport of miR-210 into pulmonary vascular endothelial cells promotes PH, offering fundamental insight into the systemic physiology of microRNA activity. These results also describe a platform for RNA-mediated crosstalk in PH, providing an impetus for developing blood-based miR-210 technologies for diagnosis and therapy in this disease.


Assuntos
Endotélio Vascular/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/irrigação sanguínea , MicroRNAs/metabolismo , Animais , Transplante de Medula Óssea , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/sangue , MicroRNAs/genética , Parabiose , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA