Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.356
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 639-665, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33646858

RESUMO

Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.


Assuntos
Helmintíase , Helmintos , Parasitos , Animais , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Linfócitos , Linfócitos T
2.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34536345

RESUMO

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Parasitos/fisiologia , Proteólise , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Engenharia Genética , Humanos , Insetos/fisiologia , Modelos Biológicos , Fenótipo , Fotoperíodo , Filogenia , Phytoplasma/fisiologia , Desenvolvimento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Reprodução , Nicotiana , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Cell ; 183(1): 258-268.e12, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860739

RESUMO

Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.


Assuntos
Proteínas de Transporte de Monossacarídeos/ultraestrutura , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Sequência de Aminoácidos , Animais , Antimaláricos , Transporte Biológico , Glucose/metabolismo , Humanos , Malária , Malária Falciparum/parasitologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Parasitos , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Açúcares/metabolismo
4.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730853

RESUMO

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Assuntos
Genoma de Protozoário , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Alelos , Amino Açúcares/biossíntese , Animais , Culicidae/parasitologia , Eritrócitos/parasitologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Modelos Biológicos , Mutação/genética , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fenótipo , Plasmodium berghei/metabolismo , Ploidias , Reprodução
5.
Cell ; 171(7): 1474-1476, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29245007

RESUMO

Sexual differentiation of the malaria parasite is a pre-requisite for transmission from humans to the mosquito vector and has emerged as a target for intervention in eradication efforts. In this issue of Cell, a study from Marti, Clardy, and colleagues (Brancucci et al., 2017) describes a host-derived lipid lysophosphatidylcholine (LysoPC) that regulates sexual commitment.


Assuntos
Malária , Parasitos , Animais , Diferenciação Celular , Humanos , Lisofosfatidilcolinas , Plasmodium falciparum , Diferenciação Sexual
6.
Nature ; 625(7995): 578-584, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123677

RESUMO

The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.


Assuntos
Eritrócitos , Malária Falciparum , Complexos Multiproteicos , Parasitos , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Anticorpos Neutralizantes/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Microscopia Crioeletrônica , Dissulfetos/química , Dissulfetos/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Merozoítos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Parasitos/metabolismo , Parasitos/patogenicidade , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura
7.
Nature ; 620(7972): 218-225, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438532

RESUMO

Retrotransposons are highly enriched in the animal genome1-3. The activation of retrotransposons can rewrite host DNA information and fundamentally impact host biology1-3. Although developmental activation of retrotransposons can offer benefits for the host, such as against virus infection, uncontrolled activation promotes disease or potentially drives ageing1-5. After activation, retrotransposons use their mRNA as templates to synthesize double-stranded DNA for making new insertions in the host genome1-3,6. Although the reverse transcriptase that they encode can synthesize the first-strand DNA1-3,6, how the second-strand DNA is generated remains largely unclear. Here we report that retrotransposons hijack the alternative end-joining (alt-EJ) DNA repair process of the host for a circularization step to synthesize their second-strand DNA. We used Nanopore sequencing to examine the fates of replicated retrotransposon DNA, and found that 10% of them achieve new insertions, whereas 90% exist as extrachromosomal circular DNA (eccDNA). Using eccDNA production as a readout, further genetic screens identified factors from alt-EJ as essential for retrotransposon replication. alt-EJ drives the second-strand synthesis of the long terminal repeat retrotransposon DNA through a circularization process and is therefore necessary for eccDNA production and new insertions. Together, our study reveals that alt-EJ is essential in driving the propagation of parasitic genomic retroelements. Our study uncovers a conserved function of this understudied DNA repair process, and provides a new perspective to understand-and potentially control-the retrotransposon life cycle.


Assuntos
Reparo do DNA por Junção de Extremidades , Replicação do DNA , DNA Circular , Parasitos , Retroelementos , Animais , Retroelementos/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Moldes Genéticos , DNA Circular/biossíntese , DNA Circular/genética , DNA Circular/metabolismo , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Parasitos/genética , Genoma/genética
8.
Annu Rev Microbiol ; 77: 255-276, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268002

RESUMO

Plasmodium falciparum, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in P. falciparum. Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.


Assuntos
Malária Falciparum , Parasitos , Humanos , Animais , Montagem e Desmontagem da Cromatina , Epigênese Genética , Cromatina/genética
9.
Nature ; 612(7940): 528-533, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477538

RESUMO

Sexual reproduction and meiotic sex are deeply rooted in the eukaryotic tree of life, but mechanisms determining sex or mating types are extremely varied and are only well characterized in a few model organisms1. In malaria parasites, sexual reproduction coincides with transmission to the vector host. Sex determination is non-genetic, with each haploid parasite capable of producing either a male or a female gametocyte in the human host2. The hierarchy of events and molecular mechanisms that trigger sex determination and maintenance of sexual identity are yet to be elucidated. Here we show that the male development 1 (md1) gene is both necessary and sufficient for male fate determination in the human malaria parasite Plasmodium falciparum. We show that Md1 has a dual function stemming from two separate domains: in sex determination through its N terminus and in male development from its conserved C-terminal LOTUS/OST-HTH domain. We further identify a bistable switch at the md1 locus, which is coupled with sex determination and ensures that the male-determining gene is not expressed in the female lineage. We describe one of only a few known non-genetic mechanisms of sex determination in a eukaryote and highlight Md1 as a potential target for interventions that block malaria transmission.


Assuntos
Regulação da Expressão Gênica , Malária Falciparum , Malária , Parasitos , Processos de Determinação Sexual , Transcrição Gênica , Animais , Humanos , Malária/parasitologia , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Reprodução , Masculino , Feminino , Processos de Determinação Sexual/genética , Caracteres Sexuais
10.
Nature ; 611(7936): 563-569, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352220

RESUMO

Malaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development at the molecular level remain unknown. Here we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host and parasite temporal expression programmes in a zonally controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, including potentially co-adaptive programmes related to iron and fatty acid metabolism. We find that parasites develop more rapidly in the pericentral lobule zones and identify a subpopulation of periportally biased hepatocytes that harbour abortive infections, reduced levels of Plasmodium transcripts and parasitophorous vacuole breakdown. These 'abortive hepatocytes', which appear predominantly with high parasite inoculum, upregulate immune recruitment and key signalling programmes. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights the heterogeneous behaviour of both the parasite and the host hepatocyte.


Assuntos
Regulação da Expressão Gênica , Hepatócitos , Fígado , Malária , Parasitos , Plasmodium berghei , Análise de Célula Única , Animais , Hepatócitos/citologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Fígado/anatomia & histologia , Fígado/citologia , Fígado/imunologia , Fígado/parasitologia , Malária/genética , Malária/imunologia , Malária/parasitologia , Parasitos/genética , Parasitos/imunologia , Parasitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Plasmodium berghei/metabolismo , Imagem Individual de Molécula , Análise de Sequência de RNA , Ferro/metabolismo , Ácidos Graxos/metabolismo , Transcrição Gênica , Genes de Protozoários/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia
11.
Nature ; 602(7895): 106-111, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883497

RESUMO

Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations.


Assuntos
Genótipo , Hemoglobina Falciforme/genética , Adaptação ao Hospedeiro/genética , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Alelos , Animais , Criança , Feminino , Gâmbia/epidemiologia , Genes de Protozoários/genética , Humanos , Quênia/epidemiologia , Desequilíbrio de Ligação , Malária Falciparum/epidemiologia , Masculino , Polimorfismo Genético
12.
Annu Rev Microbiol ; 76: 135-155, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35587934

RESUMO

Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection.


Assuntos
Parasitos , Toxoplasma , Animais , Epigênese Genética , Imunidade Inata , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética
13.
Annu Rev Microbiol ; 76: 619-640, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671531

RESUMO

Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates.


Assuntos
Parasitos , Toxoplasma , Animais , Interações Hospedeiro-Parasita , Organelas/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
14.
Annu Rev Microbiol ; 76: 67-90, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35417197

RESUMO

Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Estágios do Ciclo de Vida , Parasitos/metabolismo , Plasmodium/genética , Plasmodium falciparum , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
15.
Annu Rev Microbiol ; 76: 113-134, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609946

RESUMO

The malaria parasite life cycle alternates between two hosts: a vertebrate and the female Anopheles mosquito vector. Cell division, proliferation, and invasion are essential for parasite development, transmission, and survival. Most research has focused on Plasmodium development in the vertebrate, which causes disease; however, knowledge of malaria parasite development in the mosquito (the sexual and transmission stages) is now rapidly accumulating, gathered largely through investigation of the rodent malaria model, with Plasmodium berghei. In this review, we discuss the seminal genome-wide screens that have uncovered key regulators of cell proliferation, invasion, and transmission during Plasmodium sexual development. Our focus is on the roles of transcription factors, reversible protein phosphorylation, and molecular motors. We also emphasize the still-unanswered important questions around key pathways in cell division during the vector transmission stages and how they may be targeted in future studies.


Assuntos
Anopheles , Malária , Parasitos , Animais , Anopheles/parasitologia , Feminino , Malária/parasitologia , Mosquitos Vetores , Plasmodium berghei/genética
16.
Immunity ; 49(1): 16-18, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021142

RESUMO

How type 2 immune responses are initiated is obscure. Nadjsombati et al. (2018), along with two other studies (Lei et al., 2018; Schneider et al., 2018), show that tuft cells can initiate type 2 responses by recognizing the metabolite succinate produced by intestinal parasites.


Assuntos
Diabetes Mellitus Tipo 2 , Parasitos , Animais , Intestinos , Ácido Succínico , Paladar
17.
Immunity ; 48(5): 851-854, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768173

RESUMO

Biomedical interventions to curb malaria-causing Plasmodium falciparum (Pf) infections are critically needed. Two studies in Nature Medicine,Kisalu et al. (2018) and Tan et al. (2018), report the isolation of potent human antibodies that target a new epitope on Pf sporozoites and mediate effective parasite inhibition in pre-clinical models.


Assuntos
Parasitos , Plasmodium falciparum/imunologia , Animais , Anticorpos Antiprotozoários , Humanos , Malária , Malária Falciparum , Esporozoítos
18.
PLoS Biol ; 22(3): e3002507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451924

RESUMO

While the malaria parasite Plasmodium falciparum has low average genome-wide diversity levels, likely due to its recent introduction from a gorilla-infecting ancestor (approximately 10,000 to 50,000 years ago), some genes display extremely high diversity levels. In particular, certain proteins expressed on the surface of human red blood cell-infecting merozoites (merozoite surface proteins (MSPs)) possess exactly 2 deeply diverged lineages that have seemingly not recombined. While of considerable interest, the evolutionary origin of this phenomenon remains unknown. In this study, we analysed the genetic diversity of 2 of the most variable MSPs, DBLMSP and DBLMSP2, which are paralogs (descended from an ancestral duplication). Despite thousands of available Illumina WGS datasets from malaria-endemic countries, diversity in these genes has been hard to characterise as reads containing highly diverged alleles completely fail to align to the reference genome. To solve this, we developed a pipeline leveraging genome graphs, enabling us to genotype them at high accuracy and completeness. Using our newly- resolved sequences, we found that both genes exhibit 2 deeply diverged lineages in a specific protein domain (DBL) and that one of the 2 lineages is shared across the genes. We identified clear evidence of nonallelic gene conversion between the 2 genes as the likely mechanism behind sharing, leading us to propose that gene conversion between diverged paralogs, and not recombination suppression, can generate this surprising genealogy; a model that is furthermore consistent with high diversity levels in these 2 genes despite the strong historical P. falciparum transmission bottleneck.


Assuntos
Hominidae , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Conversão Gênica , Antígenos de Superfície , Malária/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Variação Genética
19.
Cell ; 148(6): 1258-70, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22424233

RESUMO

The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. The constituents of the microbiota--bacteria, viruses, and eukaryotes--have been shown to interact with one another and with the host immune system in ways that influence the development of disease. We review these interactions and suggest that a holistic approach to studying the microbiota that goes beyond characterization of community composition and encompasses dynamic interactions between all components of the microbiota and host tissue over time will be crucial for building predictive models for diagnosis and treatment of diseases linked to imbalances in our microbiota.


Assuntos
Trato Gastrointestinal/microbiologia , Metagenoma , Animais , Bactérias/classificação , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/parasitologia , Humanos , Interações Microbianas , Parasitos/metabolismo
20.
Proc Natl Acad Sci U S A ; 121(9): e2310082121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377205

RESUMO

Embryonic development is often considered shielded from the effects of natural selection, being selected primarily for reliable development. However, embryos sometimes represent virulent parasites, triggering a coevolutionary "arms race" with their host. We have examined embryonic adaptations to a parasitic lifestyle in the bitterling fish. Bitterlings are brood parasites that lay their eggs in the gill chamber of host mussels. Bitterling eggs and embryos have adaptations to resist being flushed out by the mussel. These include a pair of projections from the yolk sac that act as an anchor. Furthermore, bitterling eggs all adopt a head-down position in the mussel gills which further increases their chances of survival. To examine these adaptations in detail, we have studied development in the rosy bitterling (Rhodeus ocellatus) using molecular markers, X-ray tomography, and time-lapse imaging. We describe a suite of developmental adaptations to brood parasitism in this species. We show that the mechanism underlying these adaptions is a modified pattern of blastokinesis-a process unique, among fish, to bitterlings. Tissue movements during blastokinesis cause the embryo to do an extraordinary "front-flip" on the yolk. We suggest that this movement determines the spatial orientation of the other developmental adaptations to parasitism, ensuring that they are optimally positioned to help resist the ejection of the embryo from the mussel. Our study supports the notion that natural selection can drive the evolution of a suite of adaptations, both embryonic and extra-embryonic, via modifications in early development.


Assuntos
Cyprinidae , Parasitos , Animais , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA