Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
PLoS Pathog ; 18(12): e1010781, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516199

RESUMO

PMT is a protein toxin produced by Pasteurella multocida serotypes A and D. As causative agent of atrophic rhinitis in swine, it leads to rapid degradation of the nasal turbinate bone. The toxin acts as a deamidase to modify a crucial glutamine in heterotrimeric G proteins, which results in constitutive activation of the G proteins and permanent stimulation of numerous downstream signaling pathways. Using a lentiviral based genome wide CRISPR knockout screen in combination with a lethal toxin chimera, consisting of full length inactive PMT and the catalytic domain of diphtheria toxin, we identified the LRP1 gene encoding the Low-Density Lipoprotein Receptor-related protein 1 as a critical host factor for PMT function. Loss of LRP1 reduced PMT binding and abolished the cellular response and deamidation of heterotrimeric G proteins, confirming LRP1 to be crucial for PMT uptake. Expression of LRP1 or cluster 4 of LRP1 restored intoxication of the knockout cells. In summary our data demonstrate LRP1 as crucial host entry factor for PMT intoxication by acting as its primary cell surface receptor.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Pasteurella multocida , Animais , Suínos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Transporte/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Microb Pathog ; 184: 106336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683832

RESUMO

Pasteurella multocida.(PM) infection is a major cause of avian cholera, but the pathogenesis of the disease is unknown. The purpose of this study was to further understand the host response to infection by using a duck model of PM, 20 female ducks were divided into two groups (n = 10). One group was infected with PM, while the other served as an uninfected control group. The ducks were observed after infection and samples were collected for testing. In this study, we report the mechanism of PM-induced inflammation to further mediate apoptosis and autophagic signaling pathways in liver cells. Our results demonstrated that PM infection initially induces hemorrhagic and necrotic lesions in the liver tissue of duck, promoting inflammasome assembly and release, triggering inflammation. The TLR4/NF-κB axis activated and interacted with multiple inflammation-related proteins, including TNF-α and IL-1ß, which affected apoptosis and autophagy. Tumor necrosis factor induced hepatocyte apoptosis was implicated in a wide range of liver diseases; the release of TNF-α and activation with NF-κB further incite apoptotic pathways,such as Bax/BCL2/caspase to promote apoptotic genes APAF1, Bax, Caspase3, BCL-2, p53, and Cytc expression. Finally, PM-induced autophagy suppressed liver injury by promoting the Beclin-1, LC3B, p62, and mTOR. Thus, liver injury caused by PM via promoting autophagy was induced. In conclusion, we analyzed the liver injury of ducks infected with PM, and confirmed that inflammation appeared in the liver; this was followed by the intricate interplay between inflammation, apoptosis, and autophagy signaling pathways. The observed results provided a reference basis for studying pathogenic mechanisms of PM-host interactions.


Assuntos
Pasteurella multocida , Animais , Feminino , Pasteurella multocida/metabolismo , Patos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Proteína X Associada a bcl-2 , Fígado/patologia , Inflamação/patologia , Autofagia , Apoptose
3.
BMC Vet Res ; 19(1): 192, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803295

RESUMO

Pasteurella multocida is a pathogen that can infect humans and animals. A ghost is an empty bacterial body devoid of cytoplasm and nucleic acids that can be efficiently presented by antigen-presenting cells. To study a novel ghost vector vaccine with cross-immune protection, we used bacteriophage PhiX174 RF1 and Pasteurella multocida standard strain CVCC393 as templates to amplify the split genes E and OmpH to construct a bidirectional expression vector E'-OmpH-pET28a-ci857-E. This is proposed to prepare a ghost Escherichia coli (engineered bacteria) capable of attaching and producing Pasteurella multocida OmpH on the inner membrane of Escherichia coli (BL21). The aim is to assess the antibody levels and the effectiveness of immune protection by conducting a mouse immunoprotective test. The bidirectional expression vector E'-OmpH-pET28a-ci857-E was successfully constructed. After induction by IPTG, identification by SDS-PAGE, western blot, ghost culture and transmission electron microscope detection, it was proven that the Escherichia coli ghost anchored to Pasteurella multocida OmpH was successfully prepared. The immunoprotective test in mice showed that the antibody levels of Pasteurella multocida inactivated vaccine, OmpH, ghost (aluminum glue adjuvant) and ghost (Freund's adjuvant) on day 9 after immunization were significantly different from those of the PBS control group (P < 0.01). The immune protection rates were 100%, 80%, 75%, and 65%, respectively, and the PBS negative control was 0%, which proved that they all had specific immune protection effects. Therefore, this study lays the foundation for the further study of ghosts as carriers of novel vaccine-presenting proteins.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Vacinas , Humanos , Animais , Camundongos , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas
4.
J Bacteriol ; 204(4): e0059221, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35323048

RESUMO

The Gram-negative pathogen Pasteurella multocida is the causative agent of many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. One mechanism by which bacteria regulate transcript abundance and protein production is riboregulation, which involves the interaction of a small RNA (sRNA) with a target mRNA to alter transcript stability and/or translational efficiency. This interaction often requires stabilization by an RNA-binding protein such as ProQ or Hfq. In Escherichia coli and a small number of other species, ProQ has been shown to play a critical role in stabilizing sRNA-mRNA interactions and preferentially binds to the 3' stem-loop regions of the mRNA transcripts, characteristic of intrinsic transcriptional terminators. The aim of this study was to determine the role of ProQ in regulating P. multocida transcript abundance and identify the RNA targets to which it binds. We assessed differentially expressed transcripts in a proQ mutant and identified sites of direct ProQ-RNA interaction using in vivo UV-cross-linking and analysis of cDNA (CRAC). These analyses demonstrated that ProQ binds to, and stabilizes, ProQ-dependent sRNAs and transfer RNAs in P. multocida via adenosine-enriched, highly structured sequences. The binding of ProQ to two RNA molecules was characterized, and these analyses showed that ProQ bound within the coding sequence of the transcript PmVP161_1121, encoding an uncharacterized protein, and within the 3' region of the putative sRNA Prrc13. IMPORTANCE Regulation in P. multocida involving the RNA-binding protein Hfq is required for hyaluronic acid capsule production and virulence. This study further expands our understanding of riboregulation by examining the role of a second RNA-binding protein, ProQ, in transcript regulation and abundance in P. multocida.


Assuntos
Proteínas de Escherichia coli , Pasteurella multocida , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo
5.
RNA ; 24(5): 704-720, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440476

RESUMO

Pasteurella multocida is a Gram-negative bacterium responsible for many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. Small RNA (sRNA) molecules are critical regulators that act by binding to specific mRNA targets, often in association with the RNA chaperone protein Hfq. In this study, transcriptomic analysis of the P. multocida strain VP161 revealed a putative sRNA with high identity to GcvB from Escherichia coli and Salmonella enterica serovar Typhimurium. High-throughput quantitative liquid proteomics was used to compare the proteomes of the P. multocida VP161 wild-type strain, a gcvB mutant, and a GcvB overexpression strain. These analyses identified 46 proteins that displayed significant differential production after inactivation of gcvB, 36 of which showed increased production. Of the 36 proteins that were repressed by GcvB, 27 were predicted to be involved in amino acid biosynthesis or transport. Bioinformatic analyses of putative P. multocida GcvB target mRNAs identified a strongly conserved 10 nucleotide consensus sequence, 5'-AACACAACAT-3', with the central eight nucleotides identical to the seed binding region present within GcvB mRNA targets in E. coli and S. Typhimurium. Using a defined set of seed region mutants, together with a two-plasmid reporter system that allowed for quantification of sRNA-mRNA interactions, this sequence was confirmed to be critical for the binding of the P. multocida GcvB to the target mRNA, gltA.


Assuntos
Pasteurella multocida/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fator Proteico 1 do Hospedeiro/metabolismo , Motivos de Nucleotídeos , Pasteurella multocida/metabolismo , Transporte Proteico/genética , RNA Bacteriano/química , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , Regulon
6.
Microb Pathog ; 140: 103968, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927003

RESUMO

Pasteurella multocida is an economically important respiratory pathogen of pigs confronting swine industry worldwide. Despite extensive research over the decades, its pathogenesis is still poorly understood. Recent reports have demonstrated the nervous system affection as a newer aspect of pathogenesis by Pasteurella multocida type B:2 in Haemorrhagic Septicemia, but there are no reports of the involvement of nervous system by P. multocida in pigs. Therefore, the study was aimed to explore the neurovirulence of Pasteurella multocida in naturally infected pigs. A total of 15 brains were collected from the natural cases of pig mortality suggestive of Pasteurellosis. Grossly, the leptomeninges were markedly congested and brains were oedematously swollen. Histologically, there was moderate to severe fibrinohaemorrhagic and mononuclear cells exudates present in the leptomeningeal tissue and cerebrospinal spaces. Similar vascular inflammatory lesions (perivascular and perineuronal) along with gliosis, neuronal degeneration and necrosis were noted in various subanatomical sites of the brain (cerebrum, cerebellum, brainstem and spinal cord). The culture and biochemical tests showed the presence of P. multocida within the brain tissue. P. multocida type specific antibody staining in the brain tissues revealed intense distribution of antigens in the inflammatory exudates of meningeal vessels, neurons, glial cells and endothelial cells of the blood vessels contributing its association with neuropathological lesions. Pasteurella multocida specific PCR amplification of capsular polysaccharide gene yielded 460 bp and multiplex PCR showed the involvement of capsular serogroups A &D. All the isolates showed the presence of 10 genes for virulence factors. The disease confirmation of both serotypes was proven by Koch's postulates using Swiss albino mice. Further, histopathological brain lesions along with the immunohistochemical detection of bacterial antigens were corroborated with natural cases of P. multocida as described above. To the best of our knowledge, we first time report the neuroinvasion of P. multocida in naturally infected pigs.


Assuntos
Antígenos de Bactérias/metabolismo , Encéfalo/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/metabolismo , Doenças dos Suínos/microbiologia , Animais , Encéfalo/patologia , Feminino , Masculino , Camundongos , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/patologia , Pasteurella multocida/patogenicidade , Suínos , Doenças dos Suínos/mortalidade , Doenças dos Suínos/patologia , Virulência
7.
Avian Pathol ; 49(3): 221-229, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31899951

RESUMO

Fowl cholera is a highly contagious disease within the global duck farming industry. This study aimed at formulating and evaluating the protective efficacy of a combination vaccine containing a recombinant outer membrane protein H (rOmpH) of Pasteurella multocida strain X-73 with a live attenuated duck plague vaccine into a single dose. Four groups of ducks received different treatments and the groups were labelled as non-vaccinated, combined vaccination, duck plague vaccination and rOmpH vaccination, respectively. The combined vaccination group was comprised of live attenuated duck plague commercial vaccine with 100 µg rOmpH to a total volume of 0.5 ml/duck/intramuscular administration. All groups were challenged with avian P. multocida strain X-73 via intranasal administration. In addition, blood samples were collected monthly over a period of 6 months to determine the appropriate antibody level by indirect ELISA. The indirect ELISA results in the combination vaccine group revealed that the average levels of the serum antibody against the duck enteritis virus (0.477 ± 0.155) and fowl cholera (0.383 ± 0.100) were significantly higher than those values in the non-vaccinated control group (0.080 ± 0.027 and 0.052 ± 0.017), respectively (P < 0.05). Moreover, all vaccinated ducks were effectively protected from fowl cholera. This preliminary study indicated that a combination vaccine did not affect the antibody response in the subjects while protecting the ducks against experimental P. multocida infection. This combination vaccine should be considered part of an alternative pre-treatment strategy that could replace the monovalent vaccine.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Patos , Mardivirus , Pasteurella multocida/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Pasteurella multocida/metabolismo , Proteínas Recombinantes , Vacinas Atenuadas , Vacinas Combinadas , Vacinas Sintéticas/imunologia
8.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326543

RESUMO

Many Pasteurella multocida strains are carried as commensals, while some cause disease in animals and humans. Some type D strains cause atrophic rhinitis in pigs, where the causative agent is known to be the Pasteurella multocida toxin (PMT). PMT activates three families of G-proteins-Gq/11, G12/13, and Gi/o-leading to cellular mitogenesis and other sequelae. The effects of PMT on whole animals in vivo have been investigated previously, but only at the level of organ-specific pathogenesis. We report here the first study to screen all the organs targeted by the toxin by using the QE antibody that recognizes only PMT-modified G-proteins. Under our experimental conditions, short-term treatment of PMT is shown to have multiple in vivo targets, demonstrating G-alpha protein modification, stimulation of proliferation markers and expression of active ß-catenin in a tissue- and cell-specific manner. This highlights the usefulness of PMT as an important tool for dissecting the specific roles of different G-alpha proteins in vivo.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Proliferação de Células/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Pasteurella multocida/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismo , Útero/efeitos dos fármacos , Útero/metabolismo , beta Catenina/metabolismo
9.
Microb Pathog ; 129: 74-77, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30710674

RESUMO

Pasteurella multocida is the causative agent of a wide range of disease (pasteurellosis) and a zoonotic pathogen in humans. Some pathogenic bacteria are able to exploit host plasminogen for migration across tissue barriers or evade from host innate immunity. However, there is no study on host plasminogen exploitation of P. multocida. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been reported to be a plasminogen receptor in many pathogenic bacteria, but its role in P. multocida exploiting plasminogen has not yet been characterized. The aim of this study was to detect the activity of P. multocida to exploit host plasminogen and evaluate the ability of GAPDH to act as a receptor in the recruitment process. P. multocida could recruit host plasminogen and exhibited plasmin activity when stimulated by urokinase. GAPDH exhibited binding activity to plasminogen. GAPDH Antiserum significantly decrease the plasminogen recruitment activity of P. multocida. In conclusion, P. multocida is able to exploit host plasminogen via GAPDH. To our knowledge, this is the first report on host plasminogen exploitation of P. multocida.


Assuntos
Proteínas de Bactérias/metabolismo , Fibrinolíticos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Pasteurella multocida/metabolismo , Pasteurella multocida/patogenicidade , Plasminogênio/metabolismo , Animais , Feminino , Humanos , Camundongos Endogâmicos BALB C , Ligação Proteica
10.
Plasmid ; 103: 45-52, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31022414

RESUMO

BACKGROUND: The pOV plasmid isolated from the Pasteurella multocida strain PMOV is a new plasmid, and its molecular characterization is important for determining its gene content and its replicative properties in Pasteurellaceae family bacteria. METHODS: Antimicrobial resistance mediated by the pOV plasmid was tested in bacteria. Purified pOV plasmid DNA was used to transform E. coli DH5α and Gallibacterium anatis 12656-12, including the pBluescript II KS(-) plasmid DNA as a control for genetic transformation. The pOV plasmid was digested with EcoRI for cloning fragments into the pBluescript II KS(-) vector to obtain constructs and to determine the full DNA sequence of pOV. RESULTS: The pOV plasmid is 13.5 kb in size; confers sulfonamide, streptomycin and ampicillin resistance to P. multocida PMOV; and can transform E. coli DH5α and G. anatis 12656-12. The pOV plasmid was digested for the preparation of chimeric constructs and used to transform E. coli DH5α, conferring resistance to streptomycin (plasmid pSEP3), ampicillin (pSEP4) and sulfonamide (pSEP5) on the bacteria; however, similar to pBluescript II KS(-), the chimeric plasmids did not transform G. anatis 12656-12. A 1.4 kb fragment of the streptomycin cassette from pSEP3 was amplified by PCR and used to construct pSEP7, which in turn was used to interrupt a chromosomal DNA locus of G. anatis by double homologous recombination, introducing strA-strB into the G. anatis chromosome. CONCLUSION: The pOV plasmid is a wide-range, low-copy-number plasmid that is able to replicate in some gamma-proteobacteria. Part of this plasmid was integrated into the G. anatis 12656-12 chromosome. This construct may prove to be a useful tool for genetic studies of G. anatis.


Assuntos
Cromossomos Bacterianos/metabolismo , Farmacorresistência Bacteriana/genética , Pasteurella multocida/genética , Pasteurellaceae/genética , Plasmídeos/metabolismo , Ampicilina/farmacologia , Antibacterianos/farmacologia , Pareamento de Bases , Sequência de Bases , Cromossomos Bacterianos/química , Desoxirribonuclease EcoRI/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Recombinação Homóloga , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/metabolismo , Pasteurellaceae/efeitos dos fármacos , Pasteurellaceae/metabolismo , Plasmídeos/química , Estreptomicina/farmacologia , Sulfonamidas/farmacologia , Transformação Bacteriana
11.
Microbiol Immunol ; 63(7): 261-268, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209918

RESUMO

Pasteurella multocida is one of the most important bacteria responsible for diseases of animals. Crude extracts from sonicated P. multocida strain Dainai-1, which is serotype A isolated from bovine pneumonia, were found to inhibit proliferation of mouse spleen cells stimulated with Con A. The crude extract was purified by cation and anion exchange chromatography and hydroxyapatite chromatography. Its molecular weight was 27 kDa by SDS-PAGE and it was named PM27. PM27 was found to inhibit proliferation of mouse spleen cells stimulated with Con A as effectively as did the crude extract; however, its activity was lost after heating to 100°C for 20 min. PM27 did not directly inhibit proliferation of HT-2 cells, which are an IL-2-dependent T cell line, nor did it modify IL-2 production by Con A-stimulated mouse spleen cells. The N-terminal amino acid sequence of PM27 was determined and BLAST analysis revealed its identity to uridine phosphorylase (UPase) from P. multocida. UPase gene from P. multocida Dainai-1 was cloned into expression vector pQE-60 in Escherichia coli XL-1 Blue. Recombinant UPase (rUPase) tagged with His at the C-terminal amino acid was purified with Ni affinity chromatography. rUPase was found to inhibit proliferation of mouse spleen cells stimulated with Con A; however, as was true for PM27, its activity was lost after heating to 100°C for 20 min. Thus, PM27/UPase purified from P. multocida has significant antiproliferative activity against Con A-stimulated mouse spleen cells and may be a virulence factor.


Assuntos
Proteínas da Membrana Bacteriana Externa/farmacologia , Proliferação de Células/efeitos dos fármacos , Pasteurella multocida/metabolismo , Uridina Fosforilase/isolamento & purificação , Uridina Fosforilase/farmacologia , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bovinos , Linhagem Celular/efeitos dos fármacos , Escherichia coli/genética , Humanos , Interleucina-2/metabolismo , Camundongos , Peso Molecular , Pasteurella multocida/genética , Fosforilases , Proteínas Recombinantes , Baço , Linfócitos T/efeitos dos fármacos , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
12.
Avian Pathol ; 48(3): 221-229, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30640510

RESUMO

Pasteurella multocida (P. multocida), a causative agent of fowl cholera, is an important pathogen in the poultry industry. In the present study, we found that the inactivated vaccine of P. multocida grown in an iron-restricted medium provided better protection than that grown in normal medium. Thus, we adopted a comparative proteomics approach, by using two-dimensional gel electrophoresis (2-DE), coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF MS), to profile the supernatant proteins associated with P. multocida under both conditions. Eleven upregulated proteins were identified, including aspartate ammonia-lyase (AspA), diacylglycerol kinase (DgK), 30S ribosomal protein S6 (RpsF), and eight outer membrane proteins (OMPs). To further characterize the three novel supernatant proteins identified under iron-restricted conditions, the AspA, DgK and RpsF proteins were expressed and purified, and used as immunogens to vaccinate chickens. The results showed that AspA, DgK and RpsF proteins induced 80.0%, 66.7%, and 80.0% immunity, respectively. These data indicate that the three novel proteins identified in the supernatant of the culture media might play important roles in the survival of bacteria under iron-restricted conditions, and thus protect chickens against P. multocida. These findings also suggest that the proteins identified can be used as subunit vaccines.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Galinhas/imunologia , Cólera/prevenção & controle , Pasteurella multocida/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Animais , Aspartato Amônia-Liase/imunologia , Cólera/imunologia , Diacilglicerol Quinase/imunologia , Ferro/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/imunologia , Doenças das Aves Domésticas/imunologia , Proteômica , Proteínas Ribossômicas/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Vacinação/veterinária , Vacinas de Produtos Inativados/imunologia
13.
BMC Vet Res ; 15(1): 119, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023320

RESUMO

BACKGROUND: Pasteurella multocida is responsible for significant economic losses in pigs worldwide. In clinically diseased pigs, most P. multocida isolates are characterised as subspecies multocida, biovar 2 or 3 and capsular type A or D; however, there is little information regarding subspecies, biovars, and other capsular types of P. multocida isolates in Korea. Here, we provided information covering an extended time period regarding P. multocida in pigs with pneumonia in Korea using phenotypic and genotypic characterisations and data associated with the minimum inhibitory concentrations. RESULTS: The overall prevalence of P. multocida between 2008 and 2016 was 16.8% (240/1430), with 85% of the P. multocida isolates (204/240) coinfected with other respiratory pathogens. Of the 240 isolates, 166 were included in this study; all of these P. multocida isolates were characterised as subspecies multocida and the most prevalent phenotypes were represented by biovar 3 (68.7%; n = 114) and capsular type A (69.9%; n = 116). Additionally, three capsular type F isolates were identified, with this representing the first report of such isolates in Korea. All biovar 1 and 2 isolates were capsular types F and A, respectively. The virulence-associated gene distribution was variable; all capsular type A and D isolates harboured pmHAS and hsf-1, respectively (P < 0.001), with type F (biovar 1) significantly correlated with hsf-1 (P < 0.05) and pfhA (P < 0.01), biovar 2 highly associated with pfhA and pmHAS, and biovar 3 significantly correlated with hsf-1, pmHAS, and hgbB (P < 0.001), whereas biovar 13 was related only to hgbB (P < 0.05). The highest resistance rate was found to be to oxytetracycline (63.3%), followed by florfenicol (16.3%). CONCLUSIONS: P. multocida subspecies multocida, biovar 3, and capsular type A was the most prevalent isolate in this study, and our findings indicated the emergence of capsular type F in Korea. Moreover, prudent use of oxytetracycline and florfenicol is required because of the identified high resistance rates. Further studies are required for continuous monitoring of the antimicrobial resistance, prevalence, and epidemiological characterisation of P. multocida, and experimental infection models are needed to define the pathogenicity of capsular type F.


Assuntos
Infecções por Pasteurella/veterinária , Pasteurella multocida/genética , Pneumonia Bacteriana/veterinária , Doenças dos Suínos/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/microbiologia , Pasteurella multocida/classificação , Pasteurella multocida/metabolismo , Pneumonia Bacteriana/epidemiologia , Pneumonia Bacteriana/microbiologia , República da Coreia/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia
14.
Microb Pathog ; 119: 225-232, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29678740

RESUMO

Lipopolysaccharide (LPS) is a major virulence factor of Gram-negative bacteria playing a major role in stimulating protective immune response in mammalian host. However, in many gram-negative bacterial infections, LPS also elicits immunopathology by inducing excessive inflammatory changes. P. multocida (Pm), a gram-negative bacterium, causes acute lung inflammation and fatal septicemic disease in animals. However, the effects of Pm LPS on host cells are little known. In this study, LPS isolated from three different serotypes (B:2, A:1 and A:3) of Pm were individually tested in vitro to assess the response of bovine leukocytes. Pm LPS induced cell proliferation and cell death of leukocytes, in a dose- and time-dependent manner. In these cells, mitochondrial dysfunction and caspase activation mediate cell death.


Assuntos
Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Pasteurella multocida/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/metabolismo , Caspases/metabolismo , Bovinos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Leucócitos/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Necrose , Óxido Nítrico/metabolismo , Pasteurella multocida/classificação , Sorogrupo , Fatores de Tempo
15.
Arch Microbiol ; 200(1): 107-118, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28825122

RESUMO

Pasteurella multocida is a leading cause of respiratory disease in pigs worldwide. In this study, we determined the genetic characteristics of 115 P. multocida isolates from the lungs of pigs with respiratory disease in China in 2015 using capsular typing, lipopolysaccharide (LPS) genotyping, and virulence genotyping based on the detection of virulence-associated genes. The results showed that the isolates belonged to three capsular types: A (49.6%), D (46.1%), and nontypable (4.3%); and two LPS genotypes: L3 (22.6%) and L6 (77.4%). When combining the capsular types with the LPS genotypes, a genotype group D: L6 (46.1%) was the most prevalent among the strains. Among the 23 virulence-associated genes detected in this study, a small number of them displayed a certain level of "genotype-preference". We found that pfhA, hgbA, and hgbB had a close association with P. multocida LPS genotypes, while tadD was more associated with P. multocida capsular types. In addition, multilocus sequence typing (MLST) on 40 P. multocida isolates identified four sequence types: ST3, ST10, ST11, and ST16, and the distribution of ST11 was significantly higher than the other MLST genotypes. Interestingly, all of the ST11 isolates detected in this study were genotype D: L6 strains and they were 100% positive for hgbB. Our data suggest that a capsule/LPS/MLST genotype D/L6/ST11 is likely to be strongly associated with respiratory clinical manifestation of the disease in pigs.


Assuntos
Cápsulas Bacterianas/metabolismo , Lipopolissacarídeos/metabolismo , Infecções por Pasteurella/veterinária , Pasteurella multocida/isolamento & purificação , Infecções Respiratórias/veterinária , Doenças dos Suínos/microbiologia , Animais , China , Genótipo , Tipagem de Sequências Multilocus , Infecções por Pasteurella/microbiologia , Pasteurella multocida/classificação , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Reação em Cadeia da Polimerase , Infecções Respiratórias/microbiologia , Suínos , Virulência/genética , Fatores de Virulência/genética
16.
Biofouling ; 33(1): 14-23, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27892689

RESUMO

Pasteurella multocida (Pm) is the causative agent of atrophic rhinitis in swine. This study aimed to discover biofilm inhibitors against swine Pm to counteract antibiotic resistance and decrease virulence. The virulence factor outer membrane protein A (OmpA) was targeted. A library of drugs approved by the Food and Drug Administration (FDA) was used to perform virtual screening against PmOmpA. The top-scoring compounds had no effect on the growth of Pm serotype A or D. Mycophenolate mofetil showed the highest efficacy in inhibiting biofilm formation by Pm serotype A, with an IC50 of 7.3 nM. For Pm serotype D, indocyanine green showed the highest effect at an IC50 of 11.7 nM. Nevertheless, these compounds had no effect on an established biofilm of Pm. This study offers an alternative way to prevent biofilm formation by Pm that could also be applied to other pathogens.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Biofilmes/efeitos dos fármacos , Verde de Indocianina/farmacologia , Ácido Micofenólico/farmacologia , Infecções por Pasteurella/microbiologia , Pasteurella multocida/efeitos dos fármacos , Rinite Atrófica/microbiologia , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Biofilmes/crescimento & desenvolvimento , Modelos Biológicos , Modelos Moleculares , Infecções por Pasteurella/tratamento farmacológico , Pasteurella multocida/metabolismo , Pasteurella multocida/patogenicidade , Pasteurella multocida/fisiologia , Ligação Proteica , Rinite Atrófica/tratamento farmacológico , Suínos , Virulência , Fatores de Virulência/metabolismo
17.
Infect Immun ; 84(5): 1361-1370, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883595

RESUMO

The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin.


Assuntos
Cápsulas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Ácido Hialurônico/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Fatores de Virulência/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Proteoma/análise
18.
BMC Microbiol ; 16(1): 128, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27349384

RESUMO

BACKGROUND: Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, which causes important worldwide economic losses in the swine industry. Several respiratory tract infections are associated with biofilm formation, and A. pleuropneumoniae has the ability to form biofilms in vitro. Biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that are attached to an abiotic or biotic surface. Virtually all bacteria can grow as a biofilm, and multi-species biofilms are the most common form of microbial growth in nature. The goal of this study was to determine the ability of A. pleuropneumoniae to form multi-species biofilms with other bacteria frequently founded in pig farms, in the absence of pyridine compounds (nicotinamide mononucleotide [NMN], nicotinamide riboside [NR] or nicotinamide adenine dinucleotide [NAD]) that are essential for the growth of A. pleuropneumoniae. RESULTS: For the biofilm assay, strain 719, a field isolate of A. pleuropneumoniae serovar 1, was mixed with swine isolates of Streptococcus suis, Bordetella bronchiseptica, Pasteurella multocida, Staphylococcus aureus or Escherichia coli, and deposited in 96-well microtiter plates. Based on the CFU results, A. pleuropneumoniae was able to grow with every species tested in the absence of pyridine compounds in the culture media. Interestingly, A. pleuropneumoniae was also able to form strong biofilms when mixed with S. suis, B. bronchiseptica or S. aureus. In the presence of E. coli, A. pleuropneumoniae only formed a weak biofilm. The live and dead populations, and the matrix composition of multi-species biofilms were also characterized using fluorescent markers and enzyme treatments. The results indicated that poly-N-acetyl-glucosamine remains the primary component responsible for the biofilm structure. CONCLUSIONS: In conclusion, A. pleuropneumoniae apparently is able to satisfy the requirement of pyridine compounds through of other swine pathogens by cross-feeding, which enables A. pleuropneumoniae to grow and form multi-species biofilms.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/crescimento & desenvolvimento , Actinobacillus pleuropneumoniae/metabolismo , Biofilmes/crescimento & desenvolvimento , NAD/deficiência , Acetilglucosamina/metabolismo , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Biofilmes/efeitos dos fármacos , Bordetella bronchiseptica/crescimento & desenvolvimento , Bordetella bronchiseptica/metabolismo , Meios de Cultura , Desoxirribonuclease I/farmacologia , Endopeptidase K/farmacologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Hibridização in Situ Fluorescente , Microscopia Confocal , Niacinamida/análogos & derivados , Niacinamida/deficiência , Mononucleotídeo de Nicotinamida/deficiência , Pasteurella multocida/crescimento & desenvolvimento , Pasteurella multocida/metabolismo , Piridinas/metabolismo , Compostos de Piridínio , Especificidade da Espécie , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Células-Tronco , Streptococcus suis/crescimento & desenvolvimento , Streptococcus suis/metabolismo , Suínos , Doenças dos Suínos/microbiologia
19.
Appl Microbiol Biotechnol ; 100(14): 6279-6289, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26996628

RESUMO

Glutathione (GSH), an important bioactive substance, is widely applied in pharmaceutical and food industries. In this work, two bifunctional L-glutathione synthetases (GshF) from Actinobacillus pleuropneumoniae (GshFAp) and Actinobacillus succinogenes (GshFAs) were successfully expressed in Escherichia coli BL-21(DE3). Similar to the GshF from Streptococcus thermophilus (GshFSt), GshFAp and GshFAs can be applied for high titer GSH production because they are less sensitive to end-product inhibition (Ki values 33 and 43 mM, respectively). The active catalytic forms of GshFAs and GshFAp are dimers, consistent with those of GshFPm (GshF from Pasteurella multocida) and GshFSa (GshF from Streptococcus agalactiae), but are different from GshFSt (GshF from S. thermophilus) which is an active monomer. The analysis of the protein sequences and three dimensional structures of GshFs suggested that the binding sites of GshFs for substrates, L-cysteine, L-glutamate, γ-glutamylcysteine, adenosine-triphosphate, and glycine are highly conserved with only very few differences. With sufficient supply of the precursors, the recombinant strains BL-21(DE3)/pET28a-gshFas and BL-21(DE3)/pET28a-gshFap were able to produce 36.6 and 34.1 mM GSH, with the molar yield of 0.92 and 0.85 mol/mol, respectively, based on the added L-cysteine. The results showed that GshFAp and GshFAs are potentially good candidates for industrial GSH production.


Assuntos
Actinobacillus pleuropneumoniae/enzimologia , Actinobacillus/enzimologia , Proteínas de Bactérias/metabolismo , Glutationa Sintase/metabolismo , Glutationa/biossíntese , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Cisteína/metabolismo , Dipeptídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Glutationa Sintase/genética , Glicina/metabolismo , Concentração de Íons de Hidrogênio , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Conformação Proteica , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo
20.
PLoS Pathog ; 9(5): e1003385, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696743

RESUMO

The 146-kDa Pasteurella multocida toxin (PMT) is the main virulence factor to induce P. multocida-associated progressive atrophic rhinitis in various animals. PMT leads to a destruction of nasal turbinate bones implicating an effect of the toxin on osteoblasts and/or osteoclasts. The toxin induces constitutive activation of Gα proteins of the G(q/11)-, G12/13- and G(i)-family by deamidating an essential glutamine residue. To study the PMT effect on bone cells, we used primary osteoblasts derived from rat calvariae and stromal ST-2 cells as differentiation model. As marker of functional osteoblasts the expression and activity of alkaline phosphatase, formation of mineralization nodules or expression of specific transcription factors as osterix was determined. Here, we show that the toxin inhibits differentiation and/or function of osteoblasts by activation of Gα(q/11). Subsequently, Gα(q/11) activates RhoA via p63RhoGEF, which specifically interacts with Gα(q/11) but not with other G proteins like Gα12/13 and Gα(i). Activated RhoA transactivates the mitogen-activated protein (MAP) kinase cascade via Rho kinase, involving Ras, MEK and ERK, resulting in inhibition of osteoblast differentiation. PMT-induced inhibition of differentiation was selective for the osteoblast lineage as adipocyte-like differentiation of ST-2 cells was not hampered. The present work provides novel insights, how the bacterial toxin PMT can control osteoblastic development by activating heterotrimeric G proteins of the Gα(q/11)-family and is a molecular pathogenetic basis for understanding the role of the toxin in bone loss during progressive atrophic rhinitis induced by Pasteurella multocida.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Diferenciação Celular , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoblastos/metabolismo , Infecções por Pasteurella/metabolismo , Pasteurella multocida/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Ativação Transcricional , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Camundongos , Osteoblastos/patologia , Osteólise/metabolismo , Osteólise/patologia , Infecções por Pasteurella/patologia , Pasteurella multocida/patogenicidade , Ratos , Rinite Atrófica/metabolismo , Rinite Atrófica/patologia , Crânio/metabolismo , Crânio/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Fatores de Virulência/metabolismo , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA