Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.996
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 165(7): 1632-1643, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315480

RESUMO

Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Células CHO , Cálcio/metabolismo , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxintomodulina/química , Oxintomodulina/metabolismo , Peptídeos/química , Ratos , Transdução de Sinais , Peçonhas/química
2.
Diabetes Obes Metab ; 26(1): 329-338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818589

RESUMO

AIM: The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite. MATERIALS AND METHODS: Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide. RESULTS: Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h post-injection. Accordingly, HFF-STZ mice received twice-daily injections of Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As anticipated, HFF/STZ mice presented with hyperglycaemia, impaired glucose tolerance, decreased plasma and pancreatic insulin and disturbed pancreatic islet morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved glucose tolerance and augmented pancreatic insulin content while decreasing glucagon content. Exenatide had similar benefits on body weight and pancreatic hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased energy expenditure on day 28 whereas exenatide had no impact. All treatment regimens restored pancreatic islet and beta-cell area towards lean control levels, which was linked to significantly elevated beta-cell proliferation rates. In terms of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual agents, there was augmentation of glucose tolerance and ambulatory activity with combination therapy, and these mice presented with increased pancreatic glucagon. CONCLUSION: These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes, with suggestion that benefits could be enhanced through combined administration with exenatide.


Assuntos
Glucagon , Hipoglicemiantes , Camundongos , Animais , Exenatida , Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glicemia/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Insulina/metabolismo , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Glucose , Peso Corporal
3.
Semin Cancer Biol ; 80: 356-369, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32846203

RESUMO

Due to advances in detection and treatment of cancer, especially the rise in the targeted therapy, the five-year relative survival rate of all cancers has increased significantly. However, according to the analysis of the survival rate of cancer patients in 2019, the survival rate of most cancers is still less than five years. Therefore, to combat complex cancer and further improve the 5-year survival rate of cancer patients, it is necessary to develop some new anticancer drugs. Because of the adaptive evolution of toxic species for millions of years, the venom sac is a "treasure bank", which has millions of biomolecules with high affinity and stability awaiting further development. Complete utilization of venom-based and bacteria-derived drugs in the market is still staggering because of incomplete understanding regarding their mode of action. In this review, we focused on the currently identified targets for anticancer effects based on venomous and bacterial biomolecules, such as ion channels, membrane non-receptor molecules, integrins, and other related target molecules. This review will serve as the key for exploring the molecular mechanisms behind the anticancer potential of venom-based and bacteria-derived drugs and will also lay the path for the development of anticancer targeted therapy.


Assuntos
Neoplasias , Peçonhas , Bactérias , Humanos , Neoplasias/tratamento farmacológico , Peçonhas/farmacologia , Peçonhas/uso terapêutico
4.
Eur J Nucl Med Mol Imaging ; 50(4): 996-1004, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36446951

RESUMO

PURPOSE: Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4. METHODS: We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo. RESULTS: Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39). CONCLUSION: We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.


Assuntos
Peptídeos Penetradores de Células , Insulinoma , Neoplasias Pancreáticas , Humanos , Exenatida/metabolismo , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/metabolismo , Distribuição Tecidual , Insulinoma/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peçonhas/farmacologia , Peçonhas/química , Peçonhas/metabolismo
5.
Arch Virol ; 167(9): 1763-1772, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35723756

RESUMO

Arthropod-borne viruses (arboviruses), such as Zika virus (ZIKV), chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and West Nile virus (WNV), are pathogens of global importance. Therefore, there has been an increasing need for new drugs for the treatment of these viral infections. In this context, antimicrobial peptides (AMPs) obtained from animal venoms stand out as promising compounds because they exhibit strong antiviral activity against emerging arboviral pathogens. Thus, we systematically searched and critically analyzed in vitro and in vivo studies that evaluated the anti-arbovirus effect of peptide derivatives from toxins produced by vertebrates and invertebrates. Thirteen studies that evaluated the antiviral action of 10 peptides against arboviruses were included in this review. The peptides were derived from the venom of scorpions, spiders, wasps, snakes, sea snails, and frogs and were tested against DENV, ZIKV, YFV, WNV, and CHIKV. Despite the high structural variety of the peptides included in this study, their antiviral activity appears to be associated with the presence of positive charges, an excess of basic amino acids (mainly lysine), and a high isoelectric point (above 8). These peptides use different antiviral mechanisms, the most common of which is the inhibition of viral replication, release, entry, or fusion. Moreover, peptides with virucidal and cytoprotective (pre-treatment) effects were also identified. In conclusion, animal-venom-derived peptides stand out as a promising alternative in the search and development of prototype antivirals against arboviruses.


Assuntos
Arbovírus , Febre de Chikungunya , Vírus Chikungunya , Dengue , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Peptídeos/farmacologia , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Vírus da Febre Amarela
6.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628583

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.


Assuntos
Toxinas Biológicas , Peçonhas , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Desenvolvimento de Medicamentos , Dor/tratamento farmacológico , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Canais de Cátion TRPV/metabolismo , Peçonhas/farmacologia , Peçonhas/uso terapêutico
7.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499761

RESUMO

Peptides are potential therapeutic alternatives against global diseases, such as antimicrobial-resistant infections and cancer. Venoms are a rich source of bioactive peptides that have evolved over time to act on specific targets of the prey. Peptides are one of the main components responsible for the biological activity and toxicity of venoms. South American organisms such as scorpions, snakes, and spiders are important producers of a myriad of peptides with different biological activities. In this review, we report the main venom-derived peptide families produced from South American organisms and their corresponding activities and biological targets.


Assuntos
Neoplasias , Peçonhas , Animais , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Escorpiões/química , Peptídeos/farmacologia , Peptídeos/química , Neoplasias/tratamento farmacológico , Resistência Microbiana a Medicamentos
8.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340168

RESUMO

The demonstration that carbon monoxide releasing molecules (CORMs) affect experimental systems by the release of carbon monoxide, and not via the interaction of the inactivated CORM, has been an accepted paradigm for decades. However, it has recently been documented that a radical intermediate formed during carbon monoxide release from ruthenium (Ru)-based CORM (CORM-2) interacts with histidine and can inactivate bee phospholipase A2 activity. Using a thrombelastographic based paradigm to assess procoagulant activity in human plasma, this study tested the hypothesis that a Ru-based radical and not carbon monoxide was responsible for CORM-2 mediated inhibition of Atheris, Echis, and Pseudonaja species snake venoms. Assessment of the inhibitory effects of ruthenium chloride (RuCl3) on snake venom activity was also determined. CORM-2 mediated inhibition of the three venoms was found to be independent of carbon monoxide release, as the presence of histidine-rich albumin abrogated CORM-2 inhibition. Exposure to RuCl3 had little effect on Atheris venom activity, but Echis and Pseudonaja venom had procoagulant activity significantly reduced. In conclusion, a Ru-based radical and ion inhibited procoagulant snake venoms, not carbon monoxide. These data continue to add to our mechanistic understanding of how Ru-based molecules can modulate hemotoxic venoms, and these results can serve as a rationale to focus on perhaps other, complementary compounds containing Ru as antivenom agents in vitro and, ultimately, in vivo.


Assuntos
Anticoagulantes/farmacologia , Monóxido de Carbono/farmacologia , Rutênio/farmacologia , Peçonhas/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Tromboelastografia
9.
J Thromb Thrombolysis ; 47(4): 533-539, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30955141

RESUMO

Lizards in the genus Heloderma are the most ancient venomous reptiles, with a traceable lineage nearly 100 million years old. The proteome of the venom of three of the remaining species (Heloderma suspectum, H. exasperatum, H. horridum) are very conserved, with kallikrein-like activity present to cause critical hypotension to immobilize and outright kill prey. Kallikrein-like activity would be expected to activate the contact protein pathway of coagulation, which would be detectable with thrombelastography in human plasma. Thus, it was proposed to determine if kallikrein-like activity could be detected with thrombelastography, and if this activity could be inhibited by carbon monoxide (CO) via a putative heme-based mechanism. Procoagulant activity of each venom was assessed via thrombelastography with normal plasma, and kallikrein-like activity confirmed with FX-depleted plasma. Venom was then exposed to carbon monoxide releasing molecule-2 (CORM-2) or its inactive releasing molecule to assess CO inhibition. All three venoms demonstrated kallikrein-like activity with the same potency and inhibition of activity by CO. In conclusion, the present work documented that procoagulant, kallikrein-like activity containing venoms of the oldest species of venomous reptiles was inhibited by CO, potentially via heme modulation. This is also the first identification and characterization of a kallikrein-like enzyme utilizing coagulation factor-depleted plasma to assess venom that inflicts hypotension. Future investigations will continue to define the vulnerability of venom enzymatic activities to CO.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Monóxido de Carbono/química , Calicreínas , Lagartos , Proteínas de Répteis , Peçonhas , Animais , Humanos , Calicreínas/antagonistas & inibidores , Calicreínas/química , Calicreínas/farmacologia , Proteínas de Répteis/antagonistas & inibidores , Proteínas de Répteis/química , Proteínas de Répteis/farmacologia , Tromboelastografia , Peçonhas/química , Peçonhas/farmacologia
10.
J Neurosci ; 37(48): 11701-11714, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29084866

RESUMO

The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial ß-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced ß-endorphin expression. Treatment with exenatide in cultured primary spinal microglia concentration dependently stimulated the expression of the M2 microglial markers IL-10, IL-4, Arg 1, and CD206, but not the M1 microglial markers TNF-α, IL-1ß, IL-6, or CD68. Intrathecal exenatide injection also significantly upregulated spinal microglial expression of IL-10, IL-4, Arg 1, and CD206, but not TNF-α, IL-1ß, IL-6, or CD68. Intrathecal injection of exenatide stimulated spinal microglial expression of IL-10 and ß-endorphin in neuropathic rats. Furthermore, treatment with IL-10 (but not IL-4) stimulated ß-endorphin expression in cultured primary microglia, whereas treatment with ß-endorphin failed to increase IL-10 expression. The IL-10-neutralizing antibody entirely blocked exenatide-induced spinal microglial expression of ß-endorphin in vitro and in vivo and fully blocked exenatide mechanical antiallodynia in neuropathic rats. Moreover, specific cAMP/PKA/p38 signal inhibitors and siRNA/p38ß, but not siRNA/p38α, completely blocked exenatide-induced IL-10 expression in cultured primary microglia. Knock-down of IL-10 receptor-α mRNA using siRNA fully inhibited exenatide-induced spinal microglial ß-endorphin expression and mechanical antiallodynia in neuropathy. Exenatide also markedly stimulated phosphorylation of the transcription factor STAT3 in cultured primary microglia and ß-endorphin stimulation was completely inhibited by the specific STAT3 activation inhibitor. These results revealed that IL-10 in microglia mediated ß-endorphin expression after GLP-1 receptor activation through the autocrine cAMP/PKA/p38ß/CREB and subsequent IL-10 receptor/STAT3 signal pathways.SIGNIFICANCE STATEMENT Activation of GLP-1 receptors specifically and simultaneously stimulates the expression of anti-inflammatory cytokines IL-10 and IL-4, as well as the neuroprotective factor ß-endorphin from microglia. GLP-1 receptor agonism induces ß-endorphin expression and antinociception through autocrine release of IL-10. Activation of GLP-1 receptors stimulates IL-10 and ß-endorphin expression subsequently through the Gs-cAMP/PKA/p38ß/CREB and IL-10/IL-10 receptor-α/STAT3 signal transduction pathways.


Assuntos
Comunicação Autócrina/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/biossíntese , Interleucina-10/biossíntese , Microglia/metabolismo , Medula Espinal/metabolismo , beta-Endorfina/biossíntese , Animais , Animais Recém-Nascidos , Comunicação Autócrina/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Exenatida , Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Interleucina-10/genética , Interleucina-10/farmacologia , Masculino , Microglia/efeitos dos fármacos , Peptídeos/farmacologia , Ratos , Ratos Wistar , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Peçonhas/farmacologia , beta-Endorfina/genética
11.
Annu Rev Pharmacol Toxicol ; 55: 573-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25562646

RESUMO

Constellation pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (constellations) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the ongoing development of constellation pharmacology, there is a positive feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As constellation pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Neurônios/efeitos dos fármacos , Farmacologia/métodos , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Terapia de Alvo Molecular , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Peçonhas/química , Peçonhas/farmacologia
12.
Cell Physiol Biochem ; 47(2): 617-629, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794460

RESUMO

BACKGROUND/AIMS: Current therapies for spinal cord injury (SCI) have limited efficacy, and identifying a therapeutic target is a pressing need. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) plays an important role in regulating calcium homeostasis, which has been shown to inhibit apoptosis. Exendin-4 has been shown to inhibit the apoptosis of nerve cells in SCI, which can also improve SERCA2 expression. In this study, we sought to determine whether exendin-4 plays a protective role in a rat model of SCI via SERCA2. METHODS: To investigate the effects of exendin-4 on SCI, a rat model of SCI was induced by a modified version of Allen's method. Spinal cord tissue sections from rats and western blot analysis were used to examine SERCA2 expression after treatment with the long-acting glucagon-like peptide 1 receptor exendin-4 or the SERCA2 antagonist 5(6)-carboxyfluorescein diacetate N-succinimidyl ester (CE). Locomotor function was evaluated using the Basso Beattie Bresnahan locomotor rating scale and slanting board test. RESULTS: Cell apoptosis was increased with CE treatment and decreased with exendin-4 treatment. Upregulation of SERCA2 in female rats with SCI resulted in an improvement of motor function scores and histological changes. CONCLUSION: These findings suggest that exendin-4 plays a protective role in a rat model of SCI through SERCA2 via inhibition of apoptosis. Existing drugs targeting SERCA2 may be an effective therapeutic strategy for the treatment of SCI.


Assuntos
Peptídeos/farmacologia , Substâncias Protetoras/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Peçonhas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Exenatida , Locomoção/efeitos dos fármacos , Microscopia de Fluorescência , Células PC12 , Peptídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/prevenção & controle , Peçonhas/uso terapêutico , Proteína X Associada a bcl-2/metabolismo
13.
Hepatology ; 66(3): 809-824, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439947

RESUMO

Recent studies have indicated that lipid-induced endoplasmic reticulum (ER) stress is a major contributor to the progression of hepatic steatosis. Exenatide (exendin-4), a glucagon-like peptide-1 receptor agonist, is known to improve hepatic steatosis, with accumulating evidence. In this study, we investigated whether exenatide could alleviate lipid-induced hepatic ER stress through mammal sirtuin 1 (SIRT1) and illustrated the detailed mechanisms. Male C57BL/6J mice challenged with a high-fat diet (HFD) were treated with exenatide or normal saline by intraperitoneal injection for 4 weeks. We observed that HFD feeding induced hepatic ER stress as indicated by increased expression of glucose-regulated protein 78, phosphorylated protein kinase-like ER kinase, and phosphorylated eukaryotic initiation factor 2α, while these increases were significantly inhibited by exenatide. Exenatide notably decreased the liver weight and hepatic steatosis induced by HFD challenge. Consistently, in human HepG2 cells and primary murine hepatocytes, exendin-4 also significantly alleviated the ER stress and lipid accumulation induced by palmitate. Importantly, further studies showed that exendin-4 enhanced the binding of heat shock factor 1 to the promoter of heat shock protein (HSP) genes through SIRT1-mediated deacetylation, which then increased the expression of molecular chaperones HSP70 and HSP40 to alleviate hepatic ER stress. Finally, inhibition of SIRT1 by genetic whole-body heterozygous knockout or by lentiviral short hairpin RNA knockdown greatly diminished the effect of exenatide on deacetylating heat shock factor 1, increasing HSP expression and alleviating ER stress and hepatic steatosis in HFD-fed mice. CONCLUSION: The SIRT1/heat shock factor 1/HSP pathway is essential for exenatide-alleviated, lipid-induced ER stress and hepatic steatosis, which provides evidence for a molecular mechanism to support exenatide and incretin mimetics as promising therapeutics for obesity-induced hepatic steatosis. (Hepatology 2017;66:809-824).


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado Gorduroso/patologia , Proteínas de Choque Térmico/genética , Peptídeos/farmacologia , Sirtuína 1/genética , Peçonhas/farmacologia , Animais , Glicemia/efeitos dos fármacos , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Exenatida , Fígado Gorduroso/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Sensibilidade e Especificidade , Transdução de Sinais/efeitos dos fármacos
14.
Microb Pathog ; 125: 96-107, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30195644

RESUMO

Cancer and infectious diseases are the preeminent causes of human morbidities and mortalities worldwide. At present, chemotherapy, radiotherapy, immunotherapy, and gene therapy are considered as predominant options in order to treat cancer. But these therapies provide inadequate consequences by affecting both the normal and tumor cells. On the other hand, tuberculosis (TB), and HIV (human immunodeficiency virus) infections are significant threats, causing over a million mortalities each year. The extensive applications of antibiotics have caused the microbes to acquire resistance to the existing antibiotics. With the emerging dilemma of drug resistant microbes, it has become imperative to identify novel therapeutic agents from natural sources as emphatic alternative approach. Over the past few decades, venoms derived from several reptiles, amphibians, and arthropods including snakes, scorpions, frogs, spiders, honey bees, wasps, beetles, caterpillars, ants, centipedes, and sponges have been identified as efficient therapeutics. Venoms constitute plethora of bioactive components, particularly peptides, enzymes, and other chemical entities, which exhibit a large array of anticancer and anti-pathogenic activities. This review highlights the panorama of bioactive components of animal venoms divulging the anticancer, anti-tubercular, and anti-HIV activities. In a nutshell, this context discloses the decisive role of animal venoms as alternative natural resources to combat these deadly diseases of 21st century, and propounding the plausible development of new therapeutic drugs in the present era.


Assuntos
Síndrome da Imunodeficiência Adquirida/terapia , Produtos Biológicos/uso terapêutico , Terapia Biológica/métodos , Neoplasias/terapia , Tuberculose/terapia , Peçonhas/uso terapêutico , Animais , Produtos Biológicos/farmacologia , Humanos , Peçonhas/farmacologia
15.
Inflamm Res ; 67(2): 157-168, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29022064

RESUMO

OBJECTIVE: Glucagon-like peptide-1 (GLP-1)-based therapy via G protein-coupled receptor (GPCR) GLP-1R, to attenuate hyperglycemia in critical care has attracted great attention. However, the exaggerated inflammation by GLP-1R agonist, Exendin-4, in a mouse model of burn injury was quite unexpected. Recent studies found that GPCR might elicit proinflammatory effects by switching from Gαs to Gαi signaling in the immune system. Thus, we aimed to investigate the possible Gαs to Gαi switch in GLP-1R signaling in monocyte following burn injury. MATERIALS AND METHODS: Splenic monocytes from sham and burn mice 24 h following burn injury were treated with consecutive doses of Exendin-4 alone or in combination with an inhibitor of Gαi signaling (pertussis toxin, PTX), or a blocker of protein kinase A (H89). Cell viability was assessed by CCK-8, and the supernatant was collected for cytokine measurement by ELISA. Intracellular cAMP level, phosphorylated PKA activity, and nuclear NF-κB p65 were determined by ELISA, ERK1/2 activation was analyzed by Western blot. The expression of GLP-1R downstream molecules, Gαs, Gαi and G-protein coupled receptor kinase 2 (GRK2) were examined by immunofluorescence staining and Western blot. RESULTS: Exendin-4 could inhibit the viability of monocyte from sham rather than burn mice. Unexpectedly, it could also reduce TNF-α secretion from sham monocyte while increase it from burn monocyte. The increased secretion of TNF-α by Exendin-4 from burn monocyte could be reversed by pretreatment of PTX or H89. Accordingly, Exendin-4 could stimulates cAMP production dose dependently from sham instead of burn monocyte. However, the blunt cAMP production from burn monocyte was further suppressed by pretreatment of PTX or H89 after 6-h incubation. Nevertheless, phosphorylated PKA activity was significantly increased by low dose of Exendin-4 in sham monocyte, by contrast, it was enhanced by high dose of Exendin-4 in burn monocyte after 1-h incubation. Following Exendin-4 treatment for 2 h ex vivo, total nuclear NF-κB and phosphorylated NF-κB activity, as well as cytoplasmic pERK1/2 expressions were reduced in sham monocyte, however, only pERK1/2 was increased by Exendin-4 in burn monocytes. Moreover, reduced expressions of GLP-1R, GRK-2 and Gαs in contrast with increased expression of Gαi were identified in burn monocyte relative to sham monocyte. CONCLUSIONS: This study presents an unexpected proinflammatory switch from Gαs to Gαi signaling in burn monocyte, which promotes ERK1/2 and NF-κB activation and the downstream TNF-α secretion. This phenomenon is most probably responsible for proinflammatory response evoked by Gαs agonist Exendin-4 following burn injury.


Assuntos
Queimaduras/metabolismo , Cromograninas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Baço/metabolismo , Animais , Queimaduras/patologia , Cromograninas/antagonistas & inibidores , AMP Cíclico/biossíntese , Exenatida , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gs de Proteínas de Ligação ao GTP/antagonistas & inibidores , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/patologia , Peptídeos/farmacologia , Baço/patologia , Fator de Transcrição RelA/metabolismo , Peçonhas/farmacologia
16.
Arterioscler Thromb Vasc Biol ; 37(12): 2252-2259, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29074588

RESUMO

OBJECTIVE: Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. APPROACH AND RESULTS: By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a high-fat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. CONCLUSIONS: Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism.


Assuntos
Fígado Gorduroso/prevenção & controle , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hiperlipidemias/prevenção & controle , Resistência à Insulina , Intestinos/inervação , Lipoproteínas VLDL/metabolismo , Fígado/inervação , Obesidade/prevenção & controle , Triglicerídeos/metabolismo , Vagotomia , Nervo Vago/cirurgia , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Exenatida , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/fisiopatologia , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hiperlipidemias/sangue , Hiperlipidemias/fisiopatologia , Incretinas/farmacologia , Insulina/sangue , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/fisiopatologia , Peptídeos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Tempo , Regulação para Cima , Nervo Vago/fisiopatologia , Peçonhas/farmacologia
17.
Bioorg Med Chem ; 26(10): 2738-2758, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988749

RESUMO

Peptides are recognized as being highly selective, potent and relatively safe as potential therapeutics. Peptides isolated from the venom of different animals satisfy most of these criteria with the possible exception of safety, but when isolated as single compounds and used at appropriate concentrations, venom-derived peptides can become useful drugs. Although the number of venom-derived peptides that have successfully progressed to the clinic is currently limited, the prospects for venom-derived peptides look very optimistic. As proteomic and transcriptomic approaches continue to identify new sequences, the potential of venom-derived peptides to find applications as therapeutics, cosmetics and insecticides grows accordingly.


Assuntos
Descoberta de Drogas/métodos , Peptídeos/química , Peptídeos/uso terapêutico , Peçonhas/química , Peçonhas/uso terapêutico , Sequência de Aminoácidos , Animais , Ensaios Clínicos como Assunto , Cosméticos/química , Aprovação de Drogas , Humanos , Inseticidas/química , Modelos Moleculares , Peptídeos/farmacologia , Proteômica/métodos , Peçonhas/farmacologia
18.
Brain ; 140(5): 1420-1436, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334990

RESUMO

See Stayte and Vissel (doi:10.1093/awx064) for a scientific commentary on this article. Multiple system atrophy is a fatal sporadic adult-onset neurodegenerative disorder with no symptomatic or disease-modifying treatment available. The cytopathological hallmark of multiple system atrophy is the accumulation of α-synuclein aggregates in oligodendrocytes, forming glial cytoplasmic inclusions. Impaired insulin/insulin-like growth factor-1 signalling (IGF-1) and insulin resistance (i.e. decreased insulin/IGF-1) have been reported in other neurodegenerative disorders such as Alzheimer's disease. Increasing evidence also suggests impaired insulin/IGF-1 signalling in multiple system atrophy, as corroborated by increased insulin and IGF-1 plasma concentrations in multiple system atrophy patients and reduced IGF-1 brain levels in a transgenic mouse model of multiple system atrophy. We here tested the hypothesis that multiple system atrophy is associated with brain insulin resistance and showed increased expression of the key downstream messenger insulin receptor substrate-1 phosphorylated at serine residue 312 in neurons and oligodendrocytes in the putamen of patients with multiple system atrophy. Furthermore, the expression of insulin receptor substrate 1 (IRS-1) phosphorylated at serine residue 312 was more apparent in inclusion bearing oligodendrocytes in the putamen. By contrast, it was not different between both groups in the temporal cortex, a less vulnerable structure compared to the putamen. These findings suggest that insulin resistance may occur in multiple system atrophy in regions where the neurodegenerative process is most severe and point to a possible relation between α-synuclein aggregates and insulin resistance. We also observed insulin resistance in the striatum of transgenic multiple system atrophy mice and further demonstrate that the glucagon-like peptide-1 analogue exendin-4, a well-tolerated and Federal Drug Agency-approved antidiabetic drug, has positive effects on insulin resistance and monomeric α-synuclein load in the striatum, as well as survival of nigral dopamine neurons. Additionally, plasma levels of exosomal neural-derived IRS-1 phosphorylated at serine residue 307 (corresponding to serine residue 312 in humans) negatively correlated with survival of nigral dopamine neurons in multiple system atrophy mice treated with exendin-4. This finding suggests the potential for developing this peripheral biomarker candidate as an objective outcome measure of target engagement for clinical trials with glucagon-like peptide-1 analogues in multiple system atrophy. In conclusion, our observation of brain insulin resistance in multiple system atrophy patients and transgenic mice together with the beneficial effects of the glucagon-like peptide-1 agonist exendin-4 in transgenic mice paves the way for translating this innovative treatment into a clinical trial.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Atrofia de Múltiplos Sistemas/metabolismo , Peptídeos/farmacologia , Peçonhas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Sobrevivência Celular/efeitos dos fármacos , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/fisiologia , Exenatida , Feminino , Humanos , Proteínas Substratos do Receptor de Insulina/biossíntese , Proteínas Substratos do Receptor de Insulina/sangue , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/sangue , Neurônios/metabolismo , Oligodendroglia/metabolismo , Fosforilação , Agregação Patológica de Proteínas/metabolismo , Putamen/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Lobo Temporal/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Kidney Blood Press Res ; 43(4): 1273-1284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30078011

RESUMO

BACKGROUND/AIMS: Myocardial ischemia/reperfusion (I/R) injury (MI/RI) is a critical cause of death in patients with heart disease. However, the pharmaco-therapeutical outcome for MI/RI remains unsatisfactory. Innovative approaches for enhancing drug sensitivity and recovering myocardial function in MI/RI treatment are urgently needed. The purpose of this study was to evaluate the protective effects of exenatide-loaded poly(L-lysine)-poly(ethylene glycol)-poly(L-lysine) (PLL-PEG-PLL) nanoparticles (NPs) against MI/RI. METHODS: The size of PLL-PEG-PLL NPs and the loading and release rates of exenatide were determined. The in vitro NP cytotoxicity was evaluated using newborn rat cardiomyocytes. Rats pretreated with free exenatide or exenatide/PLL-PEG-PLL polyplexes were subjected to 0.5-h ischemia and 2-h reperfusion in the left anterior descending coronary artery. The histopathologic lesions were assessed using hematoxylin-eosin staining. The general physiological indices, including blood pressure (BP), heart rate (HR), the left ventricular ejection fraction (LVEF) and end-diastolic pressure (LEVDP), and the left ventricular pressure maximal rate of rising (dp/dtmax), were monitored using a non-invasive blood pressure analyzer and color Doppler echocardiography. The antioxidative activity in the myocardial tissue was measured. The myocardial enzymatic activity was further estimated by determining the serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), cardiac troponin T (cTnT), and glucagon-like peptide-1 (GLP-1), as well as the expression of GLP-1R in the myocardial tissue. RESULTS: Exenatide preconditioning attenuated the oxidative stress injury and promoted the myocardial function in I/R-induced myocardial injury, while the application of block copolymer PLL-PEG-PLL as a potential exenatide nanocarrier with sustained release significantly enhanced the bioavailability of exenatide. CONCLUSION: The block copolymer PLL-PEG-PLL may function as a potent exenatide nanocarrier for augmenting pharmacotherapy against MI/RI with unprecedented clinical benefits. Further study is needed to better clarify the underlying mechanisms.


Assuntos
Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Nanopartículas/química , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Animais Recém-Nascidos , Portadores de Fármacos/química , Exenatida , Hipoglicemiantes , Incretinas , Masculino , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Polietilenoglicóis/uso terapêutico , Polilisina/análogos & derivados , Polilisina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Peçonhas/farmacocinética , Peçonhas/uso terapêutico
20.
Can J Physiol Pharmacol ; 96(6): 587-596, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29406832

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. Coagonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) are under clinical investigation for the treatment of obesity and type 2 diabetes. In this study, we have demonstrated the effect of a balanced coagonist in the treatment of NAFLD using mouse models. GLP-1R agonist exendin-4, glucagon, and coagonist (Aib2 C24 chimera2) were administered to C57BL6/J mice, in which NAFLD was induced by carbon tetrachloride (CCl4) treatment after high-fat diet (HFD) feeding, and choline-deficient, L-amino-acid-defined HFD (CDAHFD) feeding. Repeated dose administration of coagonist significantly attenuated liver inflammation and steatosis induced by acute and long-term treatment with CCl4 in HFD-fed mice. Coagonist markedly attenuated the CDAHFD-induced expression of TIMP-1, MMP-9, TNF-α, MCP-1, COL1A1, and α-SMA. It also inhibited progression of hepatic steatosis and fibrosis in mice. Exendin-4 was better than glucagon, but coagonist was most effective in reduction of hepatic inflammation as well as steatosis. Coagonist of GLP-1R and GCGR improved NAFLD in C57BL6/J mice. This effect is mediated by reduction in lipotoxicity and inflammation in liver.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Glucagon/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Peptídeos/farmacologia , Receptores de Glucagon/agonistas , Peçonhas/farmacologia , Animais , Exenatida , Glucagon/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA