Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37545292

RESUMO

Epithelial-to-mesenchymal transition (EMT) gives rise to cells with properties similar to cancer stem cells (CSCs). Targeting the EMT program to selectively eliminate CSCs is a promising way to improve cancer therapy. Salinomycin (Sal), a K+/H+ ionophore, was identified as highly selective towards CSC-like cells, but its mechanism of action and selectivity remains elusive. Here, we show that Sal, similar to monensin and nigericin, disturbs the function of the Golgi. Sal alters the expression of Golgi-related genes and leads to marked changes in Golgi morphology, particularly in cells that have undergone EMT. Moreover, Golgi-disturbing agents severely affect post-translational modifications of proteins, including protein processing, glycosylation and secretion. We discover that the alterations induced by Golgi-disturbing agents specifically affect the viability of EMT cells. Collectively, our work reveals a novel vulnerability related to the EMT, suggesting an important role for the Golgi in the EMT and that targeting the Golgi could represent a novel therapeutic approach against CSCs.


Assuntos
Transição Epitelial-Mesenquimal , Piranos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Piranos/farmacologia , Piranos/metabolismo , Piranos/uso terapêutico , Complexo de Golgi , Células-Tronco Neoplásicas/metabolismo
2.
Microb Cell Fact ; 23(1): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515152

RESUMO

BACKGROUND: Natural tetramates are a family of hybrid polyketides bearing tetramic acid (pyrrolidine-2,4-dione) moiety exhibiting a broad range of bioactivities. Biosynthesis of tetramates in microorganisms is normally directed by hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries, which form the tetramic acid ring by recruiting trans- or cis-acting thioesterase-like Dieckmann cyclase in bacteria. There are a group of tetramates with unique skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, which remain to be investigated for their biosynthetic logics. RESULTS: Herein, the tetramate type compounds bripiodionen (BPD) and its new analog, featuring the rare skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, were discovered from the sponge symbiotic bacterial Streptomyces reniochalinae LHW50302. Gene deletion and mutant complementation revealed the production of BPDs being correlated with a PKS-NRPS biosynthetic gene cluster (BGC), in which a Dieckmann cyclase gene bpdE was identified by sit-directed mutations. According to bioinformatic analysis, the tetramic acid moiety of BPDs should be formed on an atypical NRPS module constituted by two discrete proteins, including the C (condensation)-A (adenylation)-T (thiolation) domains of BpdC and the A-T domains of BpdD. Further site-directed mutagenetic analysis confirmed the natural silence of the A domain in BpdC and the functional necessities of the two T domains, therefore suggesting that an unusual aminoacyl transthiolation should occur between the T domains of two NRPS subunits. Additionally, characterization of a LuxR type regulator gene led to seven- to eight-fold increasement of BPDs production. The study presents the first biosynthesis case of the natural molecule with 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Genomic mining using BpdD as probe reveals that the aminoacyl transthiolation between separate NRPS subunits should occur in a certain population of NRPSs in nature.


Assuntos
Vias Biossintéticas , Policetídeo Sintases , Pirrolidinonas , Policetídeo Sintases/metabolismo , Bactérias/metabolismo , Piranos/metabolismo , Esqueleto/metabolismo , Peptídeo Sintases/genética
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301902

RESUMO

Uncovering the basis of small-molecule hormone receptors' evolution is paramount to a complete understanding of how protein structure drives function. In plants, hormone receptors for strigolactones are well suited to evolutionary inquiries because closely related homologs have different ligand preferences. More importantly, because of facile plant transgenic systems, receptors can be swapped and quickly assessed functionally in vivo. Here, we show that only three mutations are required to turn the nonstrigolactone receptor, KAI2, into a receptor that recognizes the plant hormone strigolactone. This modified receptor still retains its native function to perceive KAI2 ligands. Our directed evolution studies indicate that only a few keystone mutations are required to increase receptor promiscuity of KAI2, which may have implications for strigolactone receptor evolution in parasitic plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Furanos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Compostos Heterocíclicos com 3 Anéis/metabolismo , Hidrolases/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Piranos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases/genética , Mutação , Filogenia , Ligação Proteica
4.
J Integr Plant Biol ; 66(5): 865-882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38116738

RESUMO

Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.


Assuntos
Lactonas , Transdução de Sinais , Lactonas/metabolismo , Luz , Piranos/metabolismo , Piranos/farmacologia , Furanos/metabolismo , Furanos/farmacologia , Desenvolvimento Vegetal/efeitos da radiação , Desenvolvimento Vegetal/efeitos dos fármacos , Morfogênese/efeitos da radiação , Morfogênese/efeitos dos fármacos , Adaptação Fisiológica/genética
5.
Plant Cell ; 32(9): 2780-2805, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32665307

RESUMO

Seedling emergence in monocots depends mainly on mesocotyl elongation, requiring coordination between developmental signals and environmental stimuli. Strigolactones (SLs) and karrikins are butenolide compounds that regulate various developmental processes; both are able to negatively regulate rice (Oryza sativa) mesocotyl elongation in the dark. Here, we report that a karrikin signaling complex, DWARF14-LIKE (D14L)-DWARF3 (D3)-O. sativa SUPPRESSOR OF MAX2 1 (OsSMAX1) mediates the regulation of rice mesocotyl elongation in the dark. We demonstrate that D14L recognizes the karrikin signal and recruits the SCFD3 ubiquitin ligase for the ubiquitination and degradation of OsSMAX1, mirroring the SL-induced and D14- and D3-dependent ubiquitination and degradation of D53. Overexpression of OsSMAX1 promoted mesocotyl elongation in the dark, whereas knockout of OsSMAX1 suppressed the elongated-mesocotyl phenotypes of d14l and d3 OsSMAX1 localizes to the nucleus and interacts with TOPLESS-RELATED PROTEINs, regulating downstream gene expression. Moreover, we showed that the GR24 enantiomers GR245DS and GR24 ent-5DS specifically inhibit mesocotyl elongation and regulate downstream gene expression in a D14- and D14L-dependent manner, respectively. Our work revealed that karrikin and SL signaling play parallel and additive roles in modulating downstream gene expression and negatively regulating mesocotyl elongation in the dark.


Assuntos
Furanos/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Piranos/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Compostos Heterocíclicos com 3 Anéis/química , Lactonas/química , Oryza/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Estereoisomerismo , Ubiquitinação
6.
Plant Cell ; 32(7): 2251-2270, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358074

RESUMO

Strigolactones (SLs) and karrikins (KARs) are related butenolide signaling molecules that control plant development. In Arabidopsis (Arabidopsis thaliana), they are recognized separately by two closely related receptors but use the same F-box protein MORE AXILLARY GROWTH2 (MAX2) for signal transduction, targeting different members of the SMAX1-LIKE (SMXL) family of transcriptional repressors for degradation. Both signals inhibit hypocotyl elongation in seedlings, raising the question of whether signaling is convergent or parallel. Here, we show that synthetic SL analog GR244DO enhanced the interaction between the SL receptor DWARF14 (D14) and SMXL2, while the KAR surrogate GR24 ent-5DS induced association of the KAR receptor KARRIKIN INSENSITIVE2 (KAI2) with SMAX1 and SMXL2. Both signals trigger polyubiquitination and degradation of SMXL2, with GR244DO dependent on D14 and GR24 ent-5DS dependent mainly on KAI2. SMXL2 is critical for hypocotyl responses to GR244DO and functions redundantly with SMAX1 in hypocotyl response to GR24 ent-5DS Furthermore, GR244DO induced response of D14-LIKE2 and KAR-UP F-BOX1 through SMXL2, whereas GR24 ent-5DS induced expression of these genes via both SMAX1 and SMXL2. These findings demonstrate that both SLs and KARs could trigger polyubiquitination and degradation of SMXL2, thus uncovering an unexpected but important convergent pathway in SL- and KAR-regulated gene expression and hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Furanos/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lactonas/metabolismo , Piranos/metabolismo , Motivos de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Transporte/metabolismo , Furanos/farmacologia , Regulação da Expressão Gênica de Plantas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hidrolases/genética , Hidrolases/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lactonas/farmacologia , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Proteólise , Piranos/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais , Ubiquitinação
7.
Nature ; 549(7673): 502-506, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28902839

RESUMO

Pericyclic reactions-which proceed in a concerted fashion through a cyclic transition state-are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-l-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme 'toolboxes'. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.


Assuntos
Aspergillus nidulans/enzimologia , Biocatálise , Produtos Biológicos/metabolismo , Vias Biossintéticas , Coenzimas/metabolismo , S-Adenosilmetionina/metabolismo , Aspergillus nidulans/genética , Benzopiranos/química , Benzopiranos/metabolismo , Produtos Biológicos/química , Cromatografia Líquida de Alta Pressão , Reação de Cicloadição , Escherichia coli/genética , Piranos/química , Piranos/metabolismo , Piridonas/química , Piridonas/metabolismo
8.
PLoS Genet ; 16(12): e1009249, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370251

RESUMO

Karrikins (KARs), smoke-derived butenolides, are perceived by the α/ß-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) and thought to mimic endogenous, yet elusive plant hormones tentatively called KAI2-ligands (KLs). The sensitivity to different karrikin types as well as the number of KAI2 paralogs varies among plant species, suggesting diversification and co-evolution of ligand-receptor relationships. We found that the genomes of legumes, comprising a number of important crops with protein-rich, nutritious seed, contain two or more KAI2 copies. We uncover sub-functionalization of the two KAI2 versions in the model legume Lotus japonicus and demonstrate differences in their ability to bind the synthetic ligand GR24ent-5DS in vitro and in genetic assays with Lotus japonicus and the heterologous Arabidopsis thaliana background. These differences can be explained by the exchange of a widely conserved phenylalanine in the binding pocket of KAI2a with a tryptophan in KAI2b, which arose independently in KAI2 proteins of several unrelated angiosperms. Furthermore, two polymorphic residues in the binding pocket are conserved across a number of legumes and may contribute to ligand binding preferences. The diversification of KAI2 binding pockets suggests the occurrence of several different KLs acting in non-fire following plants, or an escape from possible antagonistic exogenous molecules. Unexpectedly, L. japonicus responds to diverse synthetic KAI2-ligands in an organ-specific manner. Hypocotyl growth responds to KAR1, KAR2 and rac-GR24, while root system development responds only to KAR1. This differential responsiveness cannot be explained by receptor-ligand preferences alone, because LjKAI2a is sufficient for karrikin responses in the hypocotyl, while LjKAI2a and LjKAI2b operate redundantly in roots. Instead, it likely reflects differences between plant organs in their ability to transport or metabolise the synthetic KLs. Our findings provide new insights into the evolution and diversity of butenolide ligand-receptor relationships, and open novel research avenues into their ecological significance and the mechanisms controlling developmental responses to divergent KLs.


Assuntos
Proteínas de Arabidopsis/genética , Furanos/metabolismo , Hidrolases/genética , Hipocótilo/crescimento & desenvolvimento , Lotus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Piranos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Furanos/química , Duplicação Gênica , Regulação da Expressão Gênica de Plantas/genética , Compostos Heterocíclicos com 3 Anéis/metabolismo , Hidrolases/metabolismo , Hipocótilo/metabolismo , Lactonas/metabolismo , Ligantes , Lotus/genética , Análise em Microsséries , Filogenia , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/genética , Raízes de Plantas/metabolismo , Piranos/química
9.
Med Res Rev ; 42(3): 1037-1063, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34786735

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self-renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti-CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad-spectrum activities, including the important anti-CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor-specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Piranos/metabolismo , Piranos/farmacologia , Piranos/uso terapêutico , Microambiente Tumoral
10.
Bioorg Med Chem Lett ; 66: 128727, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35413414

RESUMO

Actinorhodin (ACT) is a benzoisochromanequinone antibiotic produced by Streptomyces coelicolor A3(2), which has served as a favored model organism for comprehensive studies of antibiotic biosynthesis and its regulation. (S)-DNPA undergoes various modifications as an intermediate in the ACT biosynthetic pathway, including enoyl reduction to DDHK. It has been suggested that actVI-ORF2 encodes an enoyl reductase (ER). However, its function has not been characterized in vitro. In this study, biochemical analysis of recombinant ActVI-ORF2 revealed that (S)-DNPA is converted to DDHK in a stereospecific manner with NADPH acting as a cofactor. (R)-DNPA was also reduced to 3-epi-DDHK with the comparable efficacy as (S)-DNPA, suggesting that the stereospecificity of ActVI-ORF2 was not affected by the stereochemistry at the C-3 of DNPA. ActVI-ORF2 is a new example of a discrete ER, which is distantly related to known ERs according to phylogenetic analysis.


Assuntos
Streptomyces coelicolor , Streptomyces , Antraquinonas/química , Antibacterianos/metabolismo , Oxirredutases/metabolismo , Filogenia , Piranos/metabolismo , Streptomyces/metabolismo , Streptomyces coelicolor/metabolismo
11.
Can J Microbiol ; 68(3): 157-163, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34982582

RESUMO

The purpose of this study was to explore the function of the MarR family regulator slnO. Additionally, a high-yield strain of salinomycin was constructed using combined regulation strategies. First, the slnO gene overexpression strain (GO) was constructed in Streptomyces albus. Compared to the wild-type (WT) strain, salinomycin production in the GO strain increased by approximately 28%. Electrophoretic mobility gel shift assays (EMSAs) confirmed that the SlnO protein can bind specifically to the intergenic regions of slnN-slnO, slnQ-slnA1, and slnF-slnT. qRT-PCR experiments also showed that slnA1, slnF, and slnT1 were significantly upregulated, whereas the expression level of the slnN gene was downregulated in the GO strain. Second, the slnN gene deletion strain (slnNDM) was used as the starting strain, and the pathway-specific gene slnR in the salinomycin gene cluster was overexpressed in slnNDM. This new strain was named ZJUS01. The yield of salinomycin in the ZJUS01 strain was 25% and 56% higher than those in the slnNDM and WT strains, respectively. The above results indicate that the slnO gene has a positive regulatory effect on the biosynthesis of salinomycin. Meanwhile, the yield of salinomycin can be greatly increased by manipulating multiple transcriptional regulations.


Assuntos
Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Piranos/metabolismo , Streptomyces/genética
12.
Mar Drugs ; 20(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35323510

RESUMO

Four new benzodipyran racemates, namely (±)-aspergiletals A-D (3-6), representing a rare pyrano[4,3-h]chromene scaffold were isolated together with eurotiumide G (1) and eurotiumide F (2) from the soft-coral-derived fungus Aspergillus sp. EGF 15-0-3. All the corresponding optically pure enantiomers were successfully separated by a chiral HPLC column. The structures and configurations of all the compounds were elucidated based on the combination of NMR and HRESIMS data, chiral separation, single-crystal X-ray diffraction, quantum chemical 13C NMR, and electronic circular dichroism calculations. Meanwhile, the structure of eurotiumide G was also revised. The TDP1 inhibitor activities and photophysical properties of the obtained compounds were evaluated. In the TDP1 inhibition assay, as a result of synergy between (+)-6 and (-)-6, (±)-6 displayed strong inhibitory activity to TDP1 with IC50 values of 6.50 ± 0.73 µM. All compounds had a large Stokes shift and could be utilized for elucidating the mode of bioactivities by fluorescence imaging.


Assuntos
Antozoários/microbiologia , Aspergillus , Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases/química , Piranos , Animais , Aspergillus/química , Aspergillus/metabolismo , Fluorescência , Modelos Moleculares , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/isolamento & purificação , Piranos/química , Piranos/isolamento & purificação , Piranos/metabolismo
13.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056843

RESUMO

The affinity of the polyether ionophore salinomycin to bind IA/IB metal ions was accessed using the Gibbs free energy of the competition reaction between SalNa (taken as a reference) and its rival ions: [M+-solution] + [SalNa] → [SalM] + [Na+-solution] (M = Li, K, Rb, Cs, Cu, Ag, Au). The DFT/PCM computations revealed that the ionic radius, charge density and accepting ability of the competing metal cations, as well as the dielectric properties of the solvent, have an influence upon the selectivity of salinomycin. The optimized structures of the monovalent metal complexes demonstrate the flexibility of the ionophore, allowing the coordination of one or two water ligands in SalM-W1 and SalM-W2, respectively. The metal cations are responsible for the inner coordination sphere geometry, with coordination numbers spread between 2 (Au+), 4 (Li+ and Cu+), 5/6 (Na+, K+, Ag+), 6/7 (Rb+) and 7/8 (Cs+). The metals' affinity to salinomycin in low-polarity media follows the order of Li+ > Cu+ > Na+ > K+ > Au+ > Ag+ > Rb+ > Cs+, whereas some derangement takes place in high-dielectric environment: Li+ ≥ Na+ > K+ > Cu+ > Au+ > Ag+ > Rb+ > Cs+.


Assuntos
Cátions Monovalentes/metabolismo , Simulação por Computador , Metais/metabolismo , Piranos/metabolismo , Cátions Monovalentes/química , Teoria da Densidade Funcional , Cinética , Metais/química , Modelos Moleculares , Piranos/química , Termodinâmica
14.
Plant J ; 101(2): 334-351, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31559658

RESUMO

Despite of important functions of strigolactones (SLs) and karrikins (KARs) in plant development, plant-parasite and plant-fungi interactions, their roles in soybean-rhizobia interaction remain elusive. SL/KAR signaling genes GmMAX2a, GmD14s, and GmKAIs are activated by rhizobia infection. GmMAX2a restored atmax2 root hair defects and soybean root hairs were changed in GmMAX2a overexpression (GmMAX2a-OE) or knockdown (GmMAX2a-KD) mutants. GmMAX2a-KD gave fewer, whereas GmMAX2a-OE produced more nodules than GUS hairy roots. Mutation of GmMAX2a in its KD or OE transgenic hairy roots affected the rhizobia infection-induced increases in early nodulation gene expression. Both mutant hairy roots also displayed the altered auxin, jasmonate and abscisic acid levels, as further verified by transcriptomic analyses of their synthetic genes. Overexpression of an auxin synthetic gene GmYUC2a also affected SL and KAR signaling genes. GmMAX2a physically interacted with SL/KAR receptors GmD14s, GmKAIs, and GmD14Ls with different binding affinities, depending on variations in the critical amino acids, forming active D14/KAI-SCFMAX2 complexes. The knockdown mutant roots of the nodule-specifically expressing GmKAIs and GmD14Ls gave fewer nodules, with altered expression of several early nodulation genes. The expression levels of GmKAIs, and GmD14Ls were markedly changed in GmMAX2a mutant roots, so did their target repressor genes GmD53s and GmSMAX1s. Thus, SL and KAR signaling were involved in soybean-rhizobia interaction and nodulation partly through interactions with hormones, and this may explain the different effects of MXA2 orthologs on legume determinate and indeterminate nodulation. The study provides fresh insights into the roles of GmMAX2-mediated SL/KAR signaling in soybean root hair and nodule formation.


Assuntos
Proteínas de Transporte/metabolismo , Furanos/metabolismo , Glycine max/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/fisiologia , Piranos/metabolismo , Transdução de Sinais/fisiologia , Bradyrhizobium , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rhizobium , Transdução de Sinais/genética , Glycine max/genética , Transcriptoma
15.
J Am Chem Soc ; 143(16): 6043-6047, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33857369

RESUMO

Lanosterol 14α-demethylase (CYP51) is an important target in the development of antifungal drugs. The fungal-derived restricticin 1 and related molecules are the only examples of natural products that inhibit CYP51. Here, using colocalizations of genes encoding self-resistant CYP51 as the query, we identified and validated the biosynthetic gene cluster (BGC) of 1. Additional genome mining of related BGCs with CYP51 led to production of the related lanomycin 2. The pathways for both 1 and 2 were identified from fungi not known to produce these compounds, highlighting the promise of the self-resistance enzyme (SRE) guided approach to bioactive natural product discovery.


Assuntos
Inibidores de 14-alfa Desmetilase/metabolismo , Produtos Biológicos/metabolismo , Família 51 do Citocromo P450/genética , Antifúngicos/química , Antifúngicos/metabolismo , Produtos Biológicos/química , Família 51 do Citocromo P450/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Família Multigênica , Piranos/química , Piranos/metabolismo
16.
Biotechnol Bioeng ; 118(12): 4668-4677, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34436784

RESUMO

Salinomycin is a promising anticancer drug for chemotherapy. A highly productive biosynthetic gene cluster will facilitate the creation of analogs with improved therapeutic activity and reduced side effects. In this study, we engineered an artificial 106-kb salinomycin gene cluster and achieved efficient heterologous expression in three hosts: Streptomyces coelicolor CH999, S. lividans K4-114, and S. albus J1074. The six-operon artificial gene cluster consists of 25 genes from the native gene cluster organized into five operons and five fatty acid ß-oxidation genes into one operon. All operons are driven by strong constitutive promoters. For K4-114 and J1074 harboring the artificial gene cluster, salinomycin production in shake flask cultures was 14.3 mg L-1 and 19.3 mg L-1 , respectively. The production was 1.3-fold and 1.7-fold higher, respectively, than that of the native producer S. albus DSM41398. K4-114 and J1074 harboring the native gene cluster produced an undetectable amount of salinomycin and 0.5 mg L-1 , respectively. CH999 harboring the artificial gene cluster produced 10.3 mg L-1 of salinomycin, which was 92% of the production by DSM41398. The efficient heterologous expression system based on the 106-kb multioperon artificial gene cluster established in this study will facilitate structural diversification of salinomycin, which is valuable for drug development and structure-activity studies.


Assuntos
Vias Biossintéticas/genética , Genes Sintéticos/genética , Família Multigênica/genética , Piranos , Streptomyces/genética , Antineoplásicos/análise , Antineoplásicos/metabolismo , Engenharia Metabólica , Piranos/análise , Piranos/metabolismo
17.
Rapid Commun Mass Spectrom ; 35(24): e9208, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34606659

RESUMO

RATIONALE: Methysticin is a naturally occurring ingredient isolated from Piper methysticum Forst. The metabolic profile of methysticin is unknown. The goal of this study was to elucidate the metabolism of methysticin using rat and human liver microsomes and hepatocytes. METHODS: The incubation samples were analyzed using ultra-high-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (UHPLC-HRMS). The structures of the metabolites were characterized based on the elemental composition, exact mass, and product ions. RESULTS: A total of 10 metabolites were detected and identified. Among these metabolites, M4 (ring opening of 1,3-benzodioxole) was the predominant metabolite in rat and human liver microsomes. M4 and its glucuronide conjugate (M2) were the major metabolites in rat and human hepatocytes. The metabolic pathways of methysticin are summarized as follows: (a) oxidative ring opening of 1,3-benzodioxole forms the catechol derivative (M4), which subsequently undergoes glucuronidation (M1 and M2), methylation (M8), and sulfation (M7). (b) Demethylation to yield desmethyl methysticin (M6), followed by glucuronidation (M3 and M5). (c) Hydroxylation (M9 and M10). CONCLUSIONS: For the first time, this study provides new information on the in vitro metabolic profiles of methysticin, which facilitates an understanding of the disposition of this bioactive ingredient.


Assuntos
Hepatócitos/química , Microssomos Hepáticos/química , Piranos/química , Piranos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Hepatócitos/metabolismo , Humanos , Hidroxilação , Espectrometria de Massas , Metaboloma , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos
18.
Mar Drugs ; 19(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210084

RESUMO

Very little is known about chemical interactions between fungi and their mollusc host within marine environments. Here, we investigated the metabolome of a Penicillium restrictum MMS417 strain isolated from the blue mussel Mytilus edulis collected on the Loire estuary, France. Following the OSMAC approach with the use of 14 culture media, the effect of salinity and of a mussel-derived medium on the metabolic expression were analysed using HPLC-UV/DAD-HRMS/MS. An untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA) and molecular networking (MN). It highlighted some compounds belonging to sterols, macrolides and pyran-2-ones, which were specifically induced in marine conditions. In particular, a high chemical diversity of pyran-2-ones was found to be related to the presence of mussel extract in the culture medium. Mass spectrometry (MS)- and UV-guided purification resulted in the isolation of five new natural fungal pyran-2-one derivatives-5,6-dihydro-6S-hydroxymethyl-4-methoxy-2H-pyran-2-one (1), (6S, 1'R, 2'S)-LL-P880ß (3), 5,6-dihydro-4-methoxy-6S-(1'S, 2'S-dihydroxy pent-3'(E)-enyl)-2H-pyran-2-one (4), 4-methoxy-6-(1'R, 2'S-dihydroxy pent-3'(E)-enyl)-2H-pyran-2-one (6) and 4-methoxy-2H-pyran-2-one (7)-together with the known (6S, 1'S, 2'S)-LL-P880ß (2), (1'R, 2'S)-LL-P880γ (5), 5,6-dihydro-4-methoxy-2H-pyran-2-one (8), (6S, 1'S, 2'R)-LL-P880ß (9), (6S, 1'S)-pestalotin (10), 1'R-dehydropestalotin (11) and 6-pentyl-4-methoxy-2H-pyran-2-one (12) from the mussel-derived culture medium extract. The structures of 1-12 were determined by 1D- and 2D-MMR experiments as well as high-resolution tandem MS, ECD and DP4 calculations. Some of these compounds were evaluated for their cytotoxic, antibacterial, antileishmanial and in-silico PTP1B inhibitory activities. These results illustrate the utility in using host-derived media for the discovery of new natural products.


Assuntos
Bivalves , Penicillium/metabolismo , Piranos/metabolismo , Animais , Organismos Aquáticos , França , Metabolômica , Penicillium/química , Piranos/química , Relação Estrutura-Atividade
19.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567615

RESUMO

The authors in the current work suggested the potential repurposing of omarigliptin (OMR) for neurodegenerative diseases based on three new findings that support the preliminary finding of crossing BBB after a single dose study in the literature. The first finding is the positive results of the docking study with the crystal structures of A2A adenosine (A2AAR) and acetylcholine esterase (AChE) receptors. A2AAR is a member of non-dopaminergic GPCR superfamily receptor proteins and has essential role in regulation of glutamate and dopamine release in Parkinson's disease while AChE plays a major role in Alzheimer's disease as the primary enzyme responsible for the hydrolytic metabolism of the neurotransmitter acetylcholine into choline and acetate. Docking showed that OMR perfectly fits into A2AAR binding pocket forming a distinctive hydrogen bond with Threonine 256. Besides other non-polar interactions inside the pocket suggesting the future of the marketed anti-diabetic drug (that cross BBB) as a potential antiparkinsonian agent while OMR showed perfect fit inside AChE receptor binding site smoothly because of its optimum length and the two fluorine atoms that enables quite lean fitting. Moreover, a computational comparative study of OMR docking, other 12 DPP-4 inhibitors and 11 SGLT-2 inhibitors was carried out. Secondly, glucagon-like peptide-1 (GLP-1) concentration in rats' brain tissue was determined by the authors using sandwich GLP-1 ELISA kit bio-analysis to ensure the effect of OMR after the multiple doses' study. Brain GLP-1 concentration was elevated by 1.9-fold following oral multiple doses of OMR (5 mg/kg/day, p.o. for 28 days) as compared to the control group. The third finding is the enhanced BBB crossing of OMR after 28 days of multiple doses that had been studied using LC-MS/MS method with enhanced liquid-liquid extraction. A modified LC-MS/MS method was established for bioassay of OMR in rats' plasma (10-3100 ng/mL) and rats' brain tissue (15-2900 ng/mL) using liquid-liquid extraction. Alogliptin (ALP) was chosen as an internal standard (IS) due to its LogP value of 1.1, which is very close to the LogP of OMR. Extraction of OMR from samples of both rats' plasma and rats' brain tissue was effectively achieved with ethyl acetate as the extracting solvent after adding 1N sodium carbonate to enhance the drug migration, while choosing acetonitrile to be the diluent solvent for the IS to effectively decrease any emulsion between the layers in the stated method of extraction. Validation results were all pleasing including good stability studies with bias of value below 20%. Concentration of OMR in rats' plasma were determined after 2 h of the latest dose from 28 days multiple doses, p.o, 5 mg/kg/day. It was found to be 1295.66 ± 684.63 ng/mL estimated from the bio-analysis regression equation. OMR passed through the BBB following oral administration and exhibited concentration of 543.56 ± 344.15 ng/g in brain tissue, taking in consideration the dilution factor of 10. The brain/plasma concentration ratio of 0.42 (543.56/1295.66) was used to illustrate the penetration power through the BBB after the multiple doses for 28 days. Results showed that OMR passed through the BBB more effectively in the multiple dose study as compared to the previously published single dose study by the authors. Thus, the present study suggests potential repositioning of OMR as antiparkinsonian agent that will be of interest for researchers interested in neurodegenerative diseases.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Reposicionamento de Medicamentos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Compostos Heterocíclicos com 2 Anéis/farmacologia , Simulação de Acoplamento Molecular , Piranos/farmacologia , Receptor A2A de Adenosina/metabolismo , Acetilcolinesterase/química , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cromatografia Líquida , Relação Dose-Resposta a Droga , Compostos Heterocíclicos com 2 Anéis/sangue , Compostos Heterocíclicos com 2 Anéis/metabolismo , Fármacos Neuroprotetores/sangue , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Conformação Proteica , Piranos/sangue , Piranos/metabolismo , Ratos , Receptor A2A de Adenosina/química , Espectrometria de Massas em Tandem
20.
Plant J ; 98(4): 607-621, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659713

RESUMO

Roots form highly complex systems varying in growth direction and branching pattern to forage for nutrients efficiently. Here mutations in the KAI2 (KARRIKIN INSENSITIVE) α/ß-fold hydrolase and the MAX2 (MORE AXILLARY GROWTH 2) F-box leucine-rich protein, which together perceive karrikins (smoke-derived butenolides), caused alteration in root skewing in Arabidopsis thaliana. This phenotype was independent of endogenous strigolactones perception by the D14 α/ß-fold hydrolase and MAX2. Thus, KAI2/MAX2 effect on root growth may be through the perception of endogenous KAI2-ligands (KLs), which have yet to be identified. Upon perception of a ligand, a KAI2/MAX2 complex is formed together with additional target proteins before ubiquitination and degradation through the 26S proteasome. Using a genetic approach, we show that SMAX1 (SUPPRESSOR OF MAX2-1)/SMXL2 and SMXL6,7,8 (SUPPRESSOR OF MAX2-1-LIKE) are also likely degradation targets for the KAI2/MAX2 complex in the context of root skewing. In A. thaliana therefore, KAI2 and MAX2 act to limit root skewing, while kai2's gravitropic and mechano-sensing responses remained largely unaffected. Many proteins are involved in root skewing, and we investigated the link between MAX2 and two members of the SKS/SKU family. Though KLs are yet to be identified in plants, our data support the hypothesis that they are present and can affect root skewing.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Furanos/metabolismo , Lactonas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Piranos/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Hidrolases/genética , Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA