Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
PLoS Genet ; 15(3): e1007605, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856165

RESUMO

Typical Martsolf syndrome is characterized by congenital cataracts, postnatal microcephaly, developmental delay, hypotonia, short stature and biallelic hypomorphic mutations in either RAB3GAP1 or RAB3GAP2. Genetic analysis of 85 unrelated "mutation negative" probands with Martsolf or Martsolf-like syndromes identified two individuals with different homozygous null mutations in ITPA, the gene encoding inosine triphosphate pyrophosphatase (ITPase). Both probands were from multiplex families with a consistent, lethal and highly distinctive disorder; a Martsolf-like syndrome with infantile-onset dilated cardiomyopathy. Severe ITPase-deficiency has been previously reported with infantile epileptic encephalopathy (MIM 616647). ITPase acts to prevent incorporation of inosine bases (rI/dI) into RNA and DNA. In Itpa-null cells dI was undetectable in genomic DNA. dI could be identified at a low level in mtDNA without detectable mitochondrial genome instability, mtDNA depletion or biochemical dysfunction of the mitochondria. rI accumulation was detectable in proband-derived lymphoblastoid RNA. In Itpa-null mouse embryos rI was detectable in the brain and kidney with the highest level seen in the embryonic heart (rI at 1 in 385 bases). Transcriptome and proteome analysis in mutant cells revealed no major differences with controls. The rate of transcription and the total amount of cellular RNA also appeared normal. rI accumulation in RNA-and by implication rI production-correlates with the severity of organ dysfunction in ITPase deficiency but the basis of the cellulopathy remains cryptic. While we cannot exclude cumulative minor effects, there are no major anomalies in the production, processing, stability and/or translation of mRNA.


Assuntos
Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/genética , Catarata/enzimologia , Catarata/genética , Hipogonadismo/enzimologia , Hipogonadismo/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Pirofosfatases/deficiência , Animais , Sequência de Bases , Pré-Escolar , Análise Mutacional de DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Homozigoto , Humanos , Inosina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/enzimologia , Mutação , Linhagem , Pirofosfatases/genética , RNA/genética , RNA/metabolismo , Sequenciamento do Exoma
2.
Proc Natl Acad Sci U S A ; 116(47): 23698-23704, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31690656

RESUMO

Pyrophosphate deficiency may explain the excessive vascular calcification found in children with Hutchinson-Gilford progeria syndrome (HGPS) and in a mouse model of this disease. The present study found that hydrolysis products of ATP resulted in a <9% yield of pyrophosphate in wild-type blood and aortas, showing that eNTPD activity (ATP → phosphate) was greater than eNPP activity (ATP → pyrophosphate). Moreover, pyrophosphate synthesis from ATP was reduced and pyrophosphate hydrolysis (via TNAP; pyrophosphate → phosphate) was increased in both aortas and blood obtained from mice with HGPS. The reduced production of pyrophosphate, together with the reduction in plasma ATP, resulted in marked reduction of plasma pyrophosphate. The combination of TNAP inhibitor levamisole and eNTPD inhibitor ARL67156 increased the synthesis and reduced the degradation of pyrophosphate in aortas and blood ex vivo, suggesting that these combined inhibitors could represent a therapeutic approach for this devastating progeroid syndrome. Treatment with ATP prevented vascular calcification in HGPS mice but did not extend longevity. By contrast, combined treatment with ATP, levamisole, and ARL67156 prevented vascular calcification and extended longevity by 12% in HGPS mice. These findings suggest a therapeutic approach for children with HGPS.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/fisiologia , Doenças da Aorta/prevenção & controle , Apirase/antagonistas & inibidores , Calcinose/prevenção & controle , Difosfatos/metabolismo , Levamisol/uso terapêutico , Progéria/tratamento farmacológico , Pirofosfatases/antagonistas & inibidores , Trifosfato de Adenosina/uso terapêutico , Fosfatase Alcalina/antagonistas & inibidores , Animais , Antígenos CD/fisiologia , Doenças da Aorta/enzimologia , Apirase/deficiência , Apirase/fisiologia , Calcinose/enzimologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Lamina Tipo A/genética , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Diester Fosfórico Hidrolases/deficiência , Diester Fosfórico Hidrolases/fisiologia , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Pirofosfatases/deficiência , Pirofosfatases/fisiologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
3.
J Cell Physiol ; 236(6): 4614-4624, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33305372

RESUMO

Supraphysiological levels of the osteoblast-enriched mineralization regulator ectonucleotide pyrophosphatase or phosphodiesterase-1 (NPP1) is associated with type 2 diabetes mellitus. We determined the impact of osteoblast-specific Enpp1 ablation on skeletal structure and metabolic phenotype in mice. Female, but not male, 6-week-old mice lacking osteoblast NPP1 expression (osteoblast-specific knockout [KO]) exhibited increased femoral bone volume or total volume (17.50% vs. 11.67%; p < .01), and reduced trabecular spacing (0.187 vs. 0.157 mm; p < .01) compared with floxed (control) mice. Furthermore, an enhanced ability of isolated osteoblasts from the osteoblast-specific KO to calcify their matrix in vitro compared to fl/fl osteoblasts was observed (p < .05). Male osteoblast-specific KO and fl/fl mice showed comparable glucose and insulin tolerance despite increased levels of insulin-sensitizing under-carboxylated osteocalcin (195% increase; p < .05). However, following high-fat-diet challenge, osteoblast-specific KO mice showed impaired glucose and insulin tolerance compared with fl/fl mice. These data highlight a crucial local role for osteoblast NPP1 in skeletal development and a secondary metabolic impact that predominantly maintains insulin sensitivity.


Assuntos
Osso e Ossos/enzimologia , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Osteoblastos/enzimologia , Osteogênese , Diester Fosfórico Hidrolases/deficiência , Pirofosfatases/deficiência , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Osso e Ossos/patologia , Osso Esponjoso/enzimologia , Osso Esponjoso/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fêmur/enzimologia , Fêmur/patologia , Insulina/sangue , Masculino , Camundongos Knockout , Osteoblastos/patologia , Osteocalcina/sangue , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Fatores Sexuais , Crânio/enzimologia , Crânio/patologia , Tíbia/enzimologia , Tíbia/patologia
4.
Nucleic Acids Res ; 47(16): 8452-8469, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31276588

RESUMO

Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.


Assuntos
Fosfatase Ácida/genética , Regulação Fúngica da Expressão Gênica , Fosfatos de Inositol/metabolismo , Regulon , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Terminação da Transcrição Genética , Fosfatase Ácida/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Enzimas Multifuncionais , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirofosfatases/deficiência , Pirofosfatases/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Pharmacogenet Genomics ; 30(8): 175-183, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32433339

RESUMO

BACKGROUND: Nucleotide triphosphate diphosphatase (NUDT15) genetic testing in addition to thiopurine methyl transferase (TPMT) is recommended to reduce the incidence of adverse severe myelotoxicity episodes induced by thiopurines. OBJECTIVE: We assessed the cost-effectiveness ratio of combined screening for TMPT and NUDT15 defective alleles by genotyping or next-generation sequencing (NGS) using TPMT genotyping as the reference. Because of the genetic differences in thiopurine toxicity, we tested the screening strategies on individuals of Caucasian and Asian descent. METHODS: A decision tree compared conventional TPMT genotyping with combined TPMT/NUDT15 genotyping or NGS using a Monte-Carlo microsimulation model of patients with inflammatory bowel disease. The main outcome was the incremental cost-effectiveness ratios (ICER) with effectiveness being one averted severe myelotoxicity requiring hospitalization. RESULTS: The mean estimated cost of the TPMT genotyping for one year is twice in Asian compared with Caucasian patients (980 euro/patient versus 488 euro/patient), and the effectiveness of TPMT genotyping in Caucasian avoided 43 severe myelosuppressions per 10 000 patients over a year compared with 3.6 per 10 000 patients in Asian. Combined TPMT/NUDT15 genotyping compared with TPMT genotyping had an ICER of 7 491 281 euro per severe myelotoxicity averted in Caucasian, compared to 619 euro in Asian. The ICER of the NGS-based screening strategy is disproportionally high compared with genotyping, irrespective of ethnic descent. CONCLUSION: With a low cost-effectiveness threshold, combined screening for NUDT15 and TPMT defective alleles is cost-effective compared to TMPT screening alone in patients of Asian descent, but is unrealistic from a cost-effectiveness point of view in Caucasians.


Assuntos
Azatioprina/efeitos adversos , Doenças da Medula Óssea/diagnóstico , Hipersensibilidade a Drogas/diagnóstico , Técnicas de Genotipagem/economia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Metiltransferases/genética , Pirofosfatases/deficiência , Povo Asiático/genética , Azatioprina/farmacocinética , Doenças da Medula Óssea/induzido quimicamente , Doenças da Medula Óssea/genética , Análise Custo-Benefício , Árvores de Decisões , Hipersensibilidade a Drogas/genética , França/etnologia , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Doenças Inflamatórias Intestinais/genética , Método de Monte Carlo , Análise de Sequência de DNA/economia , População Branca/genética
6.
Cell Microbiol ; 21(8): e13034, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31013389

RESUMO

How Salmonella enterica serovar Typhi (S. Typhi), an important human pathogen, survives the stressful microenvironments inside the gastrointestinal tract and within macrophages remains poorly understood. We report here that S. Typhi has a bonafide stringent response (SR) system, which is mediated by (p)ppGpp and regulates multiple virulence-associated traits and the pathogenicity of the S. Typhi Ty2 strain. In an iron overload mouse model of S. Typhi infection, the (p)ppGpp0 (Ty2ΔRelAΔSpoT) strain showed minimal systemic spread and no mortality, as opposed to 100% death of the mice challenged with the isogenic wild-type strain. Ty2ΔRelAΔSpoT had markedly elongated morphology with incomplete septa formation and demonstrated severely attenuated motility and chemotaxis due to the loss of flagella. Absence of the Vi-polysaccharide capsule rendered the mutant strain highly susceptible to complement-mediated lysis. The phenotypes of Ty2ΔRelAΔSpoT was contributed by transcriptional repression of several genes, including fliC, tviA, and ftsZ, as found by reverse transcriptase quantitative polymerase chain reaction and gene complementation studies. Finally, Ty2ΔRelAΔSpoT had markedly reduced invasion into intestinal epithelial cells and significantly attenuated survival within macrophages. To the best of our knowledge, this was the first study that addressed SR in S. Typhi and showed that (p)ppGpp was essential for optimal pathogenic fitness of the organism.


Assuntos
Proteínas de Bactérias/genética , Guanosina Pentafosfato/metabolismo , Interações Hospedeiro-Patógeno/genética , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Células CACO-2 , Modelos Animais de Doenças , GTP Pirofosfoquinase/deficiência , GTP Pirofosfoquinase/genética , Regulação Bacteriana da Expressão Gênica , Células HT29 , Humanos , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/microbiologia , Sobrecarga de Ferro/mortalidade , Sobrecarga de Ferro/patologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Polissacarídeos Bacterianos/deficiência , Pirofosfatases/deficiência , Pirofosfatases/genética , Células RAW 264.7 , Salmonella typhi/crescimento & desenvolvimento , Salmonella typhi/metabolismo , Transdução de Sinais , Baço/metabolismo , Baço/microbiologia , Baço/patologia , Análise de Sobrevida , Células THP-1 , Febre Tifoide/metabolismo , Febre Tifoide/mortalidade , Febre Tifoide/patologia , Virulência
7.
J Cell Physiol ; 233(4): 3230-3243, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28976001

RESUMO

Arterial medial calcification (AMC) is thought to share some outward similarities to skeletal mineralization and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. ATP and UTP have previously been shown to inhibit bone mineralization. This investigation compared the effects of extracellular nucleotides on calcification in VSMCs with those seen in osteoblasts. ATP, UTP and the ubiquitous mineralization inhibitor, pyrophosphate (PPi ), dose dependently inhibited VSMC calcification by ≤85%. Culture of VSMCs in calcifying conditions was associated with an increase in apoptosis; treatment with ATP, UTP, and PPi reduced apoptosis to levels seen in non-calcifying cells. Extracellular nucleotides had no effect on osteoblast viability. Basal alkaline phosphatase (TNAP) activity was over 100-fold higher in osteoblasts than VSMCs. ATP and UTP reduced osteoblast TNAP activity (≤50%) but stimulated VSMC TNAP activity (≤88%). The effects of extracellular nucleotides on VSMC calcification, cell viability and TNAP activity were unchanged by deletion or inhibition of the P2Y2 receptor. Conversely, the actions of ATP/UTP on bone mineralization and TNAP activity were attenuated in osteoblasts lacking the P2Y2 receptor. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) hydrolyses ATP and UTP to produce PPi . In both VSMCs and osteoblasts, deletion of NPP1 blunted the inhibitory effects of extracellular nucleotides suggesting involvement of P2 receptor independent pathways. Our results show that although the overall functional effect of extracellular nucleotides on AMC and bone mineralization is similar there are clear differences in the cellular mechanisms mediating these actions.


Assuntos
Calcificação Fisiológica , Espaço Extracelular/metabolismo , Nucleotídeos/farmacologia , Túnica Média/patologia , Calcificação Vascular/patologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Difosfatos/farmacologia , Camundongos , Modelos Biológicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Diester Fosfórico Hidrolases/deficiência , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/deficiência , Pirofosfatases/metabolismo , Receptores Purinérgicos P2/metabolismo , Uridina Trifosfato/farmacologia
8.
Adv Exp Med Biol ; 1074: 317-325, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721959

RESUMO

UNC119 and PDEδ are lipid-binding proteins and are thought to form diffusible complexes with transducin-α and prenylated OS proteins, respectively, to mediate their trafficking to photoreceptor outer segments. Here, we investigate mechanisms of trafficking which are controlled by Arf-like protein 3 (Arl3), a small GTPase. The activity of ARL3 is regulated by a GEF (ARL13b) and a GAP (RP2). In a mouse germline knockout of RP2, ARL3-GTP is abundant as its intrinsic GTPase activity is extremely low. High levels of ARL3-GTP impair binding and trafficking of cargo to the outer segment. Germline knockout of ARL3 is embryonically lethal generating a syndromic ciliopathy-like phenotype. Retina- and rod-specific knockout of ARL3 allow to determine the precise mechanisms leading to photoreceptor degeneration. The knockouts reveal binary functions of ARL3-GTP as a key molecule in late-stage photoreceptor ciliogenesis and cargo displacement factor.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Transporte Proteico/fisiologia , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/metabolismo , Distrofias de Cones e Bastonetes/patologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Proteínas de Ligação ao GTP , Genes Letais , Guanosina Trifosfato/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Prenilação de Proteína , Pirofosfatases/deficiência , Pirofosfatases/fisiologia , Segmento Externo da Célula Bastonete/metabolismo
9.
Hum Mol Genet ; 24(22): 6446-58, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26358772

RESUMO

Retinal neurodegenerative diseases are especially attractive targets for gene replacement therapy, which appears to be clinically effective for several monogenic diseases. X-linked forms of retinitis pigmentosa (XLRP) are relatively severe blinding disorders, resulting from progressive photoreceptor dysfunction primarily caused by mutations in RPGR or RP2 gene. With a goal to develop gene therapy for the XLRP-RP2 disease, we first performed detailed characterization of the Rp2-knockout (Rp2-KO) mice and observed early-onset cone dysfunction, which was followed by progressive cone degeneration, mimicking cone vision impairment in XLRP patients. The mice also exhibited distinct and significantly delayed falling phase of photopic b-wave of electroretinogram (ERG). Concurrently, we generated a self-complementary adeno-associated viral (AAV) vector carrying human RP2-coding sequence and demonstrated its ability to mediate stable RP2 protein expression in mouse photoreceptors. A long-term efficacy study was then conducted in Rp2-KO mice following AAV-RP2 vector administration. Preservation of cone function was achieved with a wide dose range over 18-month duration, as evidenced by photopic ERG and optomotor tests. The slower b-wave kinetics was also completely restored. Morphologically, the treatment preserved cone viability, corrected mis-trafficking of M-cone opsin and restored cone PDE6 expression. The therapeutic effect was achieved even in mice that received treatment at an advanced disease stage. The highest AAV-RP2 dose group demonstrated retinal toxicity, highlighting the importance of careful vector dosing in designing future human trials. The wide range of effective dose, a broad treatment window and long-lasting therapeutic effects should make the RP2 gene therapy attractive for clinical development.


Assuntos
Proteínas do Olho/genética , Terapia Genética/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Células Fotorreceptoras Retinianas Cones/fisiologia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Animais , Eletrorretinografia , Proteínas do Olho/biossíntese , Proteínas de Ligação ao GTP , Doenças Genéticas Ligadas ao Cromossomo X/genética , Vetores Genéticos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Knockout , Mutação , Pirofosfatases/deficiência , Pirofosfatases/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Retinose Pigmentar/metabolismo
10.
Clin Exp Pharmacol Physiol ; 44(8): 888-894, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28464292

RESUMO

A pure nucleotide pool is required for high-fidelity DNA replication and prevention of carcinogenesis in living cells. Human inosine triphosphatase (ITPase), encoded by the ITPA gene, plays a critical role in maintaining the purity of the cellular nucleotide pool by excluding nucleotides that enhance mutagenesis. ITPase is a nucleoside triphosphate pyrophosphatase that hydrolyzes the non-canonical nucleotides inosine triphosphate (ITP) and xanthine triphosphate (XTP). The monophosphate products of ITPase reactions are subsequently excluded from the nucleotide pool and the improper substitution of ITP and XTP into DNA and RNA is prevented. Previous studies show that deficiency in ITPA can suppress cellular growth and enhance DNA instability. In this study, we evaluated the influence of effective ITPA down-regulation on the induction of apoptosis in a human cancer cell line using folate-single wall nanotubes (SWNT) as a targeted nanocarrier. We assessed whether SWNT enhances IPTA-siRNA transfection efficiency in cancer cells using folate as a homing device. Since folate receptor is considerably overexpressed in cancer cells, conjugation of SWNTs to folate could enhance their cancer-specific penetrance. We found that nanocarrier mediated ITPA-siRNA transfection into SKBR3 cells caused significant reduction of ITPA mRNA expression level and complete down-regulation of the ITPase protein product. The silencing of ITPA led to promotion of apoptosis in SWNT-treated SKBR3 cancer cells.


Assuntos
Apoptose/genética , Portadores de Fármacos/química , Nanoestruturas/química , Nanotubos de Carbono/química , Pirofosfatases/deficiência , Pirofosfatases/genética , Interferência de RNA , Linhagem Celular Tumoral , Regulação para Baixo/genética , Ácido Fólico/química , Humanos , Hidrólise , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
11.
J Biomed Sci ; 23(1): 73, 2016 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-27770805

RESUMO

Human ITPase (encoded by the ITPA gene) is a protective enzyme which acts to exclude noncanonical (deoxy)nucleoside triphosphates ((d)NTPs) such as (deoxy)inosine 5'-triphosphate ((d)ITP), from (d)NTP pools. Until the last few years, the importance of ITPase in human health and disease has been enigmatic. In 2009, an article was published demonstrating that ITPase deficiency in mice is lethal. All homozygous null offspring died before weaning as a result of cardiomyopathy due to a defect in the maintenance of quality ATP pools. More recently, a whole exome sequencing project revealed that very rare, severe human ITPA mutation results in early infantile encephalopathy and death. It has been estimated that nearly one third of the human population has an ITPA status which is associated with decreased ITPase activity. ITPA status has been linked to altered outcomes for patients undergoing thiopurine or ribavirin therapy. Thiopurine therapy can be toxic for patients with ITPA polymorphism, however, ITPA polymorphism is associated with improved outcomes for patients undergoing ribavirin treatment. ITPA polymorphism has also been linked to early-onset tuberculosis susceptibility. These data suggest a spectrum of ITPA-related disease exists in human populations. Potentially, ITPA status may affect a large number of patient outcomes, suggesting that modulation of ITPase activity is an important emerging avenue for reducing the number of negative outcomes for ITPA-related disease. Recent biochemical studies have aimed to provide rationale for clinical observations, better understand substrate selectivity and provide a platform for modulation of ITPase activity.


Assuntos
Genótipo , Erros Inatos do Metabolismo/genética , Polimorfismo de Nucleotídeo Único , Pirofosfatases/deficiência , Humanos , Mutação , Pirofosfatases/genética , Pirofosfatases/metabolismo
12.
Nature ; 464(7287): 405-8, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20173735

RESUMO

Chronic infection with the hepatitis C virus (HCV) affects 170 million people worldwide and is an important cause of liver-related morbidity and mortality. The standard of care therapy combines pegylated interferon (pegIFN) alpha and ribavirin (RBV), and is associated with a range of treatment-limiting adverse effects. One of the most important of these is RBV-induced haemolytic anaemia, which affects most patients and is severe enough to require dose modification in up to 15% of patients. Here we show that genetic variants leading to inosine triphosphatase deficiency, a condition not thought to be clinically important, protect against haemolytic anaemia in hepatitis-C-infected patients receiving RBV.


Assuntos
Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/genética , Variação Genética/genética , Hepatite C Crônica/tratamento farmacológico , Pirofosfatases/genética , Alelos , Anemia Hemolítica/complicações , Antivirais , Cromossomos Humanos Par 20 , Europa (Continente)/etnologia , Estudo de Associação Genômica Ampla , Hemoglobinas/deficiência , Hemoglobinas/metabolismo , Hepatite C Crônica/complicações , Humanos , Polimorfismo de Nucleotídeo Único/genética , Pirofosfatases/deficiência , Pirofosfatases/metabolismo , Grupos Raciais/genética , Ribavirina/uso terapêutico , Estados Unidos , Inosina Trifosfatase
13.
J Cell Physiol ; 230(12): 3049-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26033523

RESUMO

Previous work has shown that acidosis prevents bone nodule formation by osteoblasts in vitro by inhibiting mineralisation of the collagenous matrix. The ratio of phosphate (Pi ) to pyrophosphate (PPi ) in the bone microenvironment is a fundamental regulator of bone mineralisation. Both Pi and PPi , a potent inhibitor of mineralisation, are generated from extracellular nucleotides by the actions of ecto-nucleotidases. This study investigated the expression and activity of ecto-nucleotidases by osteoblasts under normal and acid conditions. We found that osteoblasts express mRNA for a number of ecto-nucleotidases including NTPdase 1-6 (ecto-nucleoside triphosphate diphosphohydrolase) and NPP1-3 (ecto-nucleotide pyrophosphatase/phosphodiesterase). The rank order of mRNA expression in differentiating rat osteoblasts (day 7) was Enpp1 > NTPdase 4 > NTPdase 6 > NTPdase 5 > alkaline phosphatase > ecto-5-nucleotidase > Enpp3 > NTPdase 1 > NTPdase 3 > Enpp2 > NTPdase 2. Acidosis (pH 6.9) upregulated NPP1 mRNA (2.8-fold) and protein expression at all stages of osteoblast differentiation compared to physiological pH (pH 7.4); expression of other ecto-nucleotidases was unaffected. Furthermore, total NPP activity was increased up to 53% in osteoblasts cultured in acid conditions (P < 0.001). Release of ATP, one of the key substrates for NPP1, from osteoblasts, was unaffected by acidosis. Further studies showed that mineralised bone formation by osteoblasts cultured from NPP1 knockout mice was increased compared with wildtypes (2.5-fold, P < 0.001) and was partially resistant to the inhibitory effect of acidosis. These results indicate that increased NPP1 expression and activity might contribute to the decreased mineralisation observed when osteoblasts are exposed to acid conditions.


Assuntos
Acidose/metabolismo , Osteoblastos/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Acidose/genética , Acidose/patologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Densidade Óssea , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Concentração de Íons de Hidrogênio , Camundongos da Linhagem 129 , Camundongos Knockout , Osteoblastos/patologia , Osteogênese , Diester Fosfórico Hidrolases/deficiência , Diester Fosfórico Hidrolases/genética , Pirofosfatases/deficiência , Pirofosfatases/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo , Regulação para Cima
14.
J Transl Med ; 13: 320, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26438033

RESUMO

BACKGROUND: There is growing evidence that variations in the gene encoding inosine triphosphate pyrophosphohydrolase (ITPase), known as inosine triphosphatase (ITPA), are related to hemolytic anemia, which is frequently observed among hepatitis C virus (HCV)-infected patients receiving ribavirin (RBV)-based therapy. We performed a meta-analysis of all eligible studies assessing ITPA gene polymorphisms related to RBV-induced hemolytic anemia in HCV-infected patients published in PubMed, Embase and the Cochrane library prior to the end of 2014. METHODS: Three outcomes were evaluated: (1) hemoglobin decline, (2) severe anemia, and (3) RBV dose reduction or treatment discontinuation. Pooled odds ratio (OR) and 95 % confidence interval (95 % CI) were estimated by either fixed or random effects models. RESULTS: Twenty-nine studies were selected from the literature search: 20 references involving 6533 individuals for hemoglobin decline, 13 references on 3764 patients for severe anemia, and 16 references on 3918 patients for RBV dose reduction or discontinuation. Significant associations with hemoglobin decline were found for rs1127354 CC [OR = 12.84 (95 % CI 7.44; 22.17)], rs7270101 AA [OR = 3.41 (95 % CI 2.08; 5.59)] and rs6051702 AA [OR = 4.43 (95 % CI 2.80; 7.00)] genotypes. Moreover, significant associations with hemoglobin decline were also found for absent [OR = 6.01 (95 % CI 4.84; 7.46)] and mild [OR = 4.68 (95 % CI 2.83; 7.74)] ITPase deficiency haplotypes. The ITPA rs1127354 CC genotype and absent ITPase deficiency haplotype were also associated with severe anemia {[OR = 7.77 (95 % CI 5.03; 12.00)] and [OR = 4.79 (95 % CI 1.69; 13.56)], respectively}. Additionally, the rs1127354 CC genotype showed significant association with RBV dose reduction or stopping treatment (OR = 2.24; 95 % CI 1.79; 2.81). CONCLUSIONS: ITPA polymorphisms increase the likelihood of developing hemolytic anemia for HCV-infected patients on RBV-based therapy, particularly rs1127354 CC and rs7270101 AA genotypes, suggesting the utility of screening for ITPA polymorphisms to avoid hematological toxicity and increase adherence to RBV-based therapy.


Assuntos
Anemia Hemolítica/genética , Hepatite C Crônica/genética , Polimorfismo de Nucleotídeo Único , Pirofosfatases/genética , Ribavirina/efeitos adversos , Idoso , Anemia Hemolítica/induzido quimicamente , Antivirais/efeitos adversos , Feminino , Variação Genética , Genótipo , Haplótipos , Hemoglobinas/análise , Hepacivirus , Hepatite C , Humanos , Interferon alfa-2 , Interferon-alfa/efeitos adversos , Masculino , Erros Inatos do Metabolismo/genética , Pessoa de Meia-Idade , Razão de Chances , Polietilenoglicóis/efeitos adversos , Pirofosfatases/deficiência , Proteínas Recombinantes/efeitos adversos , Análise de Regressão , Resultado do Tratamento
15.
Hepatology ; 59(6): 2152-60, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24449403

RESUMO

UNLABELLED: On-treatment anemia is associated with higher sustained virological response (SVR) rates during peginterferon plus ribavirin (RBV) therapy. Inosine triphosphatase (ITPA) variants causing ITPase deficiency have been shown to protect against RBV-induced anemia. However, ITPase activity has not been associated with SVR. To study this discrepancy, we examined the relationships between ITPase activity, on-treatment anemia, SVR, and RBV levels in hepatitis C virus genotype 1 (HCV-1) patients from the CHARIOT study. ITPA genotype (rs7270101, rs1127354) was used to define ITPase activity in 546 patients. Plasma RBV levels were measured using high-performance liquid chromatography (HPLC). Relationships between ITPase activity, on-treatment hemoglobin (Hb) levels, RBV levels, and SVR were tested using regression modeling, survival analysis, and locally weighted scatterplot smoothing (LOWESS) plot analysis. Hb decline was independently associated with SVR (P<0.0001). ITPase deficiency was present in 35%. ITPase deficiency strongly protected against Hb decline (P<0.0001), but was not associated with SVR (P=0.28). The probability of SVR increased with lower nadir Hb for both wild-type and deficient ITPase activity, but the association curve shifted to describe a parallel relationship at higher Hb levels in patients with ITPase deficiency. In a subset (n=203), we tested the hypothesis that the association between Hb decline and SVR reflected RBV levels rather than actual Hb level. RBV levels were associated with on-treatment Hb decline and SVR, but not ITPase activity. In regression models, adjustment for RBV levels attenuated the association between Hb decline and SVR. CONCLUSION: ITPase deficiency protects against RBV-induced anemia, but is not associated with SVR. Our data suggest that the relationship between Hb decline and SVR is not mechanistic, but is linked to RBV levels.


Assuntos
Anemia Hemolítica/induzido quimicamente , Antivirais/efeitos adversos , Hepatite C/complicações , Pirofosfatases/genética , Ribavirina/efeitos adversos , Adulto , Anemia Hemolítica/genética , Anemia Hemolítica/virologia , Antivirais/administração & dosagem , Antivirais/sangue , Ensaios Clínicos Fase IV como Assunto , Quimioterapia Combinada , Feminino , Hepatite C/tratamento farmacológico , Hepatite C/genética , Humanos , Interferon-alfa/administração & dosagem , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/administração & dosagem , Pirofosfatases/deficiência , Ensaios Clínicos Controlados Aleatórios como Assunto , Proteínas Recombinantes/administração & dosagem , Estudos Retrospectivos , Ribavirina/administração & dosagem , Ribavirina/sangue , Inosina Trifosfatase
16.
Kidney Int ; 85(6): 1351-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24717293

RESUMO

Plasma levels of pyrophosphate, an endogenous inhibitor of vascular calcification, are reduced in end-stage renal disease and correlate inversely with arterial calcification. However, it is not known whether the low plasma levels are directly pathogenic or are merely a marker of reduced tissue levels. This was tested in an animal model in which aortas were transplanted between normal mice and Enpp1(-/-) mice lacking ectonucleotide pyrophosphatase phosphodiesterase, the enzyme that synthesizes extracellular pyrophosphate. Enpp1(-/-) mice had very low plasma pyrophosphate and developed aortic calcification by 2 months that was greatly accelerated with a high-phosphate diet. Aortas of Enpp1(-/-) mice showed no further calcification after transplantation into wild-type mice fed a high-phosphate diet. Aorta allografts of wild-type mice calcified in Enpp1(-/-) mice but less so than the adjacent recipient Enpp1(-/-) aorta. Donor and recipient aortic calcium contents did not differ in transplants between wild-type and Enpp1(-/-) mice, demonstrating that transplantation per se did not affect calcification. Histology revealed medial calcification with no signs of rejection. Thus, normal levels of extracellular pyrophosphate are sufficient to prevent vascular calcification, and systemic Enpp1 deficiency is sufficient to produce vascular calcification despite normal vascular extracellular pyrophosphate production. This establishes an important role for circulating extracellular pyrophosphate in preventing vascular calcification.


Assuntos
Aorta/metabolismo , Doenças da Aorta/sangue , Difosfatos/sangue , Calcificação Vascular/sangue , Animais , Aorta/patologia , Aorta/transplante , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Cálcio/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Camundongos Endogâmicos C57BL , Camundongos Knockout , Diester Fosfórico Hidrolases/deficiência , Diester Fosfórico Hidrolases/genética , Fósforo na Dieta/efeitos adversos , Pirofosfatases/deficiência , Pirofosfatases/genética , Fatores de Tempo , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
17.
J Struct Biol ; 182(3): 197-208, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528839

RESUMO

Inosine triphosphate pyrophosphatase (ITPA), a key enzyme involved in maintaining the purity of cellular nucleoside triphosphate pools, specifically recognizes inosine triphosphate and xanthosine triphosphate (including the deoxyribose forms) and detoxifies them by catalyzing the hydrolysis of a phosphoanhydride bond, releasing pyrophosphate. This prevents their inappropriate use as substrates in enzymatic reactions utilizing (d)ATP or (d)GTP. A human genetic polymorphism leads to the substitution of Thr for Pro32 (P32T) and causes ITPA deficiency in erythrocytes, with heterozygotes having on average 22.5% residual activity, and homozygotes having undetectable activity. This polymorphism has been implicated in modulating patients' response to mercaptopurines and ribavirin. Human fibroblasts containing this variant have elevated genomic instability upon treatment with base analogs. We find that the wild-type and P32T forms are dimeric in solution and in the crystal structure. This abolishes the previous speculation that the P32T change disrupts dimerization as a mechanism of inactivation. The only difference in structure from the wild-type protein is that the area surrounding Thr32 is disrupted. Phe31 is flipped from the hydrophobic core out into the solvent, leaving a hole in the hydrophobic core of the protein which likely accounts for the reduced thermal stability of P32T ITPA and ultimately leads to its susceptibility to degradation in human cells. Circular dichroism and thermal denaturation studies confirm these structural results. We propose that the dimer of P32T variant subunit with wild-type subunit is degraded in cells similarly to the P32T homodimer explaining the level of loss of ITPA activity in heterozygotes.


Assuntos
Instabilidade Genômica , Pirofosfatases/genética , Relação Estrutura-Atividade , Dicroísmo Circular , Eritrócitos/citologia , Eritrócitos/metabolismo , Heterozigoto , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Nucleotídeos/genética , Polimorfismo Genético , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/metabolismo
18.
Mol Microbiol ; 86(6): 1364-75, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23043439

RESUMO

Reactive oxygen species induce oxidative damage in DNA precursors, i.e. dNTPs, leading to point mutations upon incorporation. Escherichia coli mutT strains, deficient in the activity hydrolysing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), display more than a 100-fold higher spontaneous mutation frequency over the wild-type strain. 8-oxo-dGTP induces A to C transversions when misincorporated opposite template A. Here, we report that DNA pol III incorporates 8-oxo-dGTP ≈ 20 times more efficiently opposite template A compared with template C. Single, double or triple deletions of pol I, pol II, pol IV or pol V had modest effects on the mutT mutator phenotype. Only the deletion of all four polymerases led to a 70% reduction of the mutator phenotype. While pol III may account for nearly all 8-oxo-dGTP incorporation opposite template A, it only extends ≈ 30% of them, the remaining 70% being extended by the combined action of pol I, pol II, pol IV or pol V. The unique property of pol III, a C-family DNA polymerase present only in eubacteria, to preferentially incorporate 8-oxo-dGTP opposite template A during replication might explain the high spontaneous mutation frequency in E. coli mutT compared with the mammalian counterparts lacking the 8-oxo-dGTP hydrolysing activities.


Assuntos
DNA Polimerase III/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Taxa de Mutação , Mutação , Pirofosfatases/deficiência , DNA Bacteriano/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Proteínas de Escherichia coli
19.
J Viral Hepat ; 20(12): 858-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24304455

RESUMO

Anaemia frequently complicates peginterferon/ribavirin therapy for chronic hepatitis C infection. Better prediction of anaemia, ribavirin dose reduction or erythropoietin (EPO) need, may enhance patient management. Inosine triphosphatase (ITPA) genetic variants are associated with ribavirin-induced anaemia and dose reduction; however, their impact in real-life clinic patient cohorts remains to be defined. We studied 193 clinic patients with chronic hepatitis C infection of mixed viral genotype (genotype 1/4 n = 123, genotype 2/3, n = 70) treated with peginterferon/ribavirin. Patients were genotyped for ITPA polymorphisms rs1127354 and rs7270101 using Taqman primers. Hardy-Weinberg equilibrium was present. Estimated ITPA deficiency was graded on severity (0-3, no deficiency/mild/moderate/severe, n = 126/40/24/3, respectively). Multivariable models tested the association with anaemia at 4 weeks of treatment [including decline in haemoglobin (g/dL); haemoglobin <10 g/dL and haemoglobin decline >3 g/dL]; ribavirin dose reduction and EPO use and explored sustained viral response (SVR) to peginterferon/ribavirin. More severe ITPA deficiency was associated with less reduction in haemoglobin level (P <0.001; R(2) = 0.34), less ribavirin dose reduction (OR 0.42; (95% CI = 0.23-0.77); P = 0.005) and less EPO use [OR 0.53; (0.30-0.94); P = 0.029]. ITPA deficiency was associated with SVR [OR: 1.70; (1.02-2.83); P = 0.041] independently of clinical covariates (adjusted R(2) = 0.31). In this clinical cohort, ITPA deficiency helped predict the risk of on-treatment anaemia, ribavirin dose reduction, need for EPO support and was associated with SVR. For patients on HCV regimens including peginterferon/ribavirin, testing for ITPA deficiency may have clinical utility.


Assuntos
Anemia/induzido quimicamente , Anemia/epidemiologia , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Erros Inatos do Metabolismo/diagnóstico , Pirofosfatases/deficiência , Ribavirina/efeitos adversos , Idoso , Quimioterapia Combinada/efeitos adversos , Quimioterapia Combinada/métodos , Feminino , Humanos , Interferons/uso terapêutico , Masculino , Pessoa de Meia-Idade , Ribavirina/uso terapêutico , Resultado do Tratamento
20.
Mutat Res ; 753(2): 131-146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23969025

RESUMO

Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.


Assuntos
Pirofosfatases/metabolismo , Animais , Escherichia coli/enzimologia , Humanos , Camundongos , Modelos Moleculares , Farmacogenética , Polimorfismo Genético , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/genética , Leveduras/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA