Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nature ; 572(7771): 655-659, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413361

RESUMO

Differential coordination of growth and patterning across metazoans gives rise to a diversity of sizes and shapes at tissue, organ and organismal levels. Although tissue size and tissue function can be interdependent1-5, mechanisms that coordinate size and function remain poorly understood. Planarians are regenerative flatworms that bidirectionally scale their adult body size6,7 and reproduce asexually, via transverse fission, in a size-dependent manner8-10. This model offers a robust context to address the gap in knowledge that underlies the link between size and function. Here, by generating an optimized planarian fission protocol in Schmidtea mediterranea, we show that progeny number and the frequency of fission initiation are correlated with parent size. Fission progeny size is fixed by previously unidentified mechanically vulnerable planes spaced at an absolute distance along the anterior-posterior axis. An RNA interference screen of genes for anterior-posterior patterning uncovered components of the TGFß and Wnt signalling pathways as regulators of the frequency of fission initiation rather than the position of fission planes. Finally, inhibition of Wnt and TGFß signalling during growth altered the patterning of mechanosensory neurons-a neural subpopulation that is distributed in accordance with worm size and modulates fission behaviour. Our study identifies a role for TGFß and Wnt in regulating size-dependent behaviour, and uncovers an interdependence between patterning, growth and neurological function.


Assuntos
Padronização Corporal/fisiologia , Tamanho Corporal/fisiologia , Planárias/crescimento & desenvolvimento , Planárias/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Padronização Corporal/genética , Tamanho Corporal/genética , Sistema Nervoso Central/citologia , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Planárias/anatomia & histologia , Planárias/citologia , Interferência de RNA , Reprodução Assexuada/fisiologia , Via de Sinalização Wnt/genética
2.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318308

RESUMO

As the planarian research community expands, the need for an interoperable data organization framework for tool building has become increasingly apparent. Such software would streamline data annotation and enhance cross-platform and cross-species searchability. We created the Planarian Anatomy Ontology (PLANA), an extendable relational framework of defined Schmidtea mediterranea (Smed) anatomical terms used in the field. At publication, PLANA contains over 850 terms describing Smed anatomy from subcellular to system levels across all life cycle stages, in intact animals and regenerating body fragments. Terms from other anatomy ontologies were imported into PLANA to promote interoperability and comparative anatomy studies. To demonstrate the utility of PLANA as a tool for data curation, we created resources for planarian embryogenesis, including a staging series and molecular fate-mapping atlas, and the Planarian Anatomy Gene Expression database, which allows retrieval of a variety of published transcript/gene expression data associated with PLANA terms. As an open-source tool built using FAIR (findable, accessible, interoperable, reproducible) principles, our strategy for continued curation and versioning of PLANA also provides a platform for community-led growth and evolution of this resource.


Assuntos
Planárias/anatomia & histologia , Planárias/genética , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Estágios do Ciclo de Vida/genética , Regeneração/genética , Software
3.
BMC Neurosci ; 24(1): 29, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138236

RESUMO

BACKGROUND: Despite large morphological differences between the nervous systems of lower animals and humans, striking functional similarities have been reported. However, little is known about how these functional similarities translate to cognitive similarities. As a first step towards studying the cognitive abilities of simple nervous systems, we here characterize the ongoing electrophysiological activity of the planarian Schmidtea mediterranea. One previous report using invasive microelectrodes describes that the ongoing neural activity is characterized by a 1/fx power spectrum with the exponent 'x' of the power spectrum close to 1. To extend these findings, we aimed to establish a recording protocol to measure ongoing neural activity safely and securely from alive and healthy planarians under different lighting conditions using non-invasive surface electrodes. RESULTS: As a replication and extension of the previous results, we show that the ongoing neural activity is characterized by a 1/fx power spectrum, that the exponent 'x' in living planarians is close to 1, and that changes in lighting induce changes in neural activity likely due to the planarian photophobia. CONCLUSIONS: We confirm the existence of continuous EEG activity in planarians and show that it is possible to noninvasively record this activity with surface wire electrodes. This opens up broad possibilities for continuous recordings across longer intervals, and repeated recordings from the same animals to study cognitive processes.


Assuntos
Planárias , Animais , Humanos , Planárias/anatomia & histologia , Planárias/fisiologia , Eletroencefalografia
4.
Nature ; 551(7682): 623-628, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29168507

RESUMO

The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.


Assuntos
Músculos/fisiologia , Planárias/anatomia & histologia , Planárias/fisiologia , Regeneração/fisiologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Cabeça/fisiologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Músculos/citologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Planárias/citologia , Planárias/genética , Interferência de RNA , Regeneração/genética , Transdução de Sinais
5.
Development ; 146(17)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511248

RESUMO

Planarians are a group of flatworms. Some planarian species have remarkable regenerative abilities, which involve abundant pluripotent adult stem cells. This makes these worms a powerful model system for understanding the molecular and evolutionary underpinnings of regeneration. By providing a succinct overview of planarian taxonomy, anatomy, available tools and the molecular orchestration of regeneration, this Primer aims to showcase both the unique assets and the questions that can be addressed with this model system.


Assuntos
Modelos Animais , Modelos Biológicos , Planárias/genética , Regeneração/fisiologia , Células-Tronco Adultas/metabolismo , Animais , Padronização Corporal/fisiologia , Diferenciação Celular , Filogenia , Planárias/anatomia & histologia , Células-Tronco Pluripotentes/metabolismo
6.
Semin Cell Dev Biol ; 87: 125-144, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29635019

RESUMO

Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.


Assuntos
Homeostase , Modelos Biológicos , Planárias/anatomia & histologia , Planárias/fisiologia , Regeneração , Animais , Morfogênese
7.
Semin Cell Dev Biol ; 87: 105-115, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29738883

RESUMO

A key requirement of tissue/organ regeneration is the ability to induce appropriate shape in situ. Regenerated structures need to be integrated with pre-existing ones, through the combined regulation of new tissue growth and the scaling of surrounding tissues. This requires a tightly coordinated control of individual cell functions such as proliferation and stem cell differentiation. While great strides have been made in elucidating cell growth and differentiation mechanisms, how overall shape is generated during regeneration remains unknown. This is because a significant gap remains in our understanding of how cell behaviors are coordinated at the level of tissues and organs. The highly regenerative planarian flatworm has emerged as an important model for defining and understanding regenerative shape mechanisms. This review provides an overview of the main processes known to regulate tissue and animal shape during planarian regeneration: adult stem cell regulation, the reestablishment of body axes, tissue remodeling in pre-existing structures, organ scaling and the maintenance of body proportion, and the bioelectrical regulation of animal morphology. In order for the field to move forward, it will be necessary to identify shape mutants as a means to uncover the molecular mechanisms that synchronize all these separate processes to produce the worm's final regenerative shape. This knowledge will also aid efforts to define the mechanisms that control the termination of regenerative processes.


Assuntos
Modelos Biológicos , Planárias/anatomia & histologia , Planárias/citologia , Regeneração/fisiologia , Animais
8.
Biol Cell ; 112(12): 398-408, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32776587

RESUMO

BACKGROUND INFORMATION: Dense multicilia in protozoa and metazoa generate a strong force important for locomotion and extracellular fluid flow. During ciliogenesis, multiciliated cells produce hundreds of centrioles to serve as basal bodies through various pathways including deuterosome-dependent (DD), hyper-activated mother centriole-dependent (MCD) and basal bodydependent (BBD) pathways. The centrosome-free planarian Schmidtea mediterranea is widely used for regeneration studies because its neoblasts are capable of regenerating any body part after injury. However, it is currently unclear how the flatworms generate massive centrioles for multiciliated cells in the pharynx and body epidermis when their cells are initially centriole-free. RESULTS: In this study, we investigate the progress of centriole amplification during the pharynx regeneration. We observe that the planarian pharyngeal epithelial cells generate their centrioles asynchronously through a de novo pathway. Most of the de novo centrioles are formed individually, whereas the remaining ones are assembled in pairs, possibly by sharing a cartwheel, or in small clusters lacking a nucleation center. Further RNAi experiments show that the known key factors of centriole duplication, including Cep152, Plk4 and Sas6, are crucial for the centriole amplification. CONCLUSIONS AND SIGNIFICANCE: Our study demonstrates the distinct process of massive centriole biogenesis in S. mediterranea and helps to understand the diversity of centriole biogenesis during evolution.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Locomoção , Planárias , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/citologia , Biogênese de Organelas , Planárias/anatomia & histologia , Planárias/metabolismo
9.
Artif Life ; 27(2): 80-104, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473826

RESUMO

Many biological organisms regenerate structure and function after damage. Despite the long history of research on molecular mechanisms, many questions remain about algorithms by which cells can cooperate towards the same invariant morphogenetic outcomes. Therefore, conceptual frameworks are needed not only for motivating hypotheses for advancing the understanding of regeneration processes in living organisms, but also for regenerative medicine and synthetic biology. Inspired by planarian regeneration, this study offers a novel generic conceptual framework that hypothesizes mechanisms and algorithms by which cell collectives may internally represent an anatomical target morphology towards which they build after damage. Further, the framework contributes a novel nature-inspired computing method for self-repair in engineering and robotics. Our framework, based on past in vivo and in silico studies on planaria, hypothesizes efficient novel mechanisms and algorithms to achieve complete and accurate regeneration of a simple in silico flatwormlike organism from any damage, much like the body-wide immortality of planaria, with minimal information and algorithmic complexity. This framework that extends our previous circular tissue repair model integrates two levels of organization: tissue and organism. In Level 1, three individual in silico tissues (head, body, and tail-each with a large number of tissue cells and a single stem cell at the centre) repair themselves through efficient local communications. Here, the contribution extends our circular tissue model to other shapes and invests them with tissue-wide immortality through an information field holding the minimum body plan. In Level 2, individual tissues combine to form a simple organism. Specifically, the three stem cells form a network that coordinates organism-wide regeneration with the help of Level 1. Here we contribute novel concepts for collective decision-making by stem cells for stem cell regeneration and large-scale recovery. Both levels (tissue cells and stem cells) represent networks that perform simple neural computations and form a feedback control system. With simple and limited cellular computations, our framework minimises computation and algorithmic complexity to achieve complete recovery. We report results from computer simulations of the framework to demonstrate its robustness in recovering the organism after any injury. This comprehensive hypothetical framework that significantly extends the existing biological regeneration models offers a new way to conceptualise the information-processing aspects of regeneration, which may also help design living and non-living self-repairing agents.


Assuntos
Planárias , Algoritmos , Animais , Simulação por Computador , Modelos Biológicos , Morfogênese , Planárias/anatomia & histologia
10.
Mol Phylogenet Evol ; 143: 106496, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31151789

RESUMO

The keystone of planarian taxonomy traditionally has been the anatomy of the copulatory apparatus. However, many planarian species comprise asexual fissiparous populations, with the fissiparous animals not developing a copulatory apparatus, thus precluding their morphological identification. Incorporation of molecular data into planarian systematics has been of great value, not only in the identification of fissiparous individuals but also as an additional source of information for determining species boundaries. Nevertheless, the discrepancy between morphological and molecular data has highlighted the need for extra sources of taxonomic information. Moreover, a recent study has pointed out that fissiparous reproduction may lead to high levels of intraindividual genetic diversity in planarians, which may mislead molecular analyses. In the present study we aim to test a new up-to-date integrative taxonomic procedure for planarians, including intraindividual genetic data and additional sources of taxonomic information, besides morphology and DNA, using Dugesia subtentaculata sensu lato as a model organism, a species with an intricate taxonomic history. First, we used three different methods for molecular species delimitation on single locus datasets, both with and without intraindividual information, for formulating Primary Species Hypotheses (PSHs). Subsequently, Secondary Species Hypotheses (SSHs) were formulated on the basis of three types of information: (1) a coalescent-based species delimitation method applied to multilocus data, (2) morphology of the copulatory apparatus, and (3) karyological metrics. This resulted in the delimitation of four morphologically cryptic species within the nominal species D. subtentaculata. Our results provide evidence that the analysis of intraindividual genetic data is essential for properly developing PSHs in planarians. Our study reveals also that karyological differentiation, rather than morphological differentiation, may play an important role in speciation processes in planarians, thus suggesting that the currently known diversity of the group could be highly underestimated.


Assuntos
Variação Genética , Cariótipo , Planárias/classificação , Planárias/genética , Animais , Água Doce , Filogenia , Planárias/anatomia & histologia , Reprodução Assexuada
11.
PLoS Comput Biol ; 15(4): e1006904, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30990801

RESUMO

Control of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis. This allows for a direct comparison between computational and experimental regeneration outcomes. Vector transport of morphogens was identified as a fundamental requirement to account for virtually scale-free self-assembly of the morphogen gradients observed in planarian homeostasis and regeneration. The model correctly describes altered body-plans following many known experimental manipulations, and accurately predicts outcomes of novel cutting scenarios, which we tested. We show that the vector transport field coincides with the alignment of nerve axons distributed throughout the planarian tissue, and demonstrate that the head-tail axis is controlled by the net polarity of neurons in a regenerating fragment. This model provides a comprehensive framework for mechanistically understanding fundamental aspects of body-plan regulation, and sheds new light on the role of the nervous system in directing growth and form.


Assuntos
Padronização Corporal/fisiologia , Planárias/fisiologia , Regeneração/fisiologia , Animais , Padronização Corporal/genética , Biologia Computacional , Cadeias de Markov , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Modelos Neurológicos , Fenômenos Fisiológicos do Sistema Nervoso , Planárias/anatomia & histologia , Planárias/genética , Interferência de RNA , Regeneração/genética , Transdução de Sinais
12.
Nature ; 500(7460): 77-80, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23883929

RESUMO

Variability of regenerative potential among animals has long perplexed biologists. On the basis of their exceptional regenerative abilities, planarians have become important models for understanding the molecular basis of regeneration. However, planarian species with limited regenerative abilities are also found. Despite the importance of understanding the differences between closely related, regenerating and non-regenerating organisms, few studies have focused on the evolutionary loss of regeneration, and the molecular mechanisms leading to such regenerative loss remain obscure. Here we examine Procotyla fluviatilis, a planarian with restricted ability to replace missing tissues, using next-generation sequencing to define the gene expression programs active in regeneration-permissive and regeneration-deficient tissues. We found that Wnt signalling is aberrantly activated in regeneration-deficient tissues. Notably, downregulation of canonical Wnt signalling in regeneration-deficient regions restores regenerative abilities: blastemas form and new heads regenerate in tissues that normally never regenerate. This work reveals that manipulating a single signalling pathway can reverse the evolutionary loss of regenerative potential.


Assuntos
Planárias/anatomia & histologia , Planárias/fisiologia , Regeneração/fisiologia , Cotos de Amputação , Animais , Evolução Biológica , Regulação para Baixo , Perfilação da Expressão Gênica , Cabeça/fisiologia , Planárias/genética , Regeneração/genética , Transcriptoma/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
13.
Nature ; 500(7460): 81-4, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23883932

RESUMO

Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent. Why in the face of 'survival of the fittest' some animals regenerate but others do not remains a fascinating question. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians. Here we report the characterization of the regeneration defect in the planarian Dendrocoelum lacteum and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species. Notably, RNA interference (RNAi)-mediated knockdown of Dlac-ß-catenin-1, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing D. lacteum's regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of D. lacteum as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.


Assuntos
Cabeça/crescimento & desenvolvimento , Planárias/anatomia & histologia , Planárias/fisiologia , Regeneração , Animais , Padronização Corporal , Cabeça/fisiologia , Modelos Animais , Dados de Sequência Molecular , Cauda/crescimento & desenvolvimento , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/biossíntese , beta Catenina/deficiência , beta Catenina/genética , beta Catenina/metabolismo
14.
Nature ; 500(7460): 73-6, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23883928

RESUMO

The planarian Dugesia japonica can regenerate a complete individual from a head, trunk or tail fragment via activation of somatic pluripotent stem cells. About a century ago, Thomas Hunt Morgan attempted to explain the extraordinary regenerative ability of planarians by positing two opposing morphogenetic gradients of formative "head stuff" and "tail stuff" along the anterior-posterior axis. However, Morgan's hypothesis remains open to debate. Here we show that extracellular signal-related kinase (ERK) and Wnt/ß-catenin signalling pathways establish a solid framework for planarian regeneration. Our data suggest that ERK signalling forms a spatial gradient in the anterior region during regeneration. The fibroblast growth factor receptor-like gene nou-darake (which serves as an output of ERK signalling in the differentiating head) and posteriorly biased ß-catenin activity negatively regulate ERK signalling along the anterior-posterior axis in distinct manners, and thereby posteriorize regenerating tissues outside the head region to reconstruct a complete head-to-tail axis. On the basis of this knowledge about D. japonica, we proposed that ß-catenin signalling is responsible for the lack of head-regenerative ability of tail fragments in the planarian Phagocata kawakatsui, and our confirmation thereof supports the notion that posterior ß-catenin signalling negatively modulates the ERK signalling involved in anteriorization across planarian species. These findings suggest that ERK signalling has a pivotal role in triggering globally dynamic differentiation of stem cells in a head-to-tail sequence through a default program that promotes head tissue specification in the absence of posteriorizing signals. Thus, we have confirmed the broad outline of Morgan's hypothesis, and refined it on the basis of our proposed default property of planarian stem cells.


Assuntos
Padronização Corporal/fisiologia , Planárias/anatomia & histologia , Planárias/fisiologia , Regeneração/fisiologia , Animais , Padronização Corporal/efeitos dos fármacos , Diferenciação Celular , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Cabeça/fisiologia , Lógica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fenótipo , Planárias/efeitos dos fármacos , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/deficiência , beta Catenina/genética , beta Catenina/metabolismo
15.
Dev Biol ; 426(1): 43-55, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28434803

RESUMO

Cytoplasmic polyadenylation is a mechanism of mRNA regulation prevalent in metazoan germ cells; it is largely dependent on Cytoplasmic Polyadenylation Element Binding proteins (CPEBs). Two CPEB homologs were identified in the planarian Schmidtea mediterranea. Smed-CPEB1 is expressed in ovaries and yolk glands of sexually mature planarians, and required for oocyte and yolk gland development. In contrast, Smed-CPEB2 is expressed in the testes and the central nervous system; its function is required for spermatogenesis as well as non-autonomously for development of ovaries and accessory reproductive organs. Transcriptome analysis of CPEB knockdown animals uncovered a comprehensive collection of molecular markers for reproductive structures in S. mediterranea, including ovaries, testes, yolk glands, and the copulatory apparatus. Analysis by RNA interference revealed contributions for a dozen of these genes during oogenesis, spermatogenesis, or capsule formation. We also present evidence suggesting that Smed-CPEB2 promotes translation of Neuropeptide Y-8, a prohormone required for planarian sexual maturation. These findings provide mechanistic insight into potentially conserved processes of germ cell development, as well as events involved in capsule deposition by flatworms.


Assuntos
Células Germinativas/citologia , Oogênese/fisiologia , Ovário/crescimento & desenvolvimento , Planárias/anatomia & histologia , Planárias/crescimento & desenvolvimento , Espermatogênese/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/genética , Animais , Diferenciação Celular/genética , Feminino , Perfilação da Expressão Gênica , Ovário/metabolismo , Poliadenilação , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Neuropeptídeo Y/biossíntese , Receptores de Neuropeptídeo Y/genética , Maturidade Sexual/genética , Maturidade Sexual/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/biossíntese
16.
Bioelectromagnetics ; 39(6): 428-440, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29873401

RESUMO

Large gradient high magnetic field (LG-HMF) is a powerful tool to study the effects of altered gravity on organisms. In our study, a platform for the long-term culture of aquatic organisms was designed based on a special superconducting magnet with an LG-HMF, which can provide three apparent gravity levels (µ g, 1 g, and 2 g), along with a control condition on the ground. Planarians, Dugesia japonica, were head-amputated and cultured for 5 days in a platform for head reconstruction. After planarian head regeneration, all samples were taken out from the superconducting magnet for a behavioral test under geomagnetic field and normal gravity conditions. To analyze differences among the four groups, four aspects of the planarians were considered, including head regeneration rate, phototaxis response, locomotor velocity, and righting behavior. Data showed that there was no significant difference in the planarian head regeneration rate under simulated altered gravity. According to statistical analysis of the behavioral test, all of the groups had normal functioning of the phototaxis response, while the planarians that underwent head reconstruction under the microgravity environment had significantly slower locomotor velocity and spent more time in righting behavior. Furthermore, histological staining and immunohistochemistry results helped us reveal that the locomotor system of planarians was affected by the simulated microgravity environment. We further demonstrated that the circular muscle of the planarians was weakened (hematoxylin and eosin staining), and the epithelial cilia of the planarians were reduced (anti-acetylated tubulin staining) under the simulated microgravity environment. Bioelectromagnetics. 2018;39:428-440. © 2018 Wiley Periodicals, Inc.


Assuntos
Campos Magnéticos , Planárias/fisiologia , Regeneração , Animais , Organismos Aquáticos , Gravitação , Imuno-Histoquímica , Movimento , Fototaxia , Planárias/anatomia & histologia , Fatores de Tempo
17.
Int J Mol Sci ; 16(11): 27865-96, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26610482

RESUMO

The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria.


Assuntos
Junções Comunicantes/efeitos dos fármacos , Planárias/anatomia & histologia , Planárias/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Evolução Molecular , Genes de RNAr , Octanóis/farmacologia , Filogenia , Planárias/classificação , Planárias/fisiologia , Fatores de Tempo
18.
Bioinformatics ; 29(8): 1098-100, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23426257

RESUMO

SUMMARY: Understanding the mechanisms governing the regeneration capabilities of many organisms is a fundamental interest in biology and medicine. An ever-increasing number of manipulation and molecular experiments are attempting to discover a comprehensive model for regeneration, with the planarian flatworm being one of the most important model species. Despite much effort, no comprehensive, constructive, mechanistic models exist yet, and it is now clear that computational tools are needed to mine this huge dataset. However, until now, there is no database of regenerative experiments, and the current genotype-phenotype ontologies and databases are based on textual descriptions, which are not understandable by computers. To overcome these difficulties, we present here Planform (Planarian formalization), a manually curated database and software tool for planarian regenerative experiments, based on a mathematical graph formalism. The database contains more than a thousand experiments from the main publications in the planarian literature. The software tool provides the user with a graphical interface to easily interact with and mine the database. The presented system is a valuable resource for the regeneration community and, more importantly, will pave the way for the application of novel artificial intelligence tools to extract knowledge from this dataset. AVAILABILITY: The database and software tool are freely available at http://planform.daniel-lobo.com.


Assuntos
Bases de Dados Factuais , Planárias/fisiologia , Regeneração , Software , Animais , Gráficos por Computador , Planárias/anatomia & histologia
20.
Zootaxa ; 5406(4): 535-550, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38480130

RESUMO

A new species of the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from Xiangxi River, Shennongjia Forestry District, Hubei Province, China, is described on the basis of an integrative approach, involving morphology, and molecular systematics. The new species Dugesia saccaria A-T. Wang & Sluys, sp. nov. is characterized by the following features: a dumb-bell-shaped, muscularized hump located just anterior to the knee-shaped bend in the bursal canal; a ventrally displaced ejaculatory duct, which, however, opens terminally through the dorsal portion of the blunt tip of the penis papilla; a ventrally located seminal vesicle, giving rise to a vertically running duct that eventually curves downwards to communicate with the ejaculatory duct via a small diaphragm; oviducts opening asymmetrically into the dorsal portion of the common atrium and at the knee-shaped part of the bursal canal. The phylogenetic position of the new species was determined using four molecular markers (18S rDNA; ITS-1; 28S rDNA; COI), which suggested that it groups with other species of Dugesia from the Australasian and Oriental biogeographical regions.


Assuntos
Planárias , Masculino , Animais , Planárias/anatomia & histologia , Filogenia , Pênis , China , DNA Ribossômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA