Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
Plant Cell Physiol ; 65(4): 644-656, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591346

RESUMO

The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.


Assuntos
Ascorbato Peroxidases , Chlamydomonas reinhardtii , Mutação , Plastocianina , Plastocianina/metabolismo , Plastocianina/genética , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Cobre/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos c6/metabolismo , Citocromos c6/genética , Proteômica/métodos , Luz
2.
Plant Cell Environ ; 47(6): 2240-2257, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482712

RESUMO

Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Luz , Proteínas de Membrana , Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transporte de Elétrons , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ferredoxinas/metabolismo , Mutação , Oxirredução , Plastocianina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética
3.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495331

RESUMO

After the Great Oxidation Event (GOE), iron availability was greatly decreased, and photosynthetic organisms evolved several alternative proteins and mechanisms. One of these proteins, plastocyanin, is a type I blue-copper protein that can replace cytochrome c6 as a soluble electron carrier between cytochrome b6f and photosystem I. In most cyanobacteria, expression of these two alternative proteins is regulated by copper availability, but the regulatory system remains unknown. Herein, we provide evidence that the regulatory system is composed of a BlaI/CopY-family transcription factor (PetR) and a BlaR-membrane protease (PetP). PetR represses petE (plastocyanin) expression and activates petJ (cytochrome c6), while PetP controls PetR levels in vivo. Using whole-cell extracts, we demonstrated that PetR degradation requires both PetP and copper. Transcriptomic analysis revealed that the PetRP system regulates only four genes (petE, petJ, slr0601, and slr0602), highlighting its specificity. Furthermore, the presence of petE and petRP in early branching cyanobacteria indicates that acquisition of these genes could represent an early adaptation to decreased iron bioavailability following the GOE.


Assuntos
Citocromos c/metabolismo , Peptídeo Hidrolases/metabolismo , Plastocianina/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cobre/farmacologia , Epistasia Genética/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Regulon/genética , Synechocystis/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 117(26): 15354-15362, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541018

RESUMO

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.


Assuntos
Magnoliopsida/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastocianina/metabolismo , Simulação por Computador , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos
5.
Photosynth Res ; 153(3): 191-204, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35844008

RESUMO

Photosynthetic Control is defined as the control imposed on photosynthetic electron transport by the lumen-pH-sensitive re-oxidation of plastoquinol (PQH2) by cytochrome b6f. Photosynthetic Control leads at higher actinic light intensities to an electron transport chain with a (relatively) reduced photosystem (PS) II and PQ pool and a (relatively) oxidized PS I. Making Light Curves of more than 33 plant species with the recently introduced DUAL-KLAS-NIR (Chl a fluorescence + the redox states of plastocyanin (PC), P700, and ferredoxin (Fd)) the light intensity-dependent induction of Photosynthetic Control was probed and characterized. It was observed that PC became completely oxidized at light intensities ≤ 400 µmol photons m-2 s-1 (at lower light intensities in shade than in sun leaves). The relationship between qP and P700(red) was used to determine the extent of Photosynthetic Control. Instead of measuring the whole Light Curve, it was shown that a single moderate light intensity can be used to characterize the status of a leaf relative to that of other leaves. It was further found that in some shade-acclimated leaves Fd becomes again more oxidized at high light intensities indicating that electron transfer from the PQ pool to P700 cannot keep up with the outflow of electrons on the acceptor side of PS I. It was observed as well that for NPQ-induction a lower light intensity (less acidified lumen) was needed than for the induction of Photosynthetic Control. The measurements were also used to make a comparison between the parameters qP and qL, a comparison suggesting that qP was the more relevant parameter.


Assuntos
Complexo de Proteína do Fotossistema I , Plastocianina , Citocromos b , Transporte de Elétrons , Ferredoxinas/metabolismo , Luz , Oxirredução , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Plastocianina/metabolismo
6.
Phys Chem Chem Phys ; 24(36): 21588-21592, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069424

RESUMO

Proteins tune the reactivity of metal sites; less understood is the impact of association with a redox partner. We demonstrate the utility of carbon-deuterium labels for selective analysis of delicate metal sites. Introduced into plastocyanin, they reveal substantial strengthening of the key Cu-Cys89 bond upon association with cytochrome f.


Assuntos
Cobre , Plastocianina , Carbono , Cobre/química , Citocromos f/metabolismo , Deutério , Oxirredução , Plastocianina/química , Plastocianina/metabolismo
7.
Biochemistry (Mosc) ; 87(10): 1084-1097, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273877

RESUMO

This work is devoted to theoretical study of functioning of the cytochrome (Cyt) b6f complex (plastoquinol:plastocyanin oxidoreductase) of the electron transport chain (ETC) in oxygenic photosynthesis. A composition of the chloroplast ETC and molecular mechanisms of functioning of the Cyt b6f complex, which stands between photosystems II and I (PSII and PSI), are briefly reviewed. The Cyt b6f complex oxidizes plastoquinol (PQH2) molecules formed in PSII, and reduces plastocyanin, which serves as an electron donor to PSI. PQH2 oxidation is the rate-limiting step in the chain of electron transfer processes between PSII and PSI. Using the density functional theory (DFT) method, we have analyzed the two-electron (bifurcated) oxidation of PQH2 in the catalytic center Qo of the Cyt b6f complex. Results of DFT calculations are consistent with the fact that the first step of PQH2 oxidation, electron transfer to the Fe2S2 cluster of the iron-sulfur protein (ISP), is an endergonic (energy-accepting) process (ΔE ≈ 15 kJ·mol-1) that can limit turnover of the Cyt b6f complex. The second stage of bifurcated oxidation of PQH2 - electron transfer from semiquinone (PQH•, formed after the first step of PQH2 oxidation) to heme b6L - is the exergonic (energy-donating) process (ΔE < 0). DFT modeling of this stage revealed that semiquinone oxidation should accelerate after the PQH• radical shift towards the heme b6L (an electron acceptor) and the carboxy group of Glu78 (a proton acceptor). The data obtained are discussed within the framework of the Mitchell Q-cycle model describing PQH2 oxidation at the Qo site of the Cyt b6f complex.


Assuntos
Proteínas Ferro-Enxofre , Plastocianina , Transporte de Elétrons , Plastocianina/metabolismo , Prótons , Citocromos b/metabolismo , Complexo Citocromos b6f/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Heme/metabolismo
8.
Biochem J ; 478(12): 2371-2384, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34085703

RESUMO

Photosystem I is defined as plastocyanin-ferredoxin oxidoreductase. Taking advantage of genetic engineering, kinetic analyses and cryo-EM, our data provide novel mechanistic insights into binding and electron transfer between PSI and Pc. Structural data at 2.74 Šresolution reveals strong hydrophobic interactions in the plant PSI-Pc ternary complex, leading to exclusion of water molecules from PsaA-PsaB/Pc interface once the PSI-Pc complex forms. Upon oxidation of Pc, a slight tilt of bound oxidized Pc allows water molecules to accommodate the space between Pc and PSI to drive Pc dissociation. Such a scenario is consistent with the six times larger dissociation constant of oxidized as compared with reduced Pc and mechanistically explains how this molecular machine optimized electron transfer for fast turnover.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Sítios de Ligação , Transporte de Elétrons , Cinética , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica
9.
Proc Natl Acad Sci U S A ; 116(43): 21900-21906, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591197

RESUMO

In plants, algae, and some photosynthetic bacteria, the ElectroChromic Shift (ECS) of photosynthetic pigments, which senses the electric field across photosynthetic membranes, is widely used to quantify the activity of the photosynthetic chain. In cyanobacteria, ECS signals have never been used for physiological studies, although they can provide a unique tool to study the architecture and function of the respiratory and photosynthetic electron transfer chains, entangled in the thylakoid membranes. Here, we identified bona fide ECS signals, likely corresponding to carotenoid band shifts, in the model cyanobacteria Synechococcus elongatus PCC7942 and Synechocystis sp. PCC6803. These band shifts, most likely originating from pigments located in photosystem I, have highly similar spectra in the 2 species and can be best measured as the difference between the absorption changes at 500 to 505 nm and the ones at 480 to 485 nm. These signals respond linearly to the electric field and display the basic kinetic features of ECS as characterized in other organisms. We demonstrate that these probes are an ideal tool to study photosynthetic physiology in vivo, e.g., the fraction of PSI centers that are prebound by plastocyanin/cytochrome c6 in darkness (about 60% in both cyanobacteria, in our experiments), the conductivity of the thylakoid membrane (largely reflecting the activity of the ATP synthase), or the steady-state rates of the photosynthetic electron transport pathways.


Assuntos
Synechococcus/metabolismo , Tilacoides/metabolismo , Transporte de Elétrons , Eletrofisiologia , Potenciais da Membrana , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/metabolismo
10.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293031

RESUMO

Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes sequence comparison algorithms from being used for high-throughput predictions of the RLP family in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we developed the RLPredictiOme, implemented with machine learning models in combination with Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were simultaneously trained using six types of features, along with three stages to distinguish RLPs from non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets, two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests, more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP, glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying selection with a predominance of synonymous substitutions. Expression analyses revealed that predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic signals. The results of these biological assays indicate that these subfamily members have maintained functional domains during evolution and may play relevant roles in development and plant defense. Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily as a foundation to rationalize functional studies of surface receptors and their relationships with different biological processes.


Assuntos
Arabidopsis , Proteínas de Plantas , Animais , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plastocianina/genética , Plastocianina/metabolismo , Teorema de Bayes , Leucina/metabolismo , Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Aprendizado de Máquina , Hidrolases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Lipídeos , Filogenia
11.
Physiol Plant ; 171(2): 277-290, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33247466

RESUMO

We have investigated if the heterologous expression of a functional green alga plastocyanin in the diatom Phaeodactylum tricornutum can improve photosynthetic activity and cell growth. Previous in vitro assays showed that a single-mutant of the plastocyanin from the green algae Chlamydomonas reinhardtii is effective in reducing P. tricornutum photosystem I. In this study, in vivo assays with P. tricornutum strains expressing this plastocyanin indicate that even the relatively low intracellular concentrations of holo-plastocyanin detected (≈4 µM) are enough to promote an increased growth (up to 60%) under iron-deficient conditions as compared with the WT strain, measured as higher cell densities, content in pigments and active photosystem I, global photosynthetic rates per cell, and even cell volume. In addition, the presence of plastocyanin as an additional photosynthetic electron carrier seems to decrease the over-reduction of the plastoquinone pool. Consequently, it promotes an improvement in the maximum quantum yield of both photosystem II and I, together with a decrease in the acceptor side photoinhibition of photosystem II-also associated to a reduced oxidative stress-a decrease in the peroxidation of membrane lipids in the choroplast, and a lower degree of limitation on the donor side of photosystem I. Thus the heterologous plastocyanin appears to act as a functional electron carrier, alternative to the native cytochrome c6 , under iron-limiting conditions.


Assuntos
Diatomáceas , Plastocianina , Diatomáceas/genética , Diatomáceas/metabolismo , Transporte de Elétrons , Ferro/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(6): 1280-1285, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358375

RESUMO

Oxidoreductases catalyze electron transfer reactions that ultimately provide the energy for life. A limited set of ancestral protein-metal modules are presumably the building blocks that evolved into this diverse protein family. However, the identity of these modules and their path to modern oxidoreductases is unknown. Using a comparative structural analysis approach, we identify a set of fundamental electron transfer modules that have evolved to form the extant oxidoreductases. Using transition metal-containing cofactors as fiducial markers, it is possible to cluster cofactor microenvironments into as few as four major modules: bacterial ferredoxin, cytochrome c, symerythrin, and plastocyanin-type folds. From structural alignments, it is challenging to ascertain whether modules evolved from a single common ancestor (homology) or arose by independent convergence on a limited set of structural forms (analogy). Additional insight into common origins is contained in the spatial adjacency network (SPAN), which is based on proximity of modules in oxidoreductases containing multiple cofactor electron transfer chains. Electron transfer chains within complex modern oxidoreductases likely evolved through repeated duplication and diversification of ancient modular units that arose in the Archean eon.


Assuntos
Coenzimas/metabolismo , Evolução Molecular , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coenzimas/química , Citocromos c/química , Citocromos c/metabolismo , Transporte de Elétrons , Ferredoxinas/química , Ferredoxinas/metabolismo , Metais/química , Metais/metabolismo , Modelos Moleculares , Plastocianina/química , Plastocianina/metabolismo , Conformação Proteica , Homologia Estrutural de Proteína
13.
Photosynth Res ; 144(1): 63-72, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32189186

RESUMO

In photosynthesis research, non-invasive in vivo spectroscopic analyses have been used as a practical tool for studying photosynthetic electron transport. Klas-NIR spectrophotometer has been recently developed by Klughammer and Schreiber (Photosynth Res 128:195-214, 2016) for in vivo measurements of redox changes of P700, plastocyanin (Pcy) and ferredoxin (Fd). Here we show examples using the Klas-NIR spectrophotometer for the evaluation of the redox states and quantities of these components in plant leaves and cyanobacterial suspensions. The redox poise under light of the electron transport components is different in leaves from higher plants compared with cyanobacteria. During a short illumination with an actinic light, P700, Pcy, and Fd are kept reduced in barley leaves but are oxidized in cyanobacteria. During far-red light illumination, P700 and Pcy are mostly oxidized in the leaves but are partially kept reduced in cyanobacteria. In the cyanobacterium, Thermosynechococcus elongatus, which has no Pcy but uses cytochrome c6 (cyt c6) as the electron donor to photosystem I, a cyt c6 signal was detected in vivo. To show the potential of Klas-NIR spectrophotometer for studying different developmental stages of a leaf, we performed measurements on fully mature and early senescing barley leaves. Pcy content in leaves decreased during senescence at an early stage. The Pcy loss was quantitatively analyzed using Klas-NIR spectrophotometer, giving absolute ratios of Pcy to PSI of 2.5 and 1.6 in younger and older leaves, respectively. For quantification of the signals in vivo, in vitro data (Sétif et al. in Photosynth Res142:307-319, 2019) obtained with Klas-NIR spectrophotometer were used.


Assuntos
Luz , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Transporte de Elétrons/fisiologia , Plastocianina/metabolismo , Espectrofotometria
14.
Photosynth Res ; 142(3): 307-319, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31482263

RESUMO

A kinetic-LED-array-spectrophotometer (Klas) was recently developed for measuring in vivo redox changes of P700, plastocyanin (PCy), and ferredoxin (Fd) in the near-infrared (NIR). This spectrophotometer is used in the present work for in vitro light-induced measurements with various combinations of photosystem I (PSI) from tobacco and two different cyanobacteria, spinach plastocyanin, cyanobacterial cytochrome c6 (cyt. c6), and Fd. It is shown that cyt. c6 oxidation contributes to the NIR absorption changes. The reduction of (FAFB), the terminal electron acceptor of PSI, was also observed and the shape of the (FAFB) NIR difference spectrum is similar to that of Fd. The NIR difference spectra of the electron-transfer cofactors were compared between different organisms and to those previously measured in vivo, whereas the relative absorption coefficients of all cofactors were determined by using single PSI turnover conditions. Thus, the (840 nm minus 965 nm) extinction coefficients of the light-induced species (oxidized minus reduced for PC and cyt. c6, reduced minus oxidized for (FAFB), and Fd) were determined with values of 0.207 ± 0.004, - 0.033 ± 0.006, - 0.036 ± 0.008, and - 0.021 ± 0.005 for PCy, cyt. c6, (FAFB) (single reduction), and Fd, respectively, by taking a reference value of + 1 for P700+. The fact that the NIR P700 coefficient is larger than that of PCy and much larger than that of other contributing species, combined with the observed variability in the NIR P700 spectral shape, emphasizes that deconvolution of NIR signals into different components requires a very precise determination of the P700 spectrum.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Proteínas de Bactérias/metabolismo , Citocromos c6/química , Citocromos c6/metabolismo , Transporte de Elétrons , Ferredoxinas/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/química , Proteínas de Plantas/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Spinacia oleracea/química , Synechocystis/química , Nicotiana/química
15.
Physiol Plant ; 166(1): 320-335, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30740703

RESUMO

Mechanisms of the complex formation between plastocyanin and cytochrome f in higher plants (Spinacia oleracea and Brassica rapa), green microalgae Chlamydomonas reinhardtii and two species of cyanobacteria (Phormidium laminosum and Nostoc sp.) were investigated using combined Brownian and molecular dynamics simulations and hierarchical cluster analysis. In higher plants and green algae, electrostatic interactions force plastocyanin molecule close to the heme of cytochrome f. In the subsequent rotation of plastocyanin molecule around the point of electrostatic contact in the vicinity of cytochrome f, copper (Cu) atom approaches cytochrome heme forming a stable configuration where cytochrome f molecule behaves as a rather rigid body without conformational changes. In Nostoc plastocyanin molecule approaches cytochrome f in a different orientation (head-on) where the stabilization of the plastocyanin-cytochrome f complex is accompanied by the conformational changes of the G188E189D190 loop that stabilizes the whole complex. In cyanobacterium P. laminosum, electrostatic preorientation of the approaching molecules was not detected, thus indicating that random motions rather than long-range electrostatic interactions are responsible for the proper mutual orientation. We demonstrated that despite the structural similarity of the investigated electron transport proteins in different photosynthetic organisms, the complexity of molecular mechanisms of the complex formation increases in the following sequence: non-heterocystous cyanobacteria - heterocystous cyanobacteria - green algae - flowering plants.


Assuntos
Clorófitas/metabolismo , Cianobactérias/metabolismo , Citocromos f/metabolismo , Plastocianina/metabolismo , Transporte de Elétrons , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Espectrometria de Fluorescência
16.
Plant Physiol ; 175(3): 1175-1185, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28904074

RESUMO

Increasing grain yield is the most important object of crop breeding. Here, we report that the elevated expression of a conserved microRNA, OsmiR408, could positively regulate grain yield in rice (Oryza sativa) by increasing panicle branches and grain number. We further showed that OsmiR408 regulates grain yield by down-regulating its downstream target, OsUCL8, which is an uclacyanin (UCL) gene of the phytocyanin family. The knock down or knock out of OsUCL8 also increases grain yield, while the overexpression of OsUCL8 results in an opposite phenotype. Spatial and temporal expression analyses showed that OsUCL8 was highly expressed in pistils, young panicles, developing seeds, and inflorescence meristem and was nearly complementary to that of OsmiR408. Interestingly, the OsUCL8 protein was localized to the cytoplasm, distinct from a majority of phytocyanins, which localize to the plasma membrane. Further studies revealed that the cleavage of OsUCL8 by miR408 affects copper homeostasis in the plant cell, which, in turn, affects the abundance of plastocyanin proteins and photosynthesis in rice. To our knowledge, this is the first report of the effects of miR408-OsUCL8 in regulating rice photosynthesis and grain yield. Our study further broadens the perspective of microRNAs and UCLs and provides important information for breeding high-yielding crops through genetic engineering.


Assuntos
MicroRNAs/metabolismo , Oryza/genética , Oryza/fisiologia , Fotossíntese , Plastocianina/metabolismo , Sementes/genética , Sementes/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Oryza/anatomia & histologia , Fenótipo , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA
17.
Photosynth Res ; 137(2): 281-293, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29594952

RESUMO

The absolute amount of plastocyanin (PC), ferredoxin-NADP+-oxidoreductase (FNR), hydrogenase (HYDA1), and ferredoxin 5 (FDX5) were quantified in aerobic and anaerobic Chlamydomonas reinhardtii whole cells using purified (recombinant) proteins as internal standards in a mass spectrometric approach. Quantified protein amounts were related to the estimated amount of PSI. The ratios of PC to FNR to HYDA1 to FDX5 in aerobic cells were determined to be 1.4:1.2:0.003:0. In anaerobic cells, the ratios changed to 1.1:1.3:0.019:0.027 (PC:FNR:HYDA1:FDX5). Employing sodium dithionite and methyl viologen as electron donors, the specific activity of hydrogenase in whole cells was calculated to be 382 ± 96.5 µmolH2 min-1 mg-1. Importantly, these data reveal an about 70-fold lower abundance of HYDA1 compared to FNR. Despite this great disproportion between both proteins, which might further enhance the competition for electrons, the alga is capable of hydrogen production under anaerobic conditions, thus pointing to an efficient channeling mechanism of electrons from FDX1 to the HYDA1.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/metabolismo , Hidrogenase/metabolismo , Nitrito Redutases/metabolismo , Fotossíntese/fisiologia , Plastocianina/metabolismo , Aerobiose , Sequência de Aminoácidos , Anaerobiose , Ferredoxinas/genética , Regulação da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Hidrogenase/genética , Nitrito Redutases/genética , Oxigênio/metabolismo , Oxigênio/farmacologia
18.
Proc Natl Acad Sci U S A ; 112(9): 2644-51, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25646490

RESUMO

Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper.


Assuntos
Chlamydomonas/metabolismo , Cobre/metabolismo , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Chlamydomonas/genética , Citocromos c6/genética , Citocromos c6/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Plastocianina/genética , Plastocianina/metabolismo
19.
J Integr Plant Biol ; 60(4): 323-340, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330900

RESUMO

The ability of a plant to produce grain, fruit, or forage depends ultimately on photosynthesis. There have been few attempts, however, to study microRNAs, which are a class of endogenous small RNAs post-transcriptionally programming gene expression, in relation to photosynthetic traits. We focused on miR408, one of the most conserved plant miRNAs, and overexpressed it in parallel in Arabidopsis, tobacco, and rice. The transgenic plants all exhibited increased copper content in the chloroplast, elevated abundance of plastocyanin, and an induction of photosynthetic genes. By means of gas exchange and optical spectroscopy analyses, we showed that higher expression of miR408 leads to enhanced photosynthesis through improving efficiency of irradiation utilization and the capacity for carbon dioxide fixation. Consequently, miR408 hyper-accumulating plants exhibited higher rate of vegetative growth. An enlargement of seed size was also observed in all three species overproducing miR408. Moreover, we conducted a 2-year-two-location field trial and observed miR408 overexpression in rice significantly increased yield, which was primarily attributed to an elevation in grain weight. Taken together, these results demonstrate that miR408 is a positive regulator of photosynthesis and that its genetic engineering is a promising route for enhancing photosynthetic performance and yield in diverse plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , MicroRNAs/metabolismo , Fotossíntese/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , Plantas Geneticamente Modificadas , Plastocianina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética
20.
Biochim Biophys Acta ; 1857(6): 819-30, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27056771

RESUMO

Electrochromic shift measurements confirmed that the Q-cycle operated in sunflower leaves. The slow temporarily increasing post-pulse phase was recorded, when ATP synthase was inactivated in the dark and plastoquinol (PQH(2)) oxidation was initiated by a short pulse of far-red light (FRL). During illumination by red light, the Q-cycle-supported proton arrival at the lumen and departure via ATP synthase were simultaneous, precluding extreme build-up of the membrane potential. To investigate the kinetics of the Q-cycle, less than one PQH(2) per cytochrome b(6)f (Cyt b(6)f) were reduced by illuminating the leaf with strong light pulses or single-turnover Xe flashes. The post-pulse rate of oxidation of these PQH2 molecules was recorded via the rate of reduction of plastocyanin (PC(+)) and P700(+), monitored at 810 and 950 nm. The PSII-reduced PQH(2) molecules were oxidized with multi-phase overall kinetics, τ(d)=1, τ(p)=5.6 and τ(s)=16 ms (22 °C). We conclude that τ(d) characterizes PSII processes and diffusion, τ(p) is the bifurcated oxidation of the primary quinol and τ(s) is the Q-cycle-involving reduction of the secondary quinol at the n-site, its transport to the p-site, and bifurcated oxidation there. The extraordinary slow kinetics of the Q-cycle may be related to the still unsolved mechanism of the "photosynthetic control."


Assuntos
Complexo Citocromos b6f/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plastocianina/metabolismo , Plastoquinona/análogos & derivados , Algoritmos , Clorofila/metabolismo , Citocromos f/metabolismo , Transporte de Elétrons , Helianthus/metabolismo , Helianthus/efeitos da radiação , Cinética , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Biológicos , Oxirredução , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/efeitos da radiação , Plastoquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA