Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Nature ; 592(7853): 242-247, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762735

RESUMO

One of the most notable ecological trends-described more than 2,300  years ago by Theophrastus-is the association of small leaves with dry and cold climates, which has recently been recognized for eudicotyledonous plants at a global scale1-3. For eudicotyledons, this pattern has been attributed to the fact that small leaves have a thinner boundary layer that helps to avoid extreme leaf temperatures4 and their leaf development results in vein traits that improve water transport under cold or dry climates5,6. However, the global distribution of leaf size and its adaptive basis have not been tested in the grasses, which represent a diverse lineage that is distinct in leaf morphology and that contributes 33% of terrestrial primary productivity (including the bulk of crop production)7. Here we demonstrate that grasses have shorter and narrower leaves under colder and drier climates worldwide. We show that small grass leaves have thermal advantages and vein development that contrast with those of eudicotyledons, but that also explain the abundance of small leaves in cold and dry climates. The worldwide distribution of leaf size in grasses exemplifies how biophysical and developmental processes result in convergence across major lineages in adaptation to climate globally, and highlights the importance of leaf size and venation architecture for grass performance in past, present and future ecosystems.


Assuntos
Aclimatação , Mudança Climática , Folhas de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Água/metabolismo , Xilema/crescimento & desenvolvimento , Fenômenos Biofísicos , Clima , Temperatura Baixa , Secas , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Poaceae/anatomia & histologia , Poaceae/metabolismo , Xilema/anatomia & histologia , Xilema/metabolismo
2.
Ann Bot ; 133(5-6): 725-742, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38365451

RESUMO

BACKGROUND AND AIMS: The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS: Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS: Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS: Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.


Assuntos
Filogenia , Brachiaria/genética , Brachiaria/anatomia & histologia , Brachiaria/crescimento & desenvolvimento , África , Evolução Biológica , Poaceae/genética , Poaceae/anatomia & histologia , Genoma de Planta
3.
Environ Res ; 252(Pt 4): 119069, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735376

RESUMO

Dwarf bamboo (Indocalamus decorus) is an O3-tolerant plant species. To identify the possible mechanism and response of leaf morphological, antioxidant, and anatomical characteristics to elevated atmospheric O3 (EO3) concentrations, we exposed three-year-old I. decorus seedlings to three O3 levels (low O3-LO: ambient air; medium O3-MO: Ambient air+70 ppb high O3-HO: Ambient air+140 ppb O3) over a growing season using open-top chambers. Leaf shape and stomatal characteristics, and leaf microscopic structure of I. decorus were examined. The results indicated that 1) the stomata O3 flux (Fst) of HO decreased more rapidly under EO3 as the exposure time increased. The foliar O3 injury of HO and MO occurred when AOT40 was 26.62 ppm h and 33.20 ppm h, respectively, 2) under EO3, leaf number, leaf mass per area, leaf area, and stomata length/width all decreased, while leaf thickness, stomatal density, width, and area increased compared to the control, 3) MDA and total soluble protein contents all showed significantly increase under HO (36.57% and 32.77%) and MO(31.91% and 19.52%) while proline contents only increased under HO(33.27%). 4) MO and HO increased bulliform cells numbers in the leaves by 6.28% and 23.01%, respectively. HO reduced the transverse area of bulliform cells by 13.73%, while MO treatments had no effect, and 5) the number of fusoid cells interspace, the transverse area of fusoid cells interspace, and mesophyll thickness of HO significantly increased by 11.16%, 28.58%, and 13.42%, respectively. In conclusion, I. decorus exhibits strong O3 tolerance characteristics, which stem from adaptions in the leaf's morphological, structural, antioxidant, and anatomical features. One critical attribute was the enlargement of the bulliform cell transverse area and the transverse area of fusoid cells interspace that drove this resistance to O3. Local bamboo species with high resistance to O3 pollution thus need to be promoted for sustained productivity and ecosystem services in areas with high O3 pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Folhas de Planta , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Ozônio/toxicidade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poaceae/efeitos dos fármacos , Poaceae/anatomia & histologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/anatomia & histologia
4.
Plant J ; 107(2): 629-648, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33914380

RESUMO

Beyond facilitating transport and providing mechanical support to the leaf, veins have important roles in the performance and productivity of plants and the ecosystem. In recent decades, computational image analysis has accelerated the extraction and quantification of vein traits, benefiting fields of research from agriculture to climatology. However, most of the existing leaf vein image analysis programs have been developed for the reticulate venation found in dicots. Despite the agroeconomic importance of cereal grass crops, like Oryza sativa (rice) and Zea mays (maize), a dedicated image analysis program for the parallel venation found in monocots has yet to be developed. To address the need for an image-based vein phenotyping tool for model and agronomic grass species, we developed the grass vein image quantification (grasviq) framework. Designed specifically for parallel venation, this framework automatically segments and quantifies vein patterns from images of cleared leaf pieces using classical computer vision techniques. Using image data sets from maize inbred lines and auxin biosynthesis and transport mutants in maize, we demonstrate the utility of grasviq for quantifying important vein traits, including vein density, vein width and interveinal distance. Furthermore, we show that the framework can resolve quantitative differences and identify vein patterning defects, which is advantageous for genetic experiments and mutant screens. We report that grasviq can perform high-throughput vein quantification, with precision on a par with that of manual quantification. Therefore, we envision that grasviq will be adopted for vein phenomics in maize and other grass species.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Folhas de Planta/anatomia & histologia , Feixe Vascular de Plantas/anatomia & histologia , Zea mays/anatomia & histologia , Automação/métodos , Conjuntos de Dados como Assunto , Melhoramento Vegetal , Poaceae/anatomia & histologia , Característica Quantitativa Herdável
5.
Ann Bot ; 130(5): 737-747, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35961673

RESUMO

BACKGROUND AND AIMS: Shoot ontogenesis in grasses follows a transition from a vegetative phase into a reproductive phase. Current studies provide insight into how branch and spikelet formation occur during the reproductive phase. However, these studies do not explain all the complex diversity of grass inflorescence forms and are mostly focused on model grasses. Moreover, truncated inflorescences of the non-model grass genus Urochloa (Panicoideae) with formation of primary branches have basipetal initiation of branches. Bouteloua species (Chloridoideae) are non-model grasses that form truncated inflorescences of primary branches with apical vestiges of uncertain homology at the tips of branching events and sterile florets above the lowermost fertile floret. Sterile florets are reduced to rudimentary lemmas composed of three large awns diverging from an awn column. Conflict about the awn column identity of this rudimentary lemma is often addressed in species descriptions of this genus. We test if Bouteloua species can display basipetal initiation of branches and explore the identity of vestiges and the awn column of rudimentary lemmas. METHODS: We surveyed the inflorescence ontogeny and branch/awn anatomy of Bouteloua species and compared results with recent ontogenetic studies of chloridoids. KEY RESULTS: Bouteloua arizonica has florets with basipetal maturation. Branches display basipetal branch initiation and maturation. Branch vestiges are formed laterally by meristems during early branching events. The spikelet meristem forms the awn column of rudimentary lemmas. Vestiges and sterile floret awns have anatomical similarities to C4 leaves. CONCLUSIONS: Basipetal initiation of branches is a novel feature for Chloridoideae grasses. Branch vestiges are novel vegetative grass structures. Sterile floret awn columns are likely to be extensions of the rachilla.


Assuntos
Meristema , Poaceae , Poaceae/anatomia & histologia , Inflorescência , Folhas de Planta , Proteínas de Plantas
6.
Plant J ; 101(4): 780-799, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571301

RESUMO

Stomata are cellular breathing pores on leaves that open and close to absorb photosynthetic carbon dioxide and to restrict water loss through transpiration, respectively. Grasses (Poaceae) form morphologically innovative stomata, which consist of two dumbbell-shaped guard cells flanked by two lateral subsidiary cells (SCs). This 'graminoid' morphology is associated with faster stomatal movements leading to more water-efficient gas exchange in changing environments. Here, we offer a genetic and mechanistic perspective on the unique graminoid form of grass stomata and the developmental innovations during stomatal cell lineage initiation, recruitment of SCs and stomatal morphogenesis. Furthermore, the functional consequences of the four-celled, graminoid stomatal morphology are summarized. We compile the identified players relevant for stomatal opening and closing in grasses, and discuss possible mechanisms leading to cell-type-specific regulation of osmotic potential and turgor. In conclusion, we propose that the investigation of functionally superior grass stomata might reveal routes to improve water-stress resilience of agriculturally relevant plants in a changing climate.


Assuntos
Estômatos de Plantas/fisiologia , Poaceae/fisiologia , Ácido Abscísico/metabolismo , Aquaporinas/metabolismo , Dióxido de Carbono/metabolismo , Citoesqueleto/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Fotossíntese/fisiologia , Células Vegetais , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/citologia , Estômatos de Plantas/crescimento & desenvolvimento , Poaceae/anatomia & histologia , Poaceae/citologia
7.
Semin Cell Dev Biol ; 79: 37-47, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29020602

RESUMO

The grass inflorescence is striking not only for its beauty and diversity, but also for its developmental complexity. While models of inflorescence architecture have been proposed in both eudicots and grasses, these are inadequate to fully explain the complex branching events that occur during the development of the grass inflorescence. Key to understanding grass inflorescence architecture is the meristem determinacy/indeterminacy decision, which regulates the number of branching events that occur. Here we review what has been learned about meristem determinacy from grass mutants with defects in inflorescence development. A picture is emerging of a complex network of signaling molecules and meristem identity factors that interact to regulate inflorescence meristem activity, many of which have been modified during crop domestication directly affecting yield traits.


Assuntos
Genes de Plantas/genética , Inflorescência/genética , Meristema/genética , Poaceae/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Meristema/anatomia & histologia , Meristema/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/anatomia & histologia , Poaceae/crescimento & desenvolvimento
8.
BMC Plant Biol ; 20(1): 92, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122321

RESUMO

BACKGROUND: The shade represents one of the major environmental limitations for turfgrass growth. Shade influences plant growth and alters plant metabolism, yet little is known about how shade affects the structure of rhizosphere soil microbial communities and the role of soil microorganisms in plant shade responses. In this study, a glasshouse experiment was conducted to examine the impact of shade on the growth and photosynthetic capacity of two contrasting shade-tolerant turfgrasses, shade-tolerant dwarf lilyturf (Ophiopogon japonicus, OJ) and shade-intolerant perennial turf-type ryegrass (Lolium perenne, LP). We also examined soil-plant feedback effects on shade tolerance in the two turfgrass genotypes. The composition of the soil bacterial community was assayed using high-throughput sequencing. RESULTS: OJ maintained higher photosynthetic capacity and root growth than LP under shade stress, thus OJ was found to be more shade-tolerant than LP. Shade-intolerant LP responded better to both shade and soil microbes than shade-tolerant OJ. The shade and live soil decreased LP growth, but increased biomass allocation to shoots in the live soil. The plant shade response index of LP is higher in live soil than sterile soil, driven by weakened soil-plant feedback under shade stress. In contrast, there was no difference in these values for OJ under similar shade and soil treatments. Shade stress had little impact on the diversity of the OJ and the LP bacterial communities, but instead impacted their composition. The OJ soil bacterial communities were mostly composed of Proteobacteria and Acidobacteria. Further pairwise fitting analysis showed that a positive correlation of shade-tolerance in two turfgrasses and their bacterial community compositions. Several soil properties (NO3--N, NH4+-N, AK) showed a tight coupling with several major bacterial communities under shade stress. Moreover, OJ shared core bacterial taxa known to promote plant growth and confer tolerance to shade stress, which suggests common principles underpinning OJ-microbe interactions. CONCLUSION: Soil microorganisms mediate plant responses to shade stress via plant-soil feedback and shade-induced change in the rhizosphere soil bacterial community structure for OJ and LP plants. These findings emphasize the importance of understanding plant-soil interactions and their role in the mechanisms underlying shade tolerance in shade-tolerant turfgrasses.


Assuntos
Microbiota , Poaceae/fisiologia , Rizosfera , Microbiologia do Solo , Bactérias/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Lolium/anatomia & histologia , Lolium/fisiologia , Poaceae/anatomia & histologia , Estresse Fisiológico
9.
Fungal Genet Biol ; 144: 103466, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32956810

RESUMO

Pseudoflower formation is arguably the rarest outcome of a plant-fungus interaction. Here we report on a novel putative floral mimicry system in which the pseudoflowers are composed entirely of fungal tissues in contrast to modified leaves documented in previous mimicry systems. Pseudoflowers on two perennial Xyris species (yellow-eyed grass, X. setigera and X. surinamensis) collected from savannas in Guyana were produced by Fusarium xyrophilum, a novel Fusarium species. These pseudoflowers mimic Xyris flowers in gross morphology and are ultraviolet reflective. Axenic cultures of F. xyrophilum produced two pigments that had fluorescence emission maxima in light ranges that trichromatic insects are sensitive to and volatiles known to attract insect pollinators. One of the volatiles emitted by F. xyrophilum cultures (i.e., 2-ethylhexanol) was also detected in the head space of X. laxifolia var. iridifolia flowers, a perennial species native to the New World. Results of microscopic and PCR analyses, combined with examination of gross morphology of the pseudoflowers, provide evidence that the fungus had established a systemic infection in both Xyris species, sterilized them and formed fungal pseudoflowers containing both mating type idiomorphs. Fusarium xyrophilum cultures also produced the auxin indole-3-acetic acid (IAA) and the cytokinin isopentenyl adenosine (iPR). Field observations revealed that pseudoflowers and Xyris flowers were both visited by bees. Together, the results suggest that F. xyrophilum pseudoflowers are a novel floral mimicry system that attracts insect pollinators, via visual and olfactory cues, into vectoring its conidia, which might facilitate outcrossing of this putatively heterothallic fungus and infection of previously uninfected plants.


Assuntos
Mimetismo Biológico , Flores/anatomia & histologia , Fusarium/crescimento & desenvolvimento , Poaceae/anatomia & histologia , Flores/crescimento & desenvolvimento , Fusarium/genética , Guiana , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Poaceae/genética , Polinização/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
10.
New Phytol ; 225(1): 169-182, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400232

RESUMO

Mesophyll conductance (gm ) is the diffusion of CO2 from intercellular air spaces (IAS) to the first site of carboxylation in the mesophyll cells. In C3 species, gm is influenced by diverse leaf structural and anatomical traits; however, little is known about traits affecting gm in C4 species. To address this knowledge gap, we used online oxygen isotope discrimination measurements to estimate gm and microscopy techniques to measure leaf structural and anatomical traits potentially related to gm in 18 C4 grasses. In this study, gm scaled positively with photosynthesis and intrinsic water-use efficiency (TEi ), but not with stomatal conductance. Also, gm was not determined by a single trait but was positively correlated with adaxial stomatal densities (SDada ), stomatal ratio (SR), mesophyll surface area exposed to IAS (Smes ) and leaf thickness. However, gm was not related to abaxial stomatal densities (SDaba ) and mesophyll cell wall thickness (TCW ). Our study suggests that greater SDada and SR increased gm by increasing Smes and creating additional parallel pathways for CO2 diffusion inside mesophyll cells. Thus, SDada , SR and Smes are important determinants of C4 -gm and could be the target traits selected or modified for achieving greater gm and TEi in C4 species.


Assuntos
Estômatos de Plantas/fisiologia , Poaceae/fisiologia , Água/metabolismo , Ar , Difusão , Espaço Extracelular/fisiologia , Células do Mesofilo/fisiologia , Isótopos de Oxigênio/análise , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Poaceae/anatomia & histologia
11.
Plant Cell Environ ; 43(8): 1897-1910, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449181

RESUMO

In habitats with low water availability, a fundamental challenge for plants will be to maximize photosynthetic C-gain while minimizing transpirational water-loss. This trade-off between C-gain and water-loss can in part be achieved through the coordination of leaf-level photosynthetic and hydraulic traits. To test the relationship of photosynthetic C-gain and transpirational water-loss, we grew, under common growth conditions, 18 C4 grasses adapted to habitats with different mean annual precipitation (MAP) and measured leaf-level structural and anatomical traits associated with mesophyll conductance (gm ) and leaf hydraulic conductance (Kleaf ). The C4 grasses adapted to lower MAP showed greater mesophyll surface area exposed to intercellular air spaces (Smes ) and adaxial stomatal density (SDada ) which supported greater gm . These grasses also showed greater leaf thickness and vein-to-epidermis distance, which may lead to lower Kleaf . Additionally, grasses with greater gm and lower Kleaf also showed greater photosynthetic rates (Anet ) and leaf-level water-use efficiency (WUE). In summary, we identify a suite of leaf-level traits that appear important for adaptation of C4 grasses to habitats with low MAP and may be useful to identify C4 species showing greater Anet and WUE in drier conditions.


Assuntos
Folhas de Planta/fisiologia , Poaceae/fisiologia , Adaptação Fisiológica , Ecossistema , Células do Mesofilo/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Poaceae/anatomia & histologia
12.
Mol Phylogenet Evol ; 149: 106842, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32305509

RESUMO

Reticulate evolution resulting from hybridization and introgression has been recognized as a creative source of species and diversification in bamboos. Previous phylogenetic studies revealed that Fargesia (s.l.) (Fargesia and Yushania) was divided into the Fargesia spathe clade and the non-spathe clade. Interestingly, the Fargesia spathe clade may have originated from hybridization among other clades within Fargesia (s.l.). Understanding the hybrid origin of this clade requires a robust phylogenetic framework in which major clades within Fargesia (s.l.) are resolved. Here, we used three nuclear genes to reconstruct the evolutionary history of Fargesia (s.l.) and its allies to identify putative patterns in the origin of the Fargesia spathe clade and to examine the extent to which reticulate evolution has occurred at the interspecific level in bamboos. Bashania species form a clade with Fargesia (s.l.), which is further divided into Group I and Group II. The Fargesia spathe clade, the Alpine Bashania clade, and Fargesia yajiangensis comprise Group I, while the Bashania fargesii clade and the remaining Fargesia (s.l.) species form Group II. Incongruence between the current nuclear-based and previous plastid phylogenies demonstrate several possible hybridization events among Fargesia (s.l.) species and related taxa, which have given rise to the Fargesia spathe clade, the Phyllostachys clade, and the Ampelocalamus clade. We also detected several putative hybrid species of Fargesia (s.l.). Our results show that reticulate evolution has played a prominent role in Fargesia (s.l.) evolution, which could, in part, account for the taxonomic difficulty associated with Fargesia (s.l.) and the alpine bamboos. The study also underscores the importance of hybridization in the evolution of bamboos, at both intergeneric and intrageneric levels.


Assuntos
Núcleo Celular/genética , Evolução Molecular , Poaceae/genética , Sequência de Bases , Teorema de Bayes , Bases de Dados Genéticas , Genes de Plantas , Marcadores Genéticos , Hibridização Genética , Filogenia , Poaceae/anatomia & histologia
13.
Mol Phylogenet Evol ; 146: 106758, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32028031

RESUMO

The Bambusa-Dendrocalamus-Gigantochloa complex (BDG complex) is the most diversified and phylogenetically recalcitrant group of the paleotropical woody bamboos. Species of this complex occur in tropical and subtropical Asia and most of them are of great economic, cultural and ecological value. The lack of resolution achieved through the analyses of previous molecular datasets has long confounded its phylogenetic estimation and generic delimitation. Here, we adopted a ddRAD-seq strategy to investigate phylogenetic relationships of the four main genera (Bambusa, Dendrocalamus, Gigantochloa, and Melocalamus) in the BDG complex. A total of 102 species were sampled, and SNP data were generated. Both MP and ML analyses of the ddRAD-seq data resulted in a well-resolved topology with Gigantochloa and Melocalamus confirmed as monophyletic, and Melocalamus resolved as sister to the rest of the complex. Bambusa and Dendrocalamus were both resolved as paraphyletic. The phylogenetic relationships were mostly supported by morphological evidence including characters of the branch complement, rachilla, lodicules, filaments and stigma. We also generated and assembled complete plastid genomes of 48 representative species. There were conflicts between the plastome and the ddRAD topologies. Our study demonstrated that RAD-seq can be used to reconstruct evolutionary history of lineages such as the bamboos where ancient hybridization and polyploidy play a significant role. The four genera of the BDG complex have a complex evolutionary history which is likely a product of ancient introgression events.


Assuntos
Bambusa/classificação , Poaceae/classificação , Ásia , Bambusa/genética , Evolução Biológica , Genomas de Plastídeos , Hibridização Genética , Filogenia , Poaceae/anatomia & histologia , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNA
14.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066600

RESUMO

Awns, which are either bristles or hair-like outgrowths of lemmas in the florets, are one of the typical morphological characteristics of grass species. These stiff structures contribute to grain dispersal and burial and fend off animal predators. However, their phenotypic and genetic associations with traits deciding potential yield and quality are not fully understood. Awns appear to improve photosynthesis, provide assimilates for grain filling, thus contributing to the final grain yield, especially under temperature- and water-stress conditions. Long awns, however, represent a competing sink with developing kernels for photosynthates, which can reduce grain yield under favorable conditions. In addition, long awns can hamper postharvest handling, storage, and processing activities. Overall, little is known about the elusive role of awns, thus, this review summarizes what is known about the effect of awns on grain yield and biomass yield, grain nutritional value, and forage-quality attributes. The influence of awns on the agronomic performance of grasses seems to be associated with environmental and genetic factors and varies in different stages of plant development. The contribution of awns to yield traits and quality features previously documented in major cereal crops, such as rice, barley, and wheat, emphasizes that awns can be targeted for yield and quality improvement and may advance research aimed at identifying the phenotypic effects of morphological traits in grasses.


Assuntos
Grão Comestível/genética , Poaceae/genética , Característica Quantitativa Herdável , Biomassa , Grão Comestível/anatomia & histologia , Grão Comestível/crescimento & desenvolvimento , Melhoramento Vegetal , Poaceae/anatomia & histologia , Poaceae/crescimento & desenvolvimento
15.
Plant Biotechnol J ; 17(5): 982-997, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30451358

RESUMO

Pith cavity formation is critical for bamboo to overcome the bending force during its fast growth; however, the underlying molecular mechanisms remain largely unknown. Multiple approaches, including anatomical dissection, mathematical modelling and transcriptome profiling, were employed in this study to investigate the biology of pith cavity formation in bamboo Pseudosasa japonica. We found that the corruption of pith tissue occurred sequentially and asymmetrically from the top-centre of the internode down to the bottom, which might be caused by the combined effects of asymmetrical radial and axial tensile forces during shoot-wall cell elongation and spiral growth of bamboo internodes. Programmed cell death (PCD) in pitch manifested by TUNEL positive nuclei, DNA cleavage and degraded organelles, and potentially regulated by ethylene and calcium signalling pathway, ROS burst, cell wall modification, proteolysis and nutrient recycle genes, might be responsible for pith tissue corruption of Ps. japonica. Although similar physiological changes and transcriptome profiles were found in different bamboo species, different formation rates of pith cavity were observed, which might be caused by different pith cells across the internode that were negatively correlated with the culm diameter. These findings provided a systematical view on the formation of bamboo pith cavity and revealed that PCD plays an important role in the bamboo pith cavity formation.


Assuntos
Apoptose/genética , Genes de Plantas/genética , Poaceae/genética , Transcriptoma/genética , Clivagem do DNA , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Marcação In Situ das Extremidades Cortadas , Microscopia Eletrônica de Transmissão , Poaceae/anatomia & histologia , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , RNA de Plantas/metabolismo , Transcriptoma/fisiologia
16.
New Phytol ; 223(3): 1280-1295, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31087798

RESUMO

C4 plants achieve higher photosynthesis (An ) and intrinsic water use efficiency (iWUE) than C3 plants, but processes underpinning the variability in An and iWUE across the three C4 subtypes remain unclear, partly because we lack an integrated framework for quantifying the contribution of diffusional and biochemical limitations to C4 photosynthesis. We exploited the natural diversity among C4 grasses to develop an original mathematical approach for estimating eight key processes of C4 photosynthesis and their relative limitations to An . We also developed a new formulation to estimate mesophyll conductance (gm ) based on actual hydration rates of CO2 by carbonic anhydrases. We found a positive relationship between gm and iWUE and an inverse correlation with gsw among C4 grasses. We also revealed subtype-specific regulatory processes of iWUE that may be related to known anatomical traits characterising each C4 subtype. Leaf width was an important determinant of iWUE and showed significant correlations with key limitations of An , especially among NADP-ME species. In conclusion, incorporating leaf width in breeding trials may unlock new opportunities for C4 crops because the revealed negative relationship between leaf width and iWUE may translate into higher crop and canopy WUE.


Assuntos
Dióxido de Carbono/farmacologia , Carbono/metabolismo , Folhas de Planta/anatomia & histologia , Poaceae/anatomia & histologia , Poaceae/fisiologia , Água , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia
17.
Mol Phylogenet Evol ; 134: 50-60, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30639590

RESUMO

Blue grama grass (Bouteloua gracilis) populations are found in widely variable environments, tolerating drought, alkaline soils and different levels of grazing. Many ploidy levels have been reported for this species that is also considered to be phenotypically plastic and morphologically variable. Recently a decline in its cover and frequency in the North American shortgrass steppe and central Mexico has been reported although much about the biology of the species is unknown, including genetic diversity throughout its distribution. Genetic and phylogeographic structure and phylogenetic relationships among B. gracilis were estimated employing next generation sequencing of a high number of SNPs and loci. Population genetics and Structure analyses were performed. We compared the marginal likelihoods of different migration models using MIGRATE and obtained the best population model of migration for our data. Demographic expansion of B. gracilis was observed graphically with a mismatch distribution obtained in DNAsp. Bayesian and Maximum Likelihood methods were used to resolve phylogenetic relationships among B. gracilis and its closely related species as well as within B. gracilis populations. B. gracilis is sister to the B. chasei and B. herrera arrietae clade. Among the populations of the species two highly supported clades were resolved, grouping samples from Mexico and USA respectively. Allele frequencies determined three population clusters: CUSA from the Great Plains, MEX from central and southern Mexico, and WUSA-NMEX from northern Mexico and the western mountainous region of USA, the latter of which contains an allele admixture of the other two clusters. The haplotype network revealed an ancestral haplotype originating in Mexico, from which the rest of the haplotypes diversified to the north. Both evidence of gene flow and isolation among populations was observed. Genetic clusters are not genetically structured and variation is higher among populations. The genetic and morphological data do not support recognition of ecotypes or infraespecific taxa. However, the Great Plains populations are least diverse, making them most vulnerable to environmental change.


Assuntos
Filogeografia , Poaceae/classificação , Poaceae/genética , Animais , Teorema de Bayes , Análise por Conglomerados , Variação Genética , Genética Populacional , Haplótipos/genética , México , Filogenia , Poaceae/anatomia & histologia , Polimorfismo de Nucleotídeo Único/genética
18.
Mol Phylogenet Evol ; 139: 106541, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228555

RESUMO

Eremitis, Pariana, and Parianella are herbaceous bamboos (tribe Olyreae) included in the subtribe Parianinae, which is characterized by the presence of fimbriae at the apex of the leaf sheaths and exclusively spiciform synflorescences. We analyzed 43 samples of herbaceous and woody bamboos in order to infer relationships within the Parianinae, based on combined data from the nuclear ribosomal internal transcribed spacer (ITS) and plastid DNA (rpl32-trnL and trnD-trnT spacers). Bayesian inference, maximum likelihood, and maximum parsimony methods were applied, and macro- and micromorphological aspects were also analyzed, including the ectexine patterns of pollen grains. Parianinae is represented by three well-supported lineages in our analyses: (1) Parianella, endemic to southern Bahia, Brazil; (2) Pariana sensu stricto with a broad distribution in southern Central America and northern South America, especially in the Amazon region; and (3) Eremitis, endemic to the Brazilian Atlantic Forest, from the states of Pernambuco to Rio de Janeiro, including one species previously described as a member of Pariana. Our molecular phylogeny showed that Pariana, as historically circumscribed, is not monophyletic, by recovering Pariana sensu stricto as strongly supported and sister to Eremitis + Pariana multiflora, with Parianella sister to the Pariana-Eremitis clade. Morphological features of their synflorescences and differences in ectexine patterns characterize each lineage. Based on all these characters and the phylogenetic results, Pariana multiflora, endemic to the state of Espírito Santo, Brazil, is transferred to Eremitis.


Assuntos
Poaceae/classificação , Teorema de Bayes , Brasil , Núcleo Celular/genética , América Central , DNA de Plantas/química , Filogenia , Plastídeos/genética , Poaceae/anatomia & histologia , Poaceae/genética , Poaceae/ultraestrutura , Pólen/ultraestrutura , Análise de Sequência de DNA , América do Sul
19.
Am J Bot ; 106(1): 29-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633812

RESUMO

PREMISE OF THE STUDY: Hybridization between previously isolated species or lineages can stimulate invasiveness because of increased genetic diversity and inherited traits facilitating competitive and reproductive potential. We evaluated differences in stand characteristics and sexual and vegetative reproduction among native, introduced, and hybrid Phragmites australis lineages in the southwestern United States. We also assessed the degree of hybridization among lineages and backcrossing of hybrids with parental lineages. METHODS: Growth and morphological characteristics were measured in native, introduced, and hybrid Phragmites stands to evaluate relative cover and dominance in associated plant communities. Panicles were collected from stands to evaluate germination, dormancy, and differences in seed traits. Seedlings from germination trials were genotyped to determine frequency of crossing and backcrossing among lineages. KEY RESULTS: Introduced and hybrid Phragmites stands had significantly greater stem and panicle densities than native stands and were more likely to be dominant members of their respective plant communities. Hybrid seed outputs were significantly greater, but hybrid seeds had lower germination rates than those from native and introduced lineages. We detected a novel hybridization event between native and introduced lineages, but found no strong evidence of hybrids backcrossing with parental lineages. CONCLUSIONS: Hybrid Phragmites in the Southwest exhibits reproductive, genetic, and morphological characteristics from both parental lineages that facilitate dispersal, establishment, and aggressive growth, including high reproductive output, rhizome viability, and aboveground biomass, with smaller seeds and greater genetic diversity than its progenitors. Our results show hybrids can inherit traits that confer invasiveness and provide insight for managing this species complex and other cryptic species with native and introduced variants with potential for intraspecific hybridization.


Assuntos
Hibridização Genética , Poaceae/fisiologia , Biomassa , Germinação , Dormência de Plantas , Poaceae/anatomia & histologia , Reprodução , Rizoma/fisiologia , Sementes/crescimento & desenvolvimento
20.
Naturwissenschaften ; 106(9-10): 50, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31456022

RESUMO

The cavities of bamboos (Poaceae) are used by various animals. Most of the animals access these cavities either by existing cracks or by excavating bamboos with soft walls or small, thin-walled bamboos. Only a few animals excavate into the cavities of large and thick- and hard-walled internodes of mature bamboos. We studied two lizard beetle species (Coleoptera: Erotylidae: Languriinae), Doubledaya ruficollis and Oxylanguria acutipennis, that excavate into large internode cavities of recently dead mature bamboos and have morphological modifications. We observed that females of D. ruficollis used their mandibles to bore oviposition holes on Schizostachyum sp. (mean wall thickness = 3.00 mm) and O. acutipennis did so on Dendrocalamus sp. (3.37 mm) bamboos. Previous studies suggested that the markedly asymmetrical mandibles and needle-like ovipositors of females in the genus Doubledaya are adaptive traits for excavating hard-walled bamboos for oviposition. Therefore, we measured their mandibular lengths and ovipositor lengths. D. ruficollis females had greater asymmetry in the mandibles and shorter and less-sclerotized ovipositors than females of congeners using small bamboos. In contrast, O. acutipennis females had slightly asymmetrical mandibles and elongated, well-sclerotized ovipositors. Oviposition holes of D. ruficollis were cone-shaped (evenly tapering), whereas those of O. acutipennis were funnel-shaped (tube-like at the internal apex). This suggests that D. ruficollis females excavate oviposition holes using the mandibles only, and O. acutipennis females use both the mandibles and ovipositors. These differences suggest different oviposition-associated morphological specialization for using large bamboos: the extremely asymmetrical mandibles in D. ruficollis and elongated, needle-like ovipositors in O. acutipennis.


Assuntos
Besouros/anatomia & histologia , Besouros/fisiologia , Estruturas Animais/anatomia & histologia , Animais , Comportamento Animal/fisiologia , Feminino , Tamanho do Órgão/fisiologia , Poaceae/anatomia & histologia , Poaceae/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA