Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.218
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 628(8009): 771-775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632399

RESUMO

Quantitative detection of various molecules at very low concentrations in complex mixtures has been the main objective in many fields of science and engineering, from the detection of cancer-causing mutagens and early disease markers to environmental pollutants and bioterror agents1-5. Moreover, technologies that can detect these analytes without external labels or modifications are extremely valuable and often preferred6. In this regard, surface-enhanced Raman spectroscopy can detect molecular species in complex mixtures on the basis only of their intrinsic and unique vibrational signatures7. However, the development of surface-enhanced Raman spectroscopy for this purpose has been challenging so far because of uncontrollable signal heterogeneity and poor reproducibility at low analyte concentrations8. Here, as a proof of concept, we show that, using digital (nano)colloid-enhanced Raman spectroscopy, reproducible quantification of a broad range of target molecules at very low concentrations can be routinely achieved with single-molecule counting, limited only by the Poisson noise of the measurement process. As metallic colloidal nanoparticles that enhance these vibrational signatures, including hydroxylamine-reduced-silver colloids, can be fabricated at large scale under routine conditions, we anticipate that digital (nano)colloid-enhanced Raman spectroscopy will become the technology of choice for the reliable and ultrasensitive detection of various analytes, including those of great importance for human health.


Assuntos
Coloides , Imagem Individual de Molécula , Análise Espectral Raman , Coloides/química , Hidroxilamina/química , Nanopartículas Metálicas/química , Distribuição de Poisson , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Prata/química , Imagem Individual de Molécula/métodos , Imagem Individual de Molécula/normas , Análise Espectral Raman/métodos , Análise Espectral Raman/normas , Vibração
2.
Nature ; 623(7988): 745-751, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788684

RESUMO

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.


Assuntos
Produtos Biológicos , Técnicas de Química Sintética , Descarboxilação , Eletroquímica , Eletrodos , Preparações Farmacêuticas , Ácidos Carboxílicos/química , Nanopartículas Metálicas/química , Oxirredução , Prata/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Níquel/química , Ligantes , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Eletroquímica/métodos , Técnicas de Química Sintética/métodos
3.
Nature ; 600(7888): 246-252, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880427

RESUMO

Skin-like intrinsically stretchable soft electronic devices are essential to realize next-generation remote and preventative medicine for advanced personal healthcare1-4. The recent development of intrinsically stretchable conductors and semiconductors has enabled highly mechanically robust and skin-conformable electronic circuits or optoelectronic devices2,5-10. However, their operating frequencies have been limited to less than 100 hertz, which is much lower than that required for many applications. Here we report intrinsically stretchable diodes-based on stretchable organic and nanomaterials-capable of operating at a frequency as high as 13.56 megahertz. This operating frequency is high enough for the wireless operation of soft sensors and electrochromic display pixels using radiofrequency identification in which the base-carrier frequency is 6.78 megahertz or 13.56 megahertz. This was achieved through a combination of rational material design and device engineering. Specifically, we developed a stretchable anode, cathode, semiconductor and current collector that can satisfy the strict requirements for high-frequency operation. Finally, we show the operational feasibility of our diode by integrating it with a stretchable sensor, electrochromic display pixel and antenna to realize a stretchable wireless tag. This work is an important step towards enabling enhanced functionalities and capabilities for skin-like wearable electronics.


Assuntos
Eletrodos , Polímeros/química , Dispositivos Eletrônicos Vestíveis , Eletrônica/instrumentação , Humanos , Nanofios/química , Semicondutores , Prata/química , Pele , Tecnologia sem Fio/instrumentação
4.
Acc Chem Res ; 57(15): 2117-2129, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38995323

RESUMO

ConspectusDNA-stabilized silver nanoclusters (AgN-DNAs) are sequence-encoded fluorophores. Like other noble metal nanoclusters, the optical properties of AgN-DNAs are dictated by their atomically precise sizes and shapes. What makes AgN-DNAs unique is that nanocluster size and shape are controlled by nucleobase sequence of the templating DNA oligomer. By choice of DNA sequence, it is possible to synthesize a wide range of AgN-DNAs with diverse emission colors and other intriguing photophysical properties. AgN-DNAs hold significant potential as "programmable" emitters for biological imaging due to their combination of small molecular-like sizes, bright and sequence-tuned fluorescence, low toxicities, and cost-effective synthesis. In particular, the potential to extend AgN-DNAs into the second near-infrared region (NIR-II) is promising for deep tissue imaging, which is a major area of interest for advancing biomedical imaging. Achieving this goal requires a deep understanding of the structure-property relationships that govern AgN-DNAs in order to design AgN-DNA emitters with sizes and geometries that support NIR-II emission.In recent years, major advances have been made in understanding the structure and composition of AgN-DNAs, enabling new insights into the correlation of nanocluster structure and photophysical properties. These advances have hinged on combined innovations in mass characterization and crystallography of compositionally pure AgN-DNAs, together with combinatorial experiments and machine learning-guided design. A combined approach is essential due to the major challenge of growing suitable AgN-DNA crystals for diffraction and to the labor-intensive nature of preparing and solving the molecular formulas of atomically precise AgN-DNAs by mass spectrometry. These approaches alone are not feasibly scaled to explore the large sequence space of DNA oligomer templates for AgN-DNAs.This account describes recent fundamental advances in AgN-DNA science that have been enabled by high throughput synthesis and fluorimetry together with detailed analytical studies of purified AgN-DNAs. First, short introductions to nanocluster chemistry and AgN-DNA basics are presented. Then, we review recent large-scale studies that have screened thousands of DNA templates for AgN-DNAs, leading to discovery of distinct classes of these emitters with unique cluster core compositions and ligand chemistries. In particular, the discovery of a new class of chloride-stabilized AgN-DNAs enabled the first ab initio calculations of AgN-DNA electronic structure and present new approaches to stabilize these emitters in biologically relevant conditions. Near-infrared (NIR) emissive AgN-DNAs are also found to exhibit diverse structures and properties. Finally, we conclude by highlighting recent proof-of-principle demonstrations of NIR AgN-DNAs for targeted fluorescence imaging. Continued efforts may future push AgN-DNAs into the tissue transparency window for fluorescence imaging in the NIR-II tissue transparency window.


Assuntos
DNA , Nanopartículas Metálicas , Prata , Prata/química , DNA/química , Nanopartículas Metálicas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química
5.
Proc Natl Acad Sci U S A ; 119(39): e2123156119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122212

RESUMO

Straightforward manufacturing pathways toward large-scale, uniformly layered composites may enable the next generation of materials with advanced optical, thermal, and mechanical properties. Reaction-diffusion systems are attractive candidates to this aim, but while layered composites theoretically could spontaneously arise from reaction-diffusion, in practice randomly oriented patches separated by defects form, yielding nonuniformly patterned materials. A propagating reaction front can prevent such nonuniform patterning, as is the case for Liesegang processes, in which diffusion drives a reaction front to produce layered precipitation patterns. However, while diffusion is crucial to control patterning, it slows down transport of reactants to the front and results in a steady increase of the band spacing as the front advances. Here, we circumvent these diffusive limitations by embedding the Liesegang process in mechanically responsive hydrogels. The coupling between a moving reaction front and hydrogel contraction induces the formation of a self-regulated transport channel that ballistically carries reactants toward the area where patterning occurs. This ensures rapid and uniform patterning. Specifically, large-scale ([Formula: see text]5-cm) uniform banding patterns are produced with tunable band distance (d = 60 to 160 µm) of silver dichromate crystals inside responsive gelatin-alginate hydrogels. The generality and applicability of our mechanoreaction-diffusion strategy are demonstrated by forming patterns of precipitates in significantly smaller microscopic banding patterns (d = 10 to 30 µm) that act as self-organized diffraction gratings. By circumventing the inherent limitations of diffusion, our strategy unlocks the potential of reaction-diffusion processes for the manufacturing of uniformly layered materials.


Assuntos
Hidrogéis , Manufaturas , Alginatos/química , Cromatos/química , Difusão , Gelatina/química , Hidrogéis/química , Prata/química
6.
Chem Soc Rev ; 53(6): 2932-2971, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38380656

RESUMO

Silver and gold nanoparticles have found extensive biomedical applications due to their strong localized surface plasmon resonance (LSPR) and intriguing plasmonic properties. This review article focuses on the correlation among particle geometry, plasmon properties and biomedical applications. It discusses how particle shape and size are tailored via controllable synthetic approaches, and how plasmonic properties are tuned by particle shape and size, which are embodied by nanospheres, nanorods, nanocubes, nanocages, nanostars and core-shell composites. This article summarizes the design strategies for the use of silver and gold nanoparticles in plasmon-enhanced fluorescence, surface-enhanced Raman scattering (SERS), electroluminescence, and photoelectrochemistry. It especially discusses how to use plasmonic nanoparticles to construct optical probes including colorimetric, SERS and plasmonic fluorescence probes (labels/reporters). It also demonstrates the employment of Ag and Au nanoparticles in polymer- and paper-based microfluidic devices for point-of-care testing (POCT). In addition, this article highlights how to utilize plasmonic nanoparticles for in vitro and in vivo bio-imaging based on SERS, fluorescence, photoacoustic and dark-field models. Finally, this article shows perspectives in plasmon-enhanced photothermal and photodynamic therapy.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Prata/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Análise Espectral Raman/métodos
7.
Nano Lett ; 24(13): 3930-3936, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513221

RESUMO

Detecting weakly adsorbing molecules via label-free surface-enhanced Raman scattering (SERS) has presented a significant challenge. To address this issue, we propose a novel approach for creating tricomponent SERS substrates using dual-rim nanorings (DRNs) made of Au, Ag, and CuO, each possessing distinct functionalities. Our method involves depositing different metals on Pt nanoring skeletons to obtain each nanoring with varying surface compositions while maintaining a similar size and shape. Next, the mixture of these nanorings is transferred into a monolayer assembly with homogeneous intermixing on a solid substrate. The surface of the CuO DRNs has dangling bonds (Cu2+) that facilitate the strong adsorption of carboxylates through the formation of chelating bonds, while the combination of Au and Ag DRNs significantly enhances the SERS signal intensity through a strong coupling effect. Notably, the tricomponent assemblies enable the successful SERS-based analysis of biomolecules such as amino acids, proteins, nucleobases, and nucleotides.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Análise Espectral Raman/métodos , Prata/química , Adsorção , Nanopartículas Metálicas/química
8.
Nano Lett ; 24(26): 7987-7991, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38905483

RESUMO

DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of fluorophores with interesting photophysical properties dominated by the choice of DNA sequence. Screening methods with ultraviolet excitation and steady state well plate readers have previously been used for deepening the understanding between DNA sequence and emission color of the resulting DNA-AgNCs. Here, we present a new method for screening DNA-AgNCs by using pulsed white light excitation (λex ≈ 490-900 nm). By subtraction and time gating we are able to circumvent the dominating scatter of the white excitation light and extract both temporally and spectrally resolved emission of DNA-AgNCs over the visible to near-infrared range. Additionally, we are able to identify weak long-lived emission, which is often buried underneath the intense nanosecond fluorescence. This new approach will be useful for future screening of DNA-AgNCs (or other novel emissive materials) and aid machine-learning models by providing a richer training data set.


Assuntos
DNA , Luz , Nanopartículas Metálicas , Prata , DNA/química , Prata/química , Nanopartículas Metálicas/química , Corantes Fluorescentes/química , Fluorescência , Espectrometria de Fluorescência/métodos
9.
J Am Chem Soc ; 146(3): 1914-1925, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38215466

RESUMO

The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.


Assuntos
DNA , Prata , Pareamento de Bases , Prata/química , DNA/química , Citosina/química , Prótons
10.
Anal Chem ; 96(1): 6-11, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132829

RESUMO

In situ analysis of membrane protein-ligand interactions under physiological conditions is of significance for both fundamental and applied science, but it is still a big challenge due to the limits in sensitivity and selectivity. Here, we demonstrate the potential of surface-enhanced resonance Raman spectroscopy (SERRS) for the investigation of membrane protein-protein interactions. Lipid biolayers are successfully coated on silver nanoparticles through electrostatic interactions, and a highly sensitive and biomimetic membrane platform is obtained in vitro. Self-assembly and immobilization of the reduced cytochrome b5 on the coated membrane are achieved and protein native biological functions are preserved. Owing to resonance effect, the Raman fingerprint of the immobilized cytochrome b5 redox center is selectively enhanced, allowing for in situ and real-time monitoring of the electron transfer process between cytochrome b5 and their partners, cytochrome c and myoglobin. This study provides a sensitive analytical approach for membrane proteins and paves the way for in situ exploration of their structural basis and functions.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Proteínas de Membrana , Elétrons , Citocromos b , Prata/química
11.
Anal Chem ; 96(11): 4495-4504, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445954

RESUMO

The molecular detection of multiple respiratory viruses provides evidence for the rational use of drugs and effective health management. Herein, we developed and tested the clinical performance of an electrohydrodynamic-driven nanobox-on-mirror platform (E-NoM) for the parallel, accurate, and sensitive detection of four respiratory viral antigens. The E-NoM platform uses gold-silver alloy nanoboxes as the core material with the deposition of a silver layer as a shell on the core surfaces to amplify and enable a reproducible Raman signal readout that facilitates accurate detection. Additionally, the E-NoM platform employs gold microelectrode arrays as the mirror with electrohydrodynamics to manipulate the fluid flow and enhance molecular interactions for an improved biosensing response. The presence of viral antigens binds the nanobox-based core-shell nanostructure on the gold microelectrode and creates the nanocavity with extremely strong "hot spots" to benefit sensitive analysis. Significantly, in a large clinical cohort with 227 patients, the designed E-NoM platform demonstrates the capability of screening respiratory infection with achieved clinical specificity, sensitivity, and accuracy of 100.0, 96.48, and 96.91%, respectively. It is anticipated that the E-NoM platform can find a position in clinical usage for respiratory disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Vírus , Humanos , Nanopartículas Metálicas/química , Prata/química , Ouro/química , Antígenos Virais , Análise Espectral Raman
12.
Anal Chem ; 96(6): 2474-2480, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294198

RESUMO

Exhaled aerosols from humans, containing various pathogens, are crucial for early disease diagnosis. However, the traditional pathogen detection methods, such as polymerase chain reaction, are often slow and cumbersome due to complex sampling and procedures. This study introduces a novel, direct, and label-free detection method for pathogens in respiratory aerosols, utilizing a highly aligned silver nanowire (Ag NW) film combined with a filter membrane (Ag NWs@filter) as a surface-enhanced Raman spectroscopy-active substrate. A large-scale, ordered silver nanowire film was developed through a simplified self-assembly process. This process eliminates the need for an organic phase and complex surface modifications of Ag NWs, which are common in other preparation methods. Subsequently, the fabricated Ag NWs@filter demonstrated its capability to continuously capture and efficiently preconcentrate pathogens from aerosols, achieving a remarkable detection limit of 3 × 103 CFU/mL, demonstrated using Escherichia coli (E. coli) as a model pathogen. Moreover, the classification between E. coli and Pseudomonas aeruginosa achieved an overall accuracy of 96.5% by the principal component analysis with linear discriminant analysis models. The success of this sensing strategy illustrates its potential in detecting and identifying a variety of biomarkers present in respiratory aerosols, marking a significant step forward in the field of pathogen detection.


Assuntos
Nanofios , Prata , Humanos , Prata/química , Nanofios/química , Água , Escherichia coli , Aerossóis
13.
Anal Chem ; 96(22): 9209-9217, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38769607

RESUMO

To tackle the predicament of the traditional turn-off mechanism, exploring an activated turn-on system remains an intriguing and crucial objective in biosensing fields. Herein, a dark DNA Ag nanocluster (NC) with hairpin-structured DNA containing a six-base cytosine loop (6C loop) as a template is atypically synthesized. Intriguingly, the dark DNA Ag NCs can be lit to display strong red-emission nanoclusters. Building upon these exciting findings, an unprecedented and upgraded turn-on biosensing system [entropy-driven catalysis circuit (EDCC)-Ag NCs/graphene oxide (GO)] has been created, which employs an EDCC to precisely manipulate the conformational transition of DNA Ag NCs on the GO surface from adsorption to desorption. Benefiting from the effective quenching of GO and signal amplification capability of the EDCC, the newly developed EDCC-Ag NCs/GO biosensing system displays a high signal-to-background (S/B) ratio (26-fold) and sensitivity (limit of detection as low as 0.4 pM). Meanwhile, it has good specificity, excellent stability, and reliability in both buffer and biological samples. To the best of our knowledge, it is the first example that adopts an EDCC to precisely modulate the configuration transformation of DNA Ag NCs on the GO surface to obtain a biosensor with low background, strong fluorescence, high contrast, and sensitivity. This exciting finding may provide a new route to fabricate a novel turn-on biosensor based on hairpin-templated DNA Ag NCs in the optical imaging and bioanalytical fields.


Assuntos
Técnicas Biossensoriais , DNA , Grafite , Nanopartículas Metálicas , Prata , Propriedades de Superfície , Grafite/química , Prata/química , Técnicas Biossensoriais/métodos , DNA/química , Nanopartículas Metálicas/química , Catálise , Entropia , Humanos
14.
Anal Chem ; 96(26): 10677-10685, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889311

RESUMO

Exploring the ability of four-stranded DNA nanorings (fsDNRs) to host multiple nanosilver clusters (NAgCs) for cooperatively amplifiable fluorescence biosensing to a specific initiator (tI*) is fascinating. By designing three DNA single strands and three analogous stem-loop hairpins, we developed a functional fsDNR through sequential cross-opening and overlapped hybridization. Note that a substrate strand (SS) was programmed with six modules: two severed splits (sT and sT') of NAgCs template, two sequestered segments by a middle unpaired spacer, and a partition for tI*-recognizable displacement, while sT and sT' were also tethered in two ends of three hairpins. At first, a triple dsDNA complex with stimulus-responsiveness was formed to guide the specific binding to tI*, while the exposed toehold of the SS activated the forward cascade hybridization of three hairpins, until the ring closure in the tailored self-assembly pathway for forming the fsDNR. The resulting four duplexes forced each pair of sT/sT' to be merged as the parent template in four nicks, guiding the preferential synthesis of four clusters in the shared fsDNR, thereby cooperatively amplifying the green fluorescence signal for sensitive assay of tI*. Meanwhile, the topological conformation of fsDNR can be stabilized by the as-formed cluster adducts to rivet the pair of two splits in the nicks. Benefitting from the self-enhanced effect of multiple emitters, this label-free fluorescent sensing strategy features simplicity, rapidity, and high on-off contrast, without involving complicated nucleic acid amplifiers.


Assuntos
Técnicas Biossensoriais , DNA , Técnicas Biossensoriais/métodos , DNA/química , Prata/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Fluorescência , Espectrometria de Fluorescência , Nanotubos/química
15.
Anal Chem ; 96(19): 7714-7722, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687680

RESUMO

Currently, fluorescent "turn-on" lateral flow assay (FONLFA) has shown enhanced "naked eye" detection sensitivity for small molecules, while it is urgent to adopt biocompatible fluorescent nanomaterials and needs new strategies to simplify the preparation process. In this study, a highly effective method was proposed to produce FONLFA strips for the detection of small molecules. The gold-silver nanoclusters (AuAgNCs) were immobilized onto the nitrocellulose membrane of the strips by the self-assembly of poly(sodium 4-styrenesulfonate), antigen, and AuAgNCs. The immobilization process entails a straightforward mixing of the three components, taking merely 1 min, thereby bypassing the necessity for chemical modification of fluorescent nanomaterials. The strategy offers a significantly simplified process, which substantially enhances the efficiency of the strip fabrication. Utilizing this method, a FONLFA was developed for carbendazim with a visual limit of detection (vLOD) reduced by 40-fold compared with the conventional colorimetric lateral flow assay (LFA). Furthermore, the approach demonstrates versatility by enabling the immobilization of AuAgNCs and streptavidin, which facilitates the development of aptamer-based FONLFAs. The designed aptamer-based FONLFA for kanamycin exhibited a 50-fold reduction in the vLOD compared with conventional colorimetric LFAs. Therefore, FONLFA holds promising potential for widespread applications in the analysis of small molecules.


Assuntos
Ouro , Nanopartículas Metálicas , Prata , Ouro/química , Prata/química , Nanopartículas Metálicas/química , Corantes Fluorescentes/química , Limite de Detecção , Aptâmeros de Nucleotídeos/química , Espectrometria de Fluorescência
16.
Anal Chem ; 96(25): 10391-10398, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38844882

RESUMO

DNA-templated silver nanoclusters (AgNCs-DNA) can be synthesized via a one-pot method bypassing the tedious process of biomolecular labeling. Appending an aptamer to DNA templates results in dual-functionalized DNA strands that can be utilized for synthesizing aptamer-modified AgNCs, thereby enabling the development of label-free fluorescence aptasensors. However, a major challenge lies in the necessity to redesign the dual-functionalized DNA strand for each specific target, thus increasing the complexity and hindering widespread application of these aptasensors. To overcome this challenge, we designed six DNA strands (DNA1-DNA6) that incorporate the templates for AgNCs synthesis and A4-linker for further aptamer coupling. Among all the synthesized AgNCs-DNA samples, it was found that both AgNCs-DNA1 and AgNCs-DNA2 stood out for their excellent long-term stability. After capturing the T4-linker that connected with aptamer1 specific for aflatoxin B1 (AFB1), however, we found that only AgNCs-DNA1/aptamer1 maintained excellent long-term stability. This finding highlighted the potential of AgNCs-DNA1 as a versatile label-free fluorescence probe for the development of on-demand fluorescence aptasensors. To emphasize its benefits in aptasensing applications, we utilized AgNCs-DNA1/aptamer1 as the fluorescence probe and MoS2 nanosheets as the quencher to develop a FRET aptasensor for AFB1 detection. This aptasensor demonstrated remarkable sensitivity, enabling the detection of AFB1 within a wide concentration range of 0.03-120 ng/mL, with a limit of detection as low as 3.6 pg/mL (S/N = 3). The versatility of the aptasensor has been validated through the recognition of diverse targets, employing aptamer2 specific for ochratoxin A and aptamer3 specific for zearalenone, thereby showcasing its extensive applicability for on-demand detection. The universal applicability of this aptasensor holds great promise for future applications in diverse fields including food safety, environmental monitoring, and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , DNA/química , Espectrometria de Fluorescência , Moldes Genéticos , Prata/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
17.
Anal Chem ; 96(28): 11533-11541, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38973171

RESUMO

In the landscape of biomolecular detection, surface-enhanced Raman spectroscopy (SERS) confronts notable obstacles, particularly in the label-free detection of biomolecules, with glucose and other sugars presenting a quintessential challenge. This study heralds the development of a pioneering SERS substrate, ingeniously engineered through the self-assembly of nanoparticles of diverse sizes (Ag1@Ag2NPs). This configuration strategically induces 'hot spots' within the interstices of nanoparticles, markedly amplifying the detection signal. Rigorous experimental investigations affirm the platform's rapidity, precision, and reproducibility, and the detection limit of this detection method is calculated to be 6.62 pM. Crucially, this methodology facilitates nondestructive glucose detection in simulated samples, including phosphate-buffered saline and urine. Integrating machine learning algorithms with simulated serum samples, the approach adeptly discriminates between hypoglycemic, normoglycemic, and hyperglycemic states. Moreover, the platform's versatility extends to the detection and differentiation of monosaccharides, disaccharides, and methylated glycosides, underscoring its universality and specificity. Comparative Raman spectroscopic analysis of various carbohydrate structures elucidates the unique SERS characteristics pertinent to these molecules. This research signifies a major advance in nonchemical, label-free glucose determination with enhanced sensitivity via SERS, laying a new foundation for its application in precision medicine and advancing structural analysis in the sugar domain.


Assuntos
Glucose , Nanopartículas Metálicas , Análise Espectral Raman , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Glucose/análise , Humanos , Prata/química , Propriedades de Superfície , Limite de Detecção , Glicemia/análise
18.
Anal Chem ; 96(31): 12862-12874, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39045809

RESUMO

Surface-enhanced Raman spectroscopy (SERS) detection platforms with high signal-to-noise ratio in the "biological-silent" region (1800-2800 cm-1) are presently being developed for sensing and imaging applications, overcoming the limitations of traditional SERS studies in the "fingerprint" region. Herein, a series of cyano-programmable Raman reporters (RRs) operating in the "biological-silent" region were designed based on 4-mercaptobenzonitrile derivatives and then embedded in core-shell Au@Ag nanostars using a "bottom-up" strategy to provide SERS enhancement and encapsulation protection. The approach enabled the "one-pot" readout interference-free detection of multiple bioamines (histamine, tyramine, and ß-phenethylamine) based on aptamer-driven magnetic-induced technology. Three cyano-encoded SERS tags resulted in separate SERS signals for histamine, tyramine, and ß-phenethylamine at 2220, 2251, and 2150 cm-1, respectively. A target-specific aptamer-complementary DNA competitive binding strategy allowed the formation of microscale core-satellite assemblies between Fe3O4-based magnetic beads and the SERS tags, enabling multiple SERS signals to be observed simultaneously under a 785 nm laser excitation laser. The LODs for detection of the three bioamines were 0.61 × 10-5, 2.67 × 10-5, and 1.78 × 10-5 mg L-1, respectively. The SERS-encoded platform utilizing programmable reporters provides a fast and sensitive approach for the simultaneous detection of multiple biomarkers, paving the way for routine SERS analyses of multiple analytes in complex matrices.


Assuntos
Ouro , Prata , Análise Espectral Raman , Tiramina , Análise Espectral Raman/métodos , Prata/química , Ouro/química , Tiramina/química , Tiramina/análise , Nanopartículas Metálicas/química , Fenetilaminas/análise , Aptâmeros de Nucleotídeos/química , Histamina/análise , Limite de Detecção , Nitrilas/química
19.
Anal Chem ; 96(19): 7497-7505, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687987

RESUMO

Redox potential plays a key role in regulating intracellular signaling pathways, with its quantitative analysis in individual cells benefiting our understanding of the underlying mechanism in the pathophysiological events. Here, a metal organic framework (MOF)-functionalized SERS nanopotentiometer has been developed for the dynamic monitoring of intracellular redox potential. The approach is based on the encapsulation of zirconium-based MOF (Uio-66-F4) on a surface of gold-silver nanorods (Au-Ag NRs) that is modified with the newly synthesized redox-sensitive probe ortho-mercaptohydroquinone (HQ). Thanks to size exclusion of MOF as the chemical protector, the nanopotentiometer can be adapted to long-term use and possess high anti-interference ability toward nonredox species. Combining the superior fingerprint identification of SERS with the electrochemical activity of the quinone/hydroquinone, the nanopotentiometer shows a reversible redox responsivity and can quantify redox potential with a relatively wide range of -250-100 mV. Furthermore, the nanopotentiometer allows for dynamic visualization of intracellular redox potential changes induced by drugs' stimulation in a high-resolution manner. The developed approach would be promising for offering new insights into the correlation between redox potential and tumor proliferation-involved processes such as oxidative stress and hypoxia.


Assuntos
Ouro , Estruturas Metalorgânicas , Oxirredução , Prata , Zircônio , Estruturas Metalorgânicas/química , Humanos , Ouro/química , Prata/química , Zircônio/química , Análise Espectral Raman , Nanotubos/química , Hidroquinonas/química , Nanopartículas Metálicas/química
20.
Anal Chem ; 96(28): 11353-11365, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38970480

RESUMO

Biothiols play essential roles in maintaining normal physiological functions, resisting oxidative stress, and protecting cell health. Establishing an effective and reliable sensor array for the accurate quantification and discrimination of diverse biothiols is extremely meaningful. In this work, Ag/Mn3O4, Ag3PO4, and Ag3Cit with excellent oxidase-mimetic activity and surface-enhanced Raman scattering (SERS)-enhanced features have been prepared and loaded onto Whatman filter paper (WFP) to build SERS paper chips as three sensing channels, which can induce 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to SERS-active reporters (TMBox) and concurrently generate prominent SERS signals. Nevertheless, the addition of biothiols can suppress conversion from TMB to TMBox, which can cause the reduction of the SERS signal from TMBox. Interestingly, each SERS sensing channel can generate different TMBox signals' variations due to differences in the oxidative inhibition abilities of diverse biothiols and exclusive properties of each paper chip, which can be plotted as specific fingerprint patterns of each biothiol and further translated into intuitive two-dimensional (2D) clustering profiles through linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA) techniques for precise identification of these six biothiols with the minimum concentration of 1 µM. More importantly, this SERS sensor array is exploited for the precise quantification of intracellular glutathione (GSH), and can differentiate between normal and cancer cells based on different intracellular GSH contents and even identify different types of tumor cells, demonstrating its powerful application prospects in disease diagnosis.


Assuntos
Papel , Prata , Análise Espectral Raman , Compostos de Sulfidrila , Análise Espectral Raman/métodos , Humanos , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Prata/química , Nanopartículas Metálicas/química , Propriedades de Superfície , Nanoestruturas/química , Oxirredução , Benzidinas/química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA