Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
BMC Plant Biol ; 24(1): 851, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256664

RESUMO

BACKGROUND: Flowers can be a source of essential oils used in the manufacture of substances with high economic value. The ethylene response factor (ERF) gene family plays a key role in regulating secondary metabolite biosynthesis in plants. However, until now, little has been known about the involvement of ERF transcription factors (TFs) in floral terpenoid biosynthesis. RESULTS: In this study, an aromatic plant, Primula forbesii Franch., was used as research material to explore the key regulatory effects of PfERF106 on the biosynthesis of terpenoids. PfERF106, which encodes an IXb group ERF transcription factor, exhibited a consistent expression trend in the flowers of P. forbesii and was transcriptionally induced by exogenous ethylene. Transient silencing of PfERF106 in P. forbesii significantly decreased the relative contents of key floral terpenes, including (z)-ß-ocimene, sabinene, ß-pinene, γ-terpinene, linalool, eremophilene, α-ionone, and α-terpineol. In contrast, constitutive overexpression of PfERF106 in transgenic tobacco significantly increased the relative contents of key floral terpenes, including cis-3-hexen-1-ol, linalool, caryophyllene, cembrene, and sclareol. RNA sequencing of petals of PfERF106-silenced plants and empty-vector control plants revealed 52,711 expressed unigenes and 9,060 differentially expressed genes (DEGs). KEGG annotation analysis revealed that the DEGs were enriched for involvement in secondary metabolic biosynthetic pathways, including monoterpene and diterpene synthesis. Notably, 10 downregulated DEGs were determined to be the downstream target genes of PfERF106 affecting the biosynthesis of terpenoids in P. forbesii. CONCLUSION: This study characterized the key positive regulatory effects of PfERF106 on the biosynthesis of terpenoids, indicating high-quality genetic resources for aroma improvement in P. forbesii. Thus, this study advances the artificial and precise directional regulation of metabolic engineering of aromatic substances.


Assuntos
Flores , Proteínas de Plantas , Primula , Terpenos , Fatores de Transcrição , Terpenos/metabolismo , Flores/metabolismo , Flores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Primula/genética , Primula/metabolismo , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 241(2): 911-925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921572

RESUMO

Introgression is an important source of genetic variation that can determine species adaptation to environmental conditions. Yet, definitive evidence of the genomic and adaptive implications of introgression in nature remains scarce. The widespread hybrid zones of Darwin's primroses (Primula elatior, Primula veris, and Primula vulgaris) provide a unique natural laboratory for studying introgression in flowering plants and the varying permeability of species boundaries. Through analysis of 650 genomes, we provide evidence of an introgressed genomic region likely to confer adaptive advantage in conditions of soil toxicity. We also document unequivocal evidence of chloroplast introgression, an important precursor to species-wide chloroplast capture. Finally, we provide the first evidence that the S-locus supergene, which controls heterostyly in primroses, does not introgress in this clade. Our results contribute novel insights into the adaptive role of introgression and demonstrate the importance of extensive genomic and geographical sampling for illuminating the complex nature of species boundaries.


Assuntos
Magnoliopsida , Primula , Primula/genética , Genoma , Genômica , Magnoliopsida/genética , Cromossomos , Hibridização Genética
3.
New Phytol ; 242(1): 302-316, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214455

RESUMO

Evolutionary transitions from outcrossing to selfing in flowering plants have convergent morphological and genomic signatures and can involve parallel evolution within related lineages. Adaptive evolution of morphological traits is often assumed to evolve faster than nonadaptive features of the genomic selfing syndrome. We investigated phenotypic and genomic changes associated with transitions from distyly to homostyly in the Primula oreodoxa complex. We determined whether the transition to selfing occurred more than once and investigated stages in the evolution of morphological and genomic selfing syndromes using 22 floral traits and both nuclear and plastid genomic data from 25 populations. Two independent transitions were detected representing an earlier and a more recently derived selfing lineage. The older lineage exhibited classic features of the morphological and genomic selfing syndrome. Although features of both selfing syndromes were less developed in the younger selfing lineage, they exhibited parallel development with the older selfing lineage. This finding contrasts with the prediction that some genomic changes should lag behind adaptive changes to morphological traits. Our findings highlight the value of comparative studies on the timing and extent of transitions from outcrossing to selfing between related lineages for investigating the tempo of morphological and molecular evolution.


Assuntos
Flores , Primula , Flores/genética , Flores/anatomia & histologia , Genômica , Primula/genética , Evolução Biológica , Reprodução/genética , Polinização , Autofertilização/genética
4.
Mol Ecol ; 33(9): e17343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38596873

RESUMO

Mountain biota survived the Quaternary cold stages most probably in peripheral refugia and/or ice-free peaks within ice-sheets (nunataks). While survival in peripheral refugia has been broadly demonstrated, evidence for nunatak refugia is still scarce. We generated RADseq data from three mountain plant species occurring at different elevations in the southeastern European Alps to investigate the role of different glacial refugia during the Last Glacial Maximum (LGM). We tested the following hypotheses. (i) The deep Piave Valley forms the deepest genetic split in the species distributed across it, delimiting two peripheral refugia. (ii) The montane to alpine species Campanula morettiana and Primula tyrolensis survived the LGM in peripheral refugia, while high-alpine to subnival Saxifraga facchinii likely survived in several nunatak refugia. (iii) The lower elevation species suffered a strong population decline during the LGM. By contrast, the higher elevation species shows long-term stability of population sizes due to survival on permanently ice-free peaks and small population sizes at present. We found peripheral refugia on both sides of the Piave Valley, which acted as a major genetic barrier. Demographic modelling confirmed nunatak survival not only for S. facchinii but also for montane to alpine C. morettiana. Altitudinal segregation influenced the species' demographic fluctuations, with the lower elevation species showing a significant population increase at the end of the LGM, and the higher elevation species either showing decrease towards the present or stable population sizes with a short bottleneck. Our results highlight the role of nunatak survival and species ecology in the demographic history of mountain species.


Assuntos
Altitude , Camada de Gelo , Refúgio de Vida Selvagem , Primula/genética , Genética Populacional , Densidade Demográfica , Saxifragaceae/genética , Europa (Continente)
5.
Ann Bot ; 133(3): 473-482, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190350

RESUMO

BACKGROUND AND AIMS: Style dimorphism is one of the polymorphic characteristics of flowers in heterostylous plants, which have two types of flowers: the pin morph, with long styles and shorter anthers, and the thrum morph, with short styles and longer anthers. The formation of dimorphic styles has received attention in the plant world. Previous studies showed that CYP734A50 in Primula determined style length and limited style elongation and that the brassinosteroid metabolic pathway was involved in regulation of style length. However, it is unknown whether there are other factors affecting the style length of Primula. METHODS: Differentially expressed genes highly expressed in pin morph styles were screened based on Primula forbesii transcriptome data. Virus-induced gene silencing was used to silence these genes, and the style length and anatomical changes were observed 20 days after injection. KEY RESULTS: PfPIN5 was highly expressed in pin morph styles. When PfPIN5 was silenced, the style length was shortened in pin and long-homostyle plants by shortening the length of style cells. Moreover, silencing CYP734A50 in thrum morph plants increased the expression level of PfPIN5 significantly, and the style length increased. The results indicated that PfPIN5, an auxin efflux transporter gene, contributed to regulation of style elongation in P. forbesii. CONCLUSIONS: The results implied that the auxin pathway might also be involved in the formation of styles of P. forbesii, providing a new pathway for elucidating the molecular mechanism of style elongation in P. forbesii.


Assuntos
Primula , Primula/genética , Flores/genética , Transcriptoma , Plantas/genética , Ácidos Indolacéticos
6.
BMC Health Serv Res ; 24(1): 255, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418971

RESUMO

BACKGROUND: Cardiovascular disease among patients with severe mental illness in England is a major preventable contributor to premature mortality. To address this, a nurse and peer-coach delivered service (Primrose-A) was implemented in three London general practices from 2019 (implementation continued during COVID-19). This study aimed to conduct interviews with patient and staff to determine the acceptability of, and experiences with, Primrose-A. METHODS: Semi-structured audio-recorded interviews with eight patients who had received Primrose-A, and 3 nurses, 1 GP, and 1 peer-coach who had delivered Primrose-A in three London-based GP surgeries were conducted. Reflexive thematic analysis was used to identify themes from the transcribed interviews. FINDINGS: Overall, Primrose-A was viewed positively by patients and staff, with participants describing success in improving patients' mental health, isolation, motivation, and physical health. Therapeutic relationships between staff and patients, and long regular appointments were important facilitators of patient engagement and acceptance of the intervention. Several barriers to the implementation of Primrose-A were identified, including training, administrative and communication issues, burden of time and resources, and COVID-19. CONCLUSIONS: Intervention acceptability could be enhanced by providing longer-term continuity of care paired with more peer-coaching sessions to build positive relationships and facilitate sustained health behaviour change. Future implementation of Primrose-A or similar interventions should consider: (1) training sufficiency (covering physical and mental health, including addiction), (2) adequate staffing to deliver the intervention, (3) facilitation of clear communication pathways between staff, and (4) supporting administrative processes.


Assuntos
COVID-19 , Doenças Cardiovasculares , Transtornos Mentais , Primula , Humanos , Doenças Cardiovasculares/prevenção & controle , Estudos de Viabilidade , Transtornos Mentais/complicações , Transtornos Mentais/terapia , Transtornos Mentais/psicologia , COVID-19/epidemiologia , Atenção Primária à Saúde
7.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143659

RESUMO

Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?


Assuntos
Flores , Primula , Cromossomos , Flores/genética , Duplicação Gênica , Genômica , Humanos , Primula/genética
8.
New Phytol ; 240(5): 2058-2071, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717220

RESUMO

Distyly has evolved independently in numerous animal-pollinated angiosperm lineages. Understanding of its molecular basis has been restricted to a few species, primarily Primula. Here, we investigate the genetic architecture of the single diallelic locus (S-locus) supergene, a linkage group of functionally associated genes, and explore how it may have evolved in distylous Nymphoides indica, a lineage of flowering plants not previously investigated. We assembled haplotype-resolved genomes, used read-coverage-based genome-wide association study (rb-GWAS) to locate the S-locus supergene, co-expression network analysis to explore gene networks underpinning the development of distyly, and comparative genomic analyses to investigate the origins of the S-locus supergene. We identified three linked candidate S-locus genes - NinBAS1, NinKHZ2, and NinS1 - that were only evident in the short-styled morph and were hemizygous. Co-expression network analysis suggested that brassinosteroids contribute to dimorphic sex organs in the short-styled morph. Comparative genomic analyses indicated that the S-locus supergene likely evolved via stepwise duplications and has been affected by transposable element activities. Our study provides novel insight into the structure, regulation, and evolution of the supergene governing distyly in N. indica. It also provides high-quality genomic resources for future research on the molecular mechanisms underlying the striking evolutionary convergence in form and function across heterostylous taxa.


Assuntos
Estudo de Associação Genômica Ampla , Primula , Haplótipos/genética , Primula/genética , Genômica , Flores/genética
9.
New Phytol ; 237(2): 656-671, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210520

RESUMO

Biodiversity hotspots, such as the Caucasus mountains, provide unprecedented opportunities for understanding the evolutionary processes that shape species diversity and richness. Therefore, we investigated the evolution of Primula sect. Primula, a clade with a high degree of endemism in the Caucasus. We performed phylogenetic and network analyses of whole-genome resequencing data from the entire nuclear genome, the entire chloroplast genome, and the entire heterostyly supergene. The different characteristics of the genomic partitions and the resulting phylogenetic incongruences enabled us to disentangle evolutionary histories resulting from tokogenetic vs cladogenetic processes. We provide the first phylogeny inferred from the heterostyly supergene that includes all species of Primula sect. Primula. Our results identified recurrent admixture at deep nodes between lineages in the Caucasus as the cause of non-monophyly in Primula. Biogeographic analyses support the 'out-of-the-Caucasus' hypothesis, emphasizing the importance of this hotspot as a cradle for biodiversity. Our findings provide novel insights into causal processes of phylogenetic discordance, demonstrating that genome-wide analyses from partitions with contrasting genetic characteristics and broad geographic sampling are crucial for disentangling the diversification of species-rich clades in biodiversity hotspots.


Assuntos
Primula , Filogenia , Primula/genética , Estudo de Associação Genômica Ampla , Biodiversidade , Especiação Genética
10.
New Phytol ; 237(2): 601-614, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239093

RESUMO

Heterostyly, a plant sexual polymorphism controlled by the S-locus supergene, has evolved numerous times among angiosperm lineages and represents a classic example of convergent evolution in form and function. Determining whether underlying molecular convergence occurs could provide insights on constraints to floral evolution. Here, we investigated S-locus genes in distylous Gelsemium (Gelsemiaceae) to determine whether there is evidence of molecular convergence with unrelated distylous species. We used several approaches, including anatomical measurements of sex-organ development and transcriptome and whole-genome sequencing, to identify components of the S-locus supergene. We also performed evolutionary analysis with candidate S-locus genes and compared them with those reported in Primula and Turnera. The candidate S-locus supergene of Gelsemium contained four genes, of which three appear to have originated from gene duplication events within Gelsemiaceae. The style-length genes GeCYP in Gelsemium and CYP734A50 in Primula likely arose from duplication of the same gene, CYP734A1. Three out of four S-locus genes in Gelsemium elegans were hemizygous, as previously reported in Primula and Turnera. We provide genomic evidence on the genetic convergence of the supergene underlying distyly among distantly related angiosperm lineages and help to illuminate the genetic architecture involved in the evolution of heterostyly.


Assuntos
Magnoliopsida , Primula , Genômica , Primula/genética , Plantas , Duplicação Gênica , Flores/genética
11.
New Phytol ; 237(2): 672-683, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229922

RESUMO

The individual and combined effects of abiotic factors on pollinator-mediated selection on floral traits are not well documented. To examine potential interactive effects of water and nutrient availability on pollinator-mediated selection on three floral display traits of Primula tibetica, we manipulated pollination and nutrient availability in a factorial experiment, conducted at two common garden sites with different soil water content (natural vs addition). We found that both water and nutrient availability affected floral trait expression in P. tibetica and that hand pollination increased seed production most when both nutrient content and water content were high, indicating joint pollen and resource limitation. We documented selection on all floral traits, and pollinators contributed to directional and correlational selection on plant height and number of flowers. Soil water and nutrient availability interactively influenced the strength of both pollinator-mediated directional and correlational selection, with significant selection observed when nutrient or water availability was high, but not when none or both were added. The results suggest that resource limitation constrains the response of P. tibetica to among-individual variation in pollen receipt, that addition of nutrients or water leads to pollinator-mediated selection and that effects of the two abiotic factors are nonadditive.


Assuntos
Flores , Primula , Flores/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Primula/anatomia & histologia , Seleção Genética , Solo/química , Água/análise , Nutrientes/análise , Nutrientes/metabolismo
12.
Mol Ecol ; 32(1): 30-32, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271781

RESUMO

In this issue of Molecular Ecology, Mora-Carrera et al. (2022) revisit a case of the loss of an outcrossing system in primroses, which has been studied as an example of balancing selection in the wild since the 1940s. Molecular variants in the gene involved in the mutant self-fertile phenotype, which is now known, help towards understanding this textbook example of breakdown of an outcrossing system. However, as often happens, new information also raises further questions.


Assuntos
Primula , Primula/genética , Seleção Genética
13.
Mol Ecol ; 32(1): 61-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761469

RESUMO

The repeated transition from outcrossing to selfing is a key topic in evolutionary biology. However, the molecular basis of such shifts has been rarely examined due to lack of knowledge of the genes controlling these transitions. A classic example of mating system transition is the repeated shift from heterostyly to homostyly. Occurring in 28 angiosperm families, heterostyly is characterized by the reciprocal position of male and female sexual organs in two (or three) distinct, usually self-incompatible floral morphs. Conversely, homostyly is characterized by a single, self-compatible floral morph with reduced separation of male and female organs, facilitating selfing. Here, we investigate the origins of homostyly in Primula vulgaris and its microevolutionary consequences by integrating surveys of the frequency of homostyles in natural populations, DNA sequence analyses of the gene controlling the position of female sexual organs (CYPᵀ), and microsatellite genotyping of both progeny arrays and natural populations characterized by varying frequencies of homostyles. As expected, we found that homostyles displace short-styled individuals, but long-style morphs are maintained at low frequencies within populations. We also demonstrated that homostyles repeatedly evolved from short-styled individuals in association with different types of loss-of-function mutations in CYPᵀ. Additionally, homostyly triggers a shift to selfing, promoting increased inbreeding within and genetic differentiation among populations. Our results elucidate the causes and consequences of repeated transitions to homostyly within species, and the putative mechanisms precluding its fixation in P. vulgaris. This study represents a benchmark for future analyses of losses of heterostyly in other angiosperms.


Assuntos
Magnoliopsida , Primula , Humanos , Feminino , Masculino , Evolução Biológica , Reprodução/genética , Primula/genética , Endogamia , Magnoliopsida/genética , Flores/genética
14.
Mol Phylogenet Evol ; 186: 107840, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37279815

RESUMO

Accurate species delimitation is the key to biodiversity conservation and is fundamental to most branches of biology. However, species delimitation remains challenging in those evolutionary radiations associated with mating system transition from outcrossing to self-fertilization, which have frequently occurred in angiosperms and are usually accompanied by rapid speciation. Here, using the Primula cicutariifolia complex as a case, we integrated molecular, morphological and reproductive isolation evidence to test and verify whether its outcrossing (distylous) and selfing (homostylous) populations have developed into independent evolutionary lineages. Phylogenetic trees based on whole plastomes and SNPs of the nuclear genome both indicated that the distylous and homostylous populations grouped into two different clades. Multispecies coalescent, gene flow and genetic structure analyses all supported such two clades as two different genetic entities. In morphology, as expected changes in selfing syndrome, homostylous populations have significantly fewer umbel layers and smaller flower and leaf sizes compared to distylous populations, and the variation range of some floral traits, such as corolla diameter and umbel layers, show obvious discontinuity. Furthermore, hand-pollinated hybridization between the two clades produced almost no seeds, indicating that well post-pollination reproductive isolation has been established between them. Therefore, the distylous and homostylous populations in this studied complex are two independent evolutionary lineages, and thus these distylous populations should be treated as a distinct species, here named Primula qiandaoensis W. Zhang & J.W. Shao sp. nov.. Our empirical study of the P. cicutariifolia complex highlights the importance of applying multiple lines of evidence, in particular genomic data, to delimit species in pervasive evolutionary plant radiations associated with mating system transition.


Assuntos
Primula , Filogenia , Primula/genética , Primula/anatomia & histologia , Reprodução/genética , Polinização , Evolução Biológica , Flores/genética , Flores/anatomia & histologia
15.
Heredity (Edinb) ; 130(4): 259-268, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788365

RESUMO

The evolutionary transition from self-incompatible distyly to self-compatible homostyly frequently occurs in heterostylous taxa. Although the inheritance of distyly and homostyly has been deeply studied, our understanding on modifications of the classical simple Mendelian model is still lacking. Primula forbesii, a biennial herb native to southwest China, is a typical distylous species, but after about 20 years of cultivation with open pollination, self-compatible homostyly appeared, providing ideal material for the study of the inheritance of distyly and homostyly. In this study, exogenous homobrassinolide was used to break the heteromorphic incompatibility of P. forbesii. Furthermore, we performed artificial pollination and open-pollination experiments to observe the distribution of floral morphs in progeny produced by different crosses. The viability of seeds from self-pollination was always the lowest among all crosses, and the homozygous S-morph plants (S/S) occurred in artificial pollination experiments but may experience viability selection. The distyly of P. forbesii is governed by a single S-locus, with S-morph dominant hemizygotes (S/-) and L-morph recessive homozygotes (-/-). Homostylous plants have a genotype similar to L-morph plants, and homostyly may be caused by one or more unlinked modifier genes outside the S-locus. Open pollinations confirm that autonomous self-pollination occurs frequently in L-morphs and homostylous plants. This study deepens the understanding of the inheritance of distyly and details a case of homostyly that likely originated from one or more modifier genes.


Assuntos
Primula , Humanos , Primula/genética , Flores/genética , Polinização/genética , Padrões de Herança , Evolução Biológica
16.
Proc Natl Acad Sci U S A ; 117(37): 23148-23157, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868445

RESUMO

Heterostyly represents a fascinating adaptation to promote outbreeding in plants that evolved multiple times independently. While l-morph individuals form flowers with long styles, short anthers, and small pollen grains, S-morph individuals have flowers with short styles, long anthers, and large pollen grains. The difference between the morphs is controlled by an S-locus "supergene" consisting of several distinct genes that determine different traits of the syndrome and are held together, because recombination between them is suppressed. In Primula, the S locus is a roughly 300-kb hemizygous region containing five predicted genes. However, with one exception, their roles remain unclear, as does the evolutionary buildup of the S locus. Here we demonstrate that the MADS-box GLOBOSA2 (GLO2) gene at the S locus determines anther position. In Primula forbesii S-morph plants, GLO2 promotes growth by cell expansion in the fused tube of petals and stamen filaments beneath the anther insertion point; by contrast, neither pollen size nor male incompatibility is affected by GLO2 activity. The paralogue GLO1, from which GLO2 arose by duplication, has maintained the ancestral B-class function in specifying petal and stamen identity, indicating that GLO2 underwent neofunctionalization, likely at the level of the encoded protein. Genetic mapping and phylogenetic analysis indicate that the duplications giving rise to the style-length-determining gene CYP734A50 and to GLO2 occurred sequentially, with the CYP734A50 duplication likely the first. Together these results provide the most detailed insight into the assembly of a plant supergene yet and have important implications for the evolution of heterostyly.


Assuntos
Flores/genética , Genes de Plantas/genética , Plantas/genética , Fenótipo , Filogenia , Pólen/genética , Primula/genética
17.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628910

RESUMO

Primula forbesii Franch. is a unique biennial herb with a strong floral fragrance, making it an excellent material for studying the aroma characteristics of the genus Primula. The floral scent is an important ornamental trait that facilitates fertilization. However, the molecular mechanism regulating the floral scent in Primula is unknown. In order to better understand the biological mechanisms of floral scents in this species, this study used RNA sequencing analysis to discuss the first transcriptome sequence of four flowering stages of P. forbesii, which generated 12 P. forbesii cDNA libraries with 79.64 Gb of clean data that formed 51,849 unigenes. Moreover, 53.26% of the unigenes were annotated using public databases. P. forbesii contained 44 candidate genes covering all known enzymatic steps for the biosynthesis of volatile terpenes, the major contributor to the flower's scent. Finally, 1-deoxy-d-xylulose 5-phosphate synthase gene of P. forbesii (PfDXS2, MK370094), the first key enzyme gene in the 2-c-methyl-d-erythritol 4-phosphate (MEP) pathway of terpenoids, was cloned and functionally verified using virus-induced gene silencing (VIGs). The results showed that PfDXS2-silencing significantly reduced the relative concentrations of main volatile terpenes. This report is the first to present molecular data related to aroma metabolites biosynthesis pathways and the functional characterization of any P. forbesii gene. The data on RNA sequencing provide comprehensive information for further analysis of other plants of the genus Primula.


Assuntos
Odorantes , Primula , Primula/genética , Perfilação da Expressão Gênica , Transcriptoma , Feromônios
18.
BMC Genomics ; 23(1): 770, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424546

RESUMO

BACKGROUND: Although knowledge of the sizes, contents, and forms of plant mitochondrial genomes (mitogenomes) is increasing, little is known about the mechanisms underlying their structural diversity. Evolutionary information on the mitogenomes of Primula, an important ornamental taxon, is more limited than the information on their nuclear and plastid counterparts, which has hindered the comprehensive understanding of Primula mitogenomic diversity and evolution. The present study reported and compared three Primula mitogenomes and discussed the size expansion of mitogenomes in Ericales. RESULTS: Mitogenome master circles were sequenced and successfully assembled for three Primula taxa and were compared with publicly available Ericales mitogenomes. The three mitogenomes contained similar gene contents and varied primarily in their structures. The Primula mitogenomes possessed relatively high nucleotide diversity among all examined plant lineages. In addition, high nucleotide diversity was found among Primula species between the Mediterranean and Himalaya-Hengduan Mountains. Most predicted RNA editing sites appeared in the second amino acid codon, increasing the hydrophobic character of the protein. An early stop in atp6 caused by RNA editing was conserved across all examined Ericales species. The interfamilial relationships within Ericales and interspecific relationships within Primula could be well resolved based on mitochondrial data. Transfer of the two longest mitochondrial plastid sequences (MTPTs) occurred before the divergence of Primula and its close relatives, and multiple independent transfers could also occur in a single MTPT sequence. Foreign sequence [MTPTs and mitochondrial nuclear DNA sequences (NUMTs)] uptake and repeats were to some extent associated with changes in Ericales mitogenome size, although none of these relationships were significant overall. CONCLUSIONS: The present study revealed relatively conserved gene contents, gene clusters, RNA editing, and MTPTs but considerable structural variation in Primula mitogenomes. Relatively high nucleotide diversity was found in the Primula mitogenomes. In addition, mitogenomic genes, collinear gene clusters, and locally collinear blocks (LCBs) all showed phylogenetic signals. The evolutionary history of MTPTs in Primula was complicated, even in a single MTPT sequence. Various reasons for the size variation observed in Ericales mitogenomes were found.


Assuntos
Ericales , Genoma Mitocondrial , Primula , Genoma Mitocondrial/genética , Primula/genética , Filogenia , Ericales/genética , Evolução Molecular , DNA Mitocondrial/genética , Nucleotídeos
19.
Mol Biol Evol ; 38(1): 168-180, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32761213

RESUMO

The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous-homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.


Assuntos
Evolução Molecular , Flores/fisiologia , Primula/genética , Autofertilização , Genoma de Cloroplastos , Seleção Genética , Mutação Silenciosa
20.
Chem Biodivers ; 19(12): e202200582, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310134

RESUMO

Primula vulgaris Huds. leaves and roots were used to treat skin damage and inflammation in Anatolian Folk Medicine. This study aimed to assess the ethnopharmacological use of the plant using in vivo, in vitro, and in silico test models. Linear incision and circular excision wound models were used to determine the in vivo wound-healing potential of the plant extracts and fractions. In vitro assays including hyaluronidase, collagenase, and elastase inhibitory activities were carried out for the active compounds to discover their activity pathways. Structure-based molecular modeling was performed to understand inhibitory mechanisms regarding collagenase and elastase at the molecular level. The butanol fraction of the roots of P. vulgaris showed the highest wound-healing activity. Through activity-guided fractionation and isolation techniques, primulasaponin I (1) and primulasaponin I methyl ester (2) were stated as the major active compounds. These compounds exerted their activities through the inhibition of collagenase and elastase enzymes. Primulasaponin I methyl ester isolated from butanol fraction was found to be the strongest agent, especially with the values of 29.65 % on collagenase and 38.92 % on elastase inhibitory activity assays, as well as molecular docking studies. The present study supports scientific data for the traditional use of P. vulgaris and the wound healing properties of the plant can be referred to secondary metabolites as especially saponins found in the roots.


Assuntos
Primula , Saponinas , Elastase Pancreática , Saponinas/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais , Cicatrização , Colagenases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA