Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mol Cell ; 71(4): 510-525.e6, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30033372

RESUMO

Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA por Junção de Extremidades , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitose , Domínios Proteicos , Telômero/ultraestrutura , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
2.
Nature ; 575(7783): 523-527, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723267

RESUMO

The protection of telomere ends by the shelterin complex prevents DNA damage signalling and promiscuous repair at chromosome ends. Evidence suggests that the 3' single-stranded telomere end can assemble into a lasso-like t-loop configuration1,2, which has been proposed to safeguard chromosome ends from being recognized as DNA double-strand breaks2. Mechanisms must also exist to transiently disassemble t-loops to allow accurate telomere replication and to permit telomerase access to the 3' end to solve the end-replication problem. However, the regulation and physiological importance of t-loops in the protection of telomere ends remains unknown. Here we identify a CDK phosphorylation site in the shelterin subunit at Ser365 of TRF2, whose dephosphorylation in S phase by the PP6R3 phosphatase provides a narrow window during which the RTEL1 helicase can transiently access and unwind t-loops to facilitate telomere replication. Re-phosphorylation of TRF2 at Ser365 outside of S phase is required to release RTEL1 from telomeres, which not only protects t-loops from promiscuous unwinding and inappropriate activation of ATM, but also counteracts replication conflicts at DNA secondary structures that arise within telomeres and across the genome. Hence, a phospho-switch in TRF2 coordinates the assembly and disassembly of t-loops during the cell cycle, which protects telomeres from replication stress and an unscheduled DNA damage response.


Assuntos
Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Fosfosserina/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA/biossíntese , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA , Fibroblastos , Genoma/genética , Células HEK293 , Humanos , Camundongos , Mutação , Fenótipo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fase S , Complexo Shelterina , Telomerase/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
3.
Mol Cell ; 65(5): 801-817.e4, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28216226

RESUMO

Telomeres employ TRF2 to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), thereby repressing ATM-dependent DNA damage checkpoint responses. How TRF2 prevents MRN activation at dysfunctional telomeres is unclear. Here, we show that the phosphorylation status of NBS1 determines the repair pathway choice of dysfunctional telomeres. The crystal structure of the TRF2-NBS1 complex at 3.0 Å resolution shows that the NBS1 429YQLSP433 motif interacts specifically with the TRF2TRFH domain. Phosphorylation of NBS1 serine 432 by CDK2 in S/G2 dissociates NBS1 from TRF2, promoting TRF2-Apollo/SNM1B complex formation and the protection of leading-strand telomeres. Classical-NHEJ-mediated repair of telomeres lacking TRF2 requires phosphorylated NBS1S432 to activate ATM, while interaction of de-phosphorylated NBS1S432 with TRF2 promotes alternative-NHEJ repair of telomeres lacking POT1-TPP1. Our work advances understanding of how the TRF2TRFH domain orchestrates telomere end protection and reveals how the phosphorylation status of the NBS1S432 dictates repair pathway choice of dysfunctional telomeres.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas Nucleares/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exodesoxirribonucleases , Fase G1 , Fase G2 , Células HCT116 , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fase S , Serina Proteases/genética , Serina Proteases/metabolismo , Complexo Shelterina , Relação Estrutura-Atividade , Telômero/genética , Telômero/patologia , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética
4.
Mol Cell ; 61(2): 274-86, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26774283

RESUMO

The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pareamento de Bases , DNA/metabolismo , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Células HeLa , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química
5.
Mol Cell ; 61(2): 236-46, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26778124

RESUMO

The regulation of 5' end resection at DSBs and telomeres prevents genome instability. DSB resection is positively and negatively regulated by ATM signaling through CtIP/MRN and 53BP1-bound Rif1, respectively. Similarly, telomeres lacking TRF2 undergo ATM-controlled CtIP-dependent hyper-resection when the repression by 53BP1/Rif1 is alleviated. However, telomere resection in the absence of 53BP1/Rif1 is more extensive upon complete removal of shelterin, indicating additional protection against resection by shelterin. Here we show that TPP1 and POT1a/b in shelterin block a resection pathway distinct from that repressed by TRF2. This second pathway is regulated by ATR signaling, involves Exo1 and BLM, and is inhibited by 53BP1/Rif1. Thus, mammalian cells have two distinct 5' end-resection pathways that are regulated by DNA damage signaling, in part through Rif1-mediated inhibition. The data show that telomeres are protected from hyper-resection through the repression of the ATM and ATR kinases by TRF2 and TPP1-bound POT1a/b, respectively.


Assuntos
Aminopeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Serina Proteases/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Camundongos , Modelos Biológicos , Estrutura Terciária de Proteína , RecQ Helicases/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
6.
Nucleic Acids Res ; 49(17): 9886-9905, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34469544

RESUMO

Telomere maintenance is essential to preserve genomic stability and involves telomere-specific proteins, DNA replication and repair proteins. Lamins are key components of the nuclear envelope and play numerous roles, including maintenance of the nuclear integrity, regulation of transcription, and DNA replication. Elevated levels of lamin B1, one of the major lamins, have been observed in some human pathologies and several cancers. Yet, the effect of lamin B1 dysregulation on telomere maintenance remains unknown. Here, we unveil that lamin B1 overexpression drives telomere instability through the disruption of the shelterin complex. Indeed, lamin B1 dysregulation leads to an increase in telomere dysfunction-induced foci, telomeric fusions and telomere losses in human cells. Telomere aberrations were preceded by mislocalizations of TRF2 and its binding partner RAP1. Interestingly, we identified new interactions between lamin B1 and these shelterin proteins, which are strongly enhanced at the nuclear periphery upon lamin B1 overexpression. Importantly, chromosomal fusions induced by lamin B1 in excess were rescued by TRF2 overexpression. These data indicated that lamin B1 overexpression triggers telomere instability through a mislocalization of TRF2. Altogether our results point to lamin B1 as a new interacting partner of TRF2, that is involved in telomere stability.


Assuntos
Lamina Tipo B/metabolismo , Complexo Shelterina/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Células Cultivadas , Humanos , Lamina Tipo B/química , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química
7.
Acc Chem Res ; 54(1): 46-56, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347280

RESUMO

The story of the non-duplex DNA form known as the G-quadruplex (G4) has traversed a winding path. From initial skepticism followed by debate to a surge in interest, the G4 story intertwines many threads. Starting with computational predictions of a gene regulatory role, which now include epigenetic functions, our group was involved in many of these advances along with many other laboratories. Following a brief background, set in the latter half of the last century when the concept of the G4 as a structure took ground, here we account the developments. This is through a lens that though focused on our groups' research presents work from many other groups that played significant roles. Together these provide a broad perspective to the G4 story. Initially we were intrigued on seeing potential G4 (pG4)-forming sequences, then known to be found primarily at the telomeres and immunoglobin switch regions, occurring throughout the genome and being particularly prevalent in promoters of bacteria. We further observed that pG4s were not only prevalent but also conserved through evolution in promoters of human, chimpanzee, mouse and rat genomes. This was between 2005 and 2007. Encouraged by these partly and partly in response to the view held by many that genome-wide presence of G4s were genomic "accidents", the focus shifted to seeking experimental evidence.In the next year, 2008, two independent findings showed promise. First, on treating human cancer cells with G4-binding ligands, we observed widespread change in gene expression. Second, our search for the missing G4-specific transcription factor, without which, importantly, G4s in promoters posed only half the story, yielded results. We determined how NM23-H2 (also known as NME2 or NDPK-B) interacts with G4s and how interaction of NM23-H2 with a G4 in the promoter of the oncogene c-myc was important for regulation of c-myc transcription. NM23-H2, and subsequently many other similar factors discovered by multiple groups, is possibly giving shape to what might be the "G4-transcriptome". Later, a close look at NM23-H2-G4 interaction in regulation of the human reverse transcriptase gene (hTERT) revealed the role of G4s in local epigenetic modifications. Meanwhile work from others showed how G4s impact histone modifications following replication. Together these show the intrinsic role of DNA sequence, through formation of DNA structure, in epigenetics.More recent work, however, was waiting to reveal aspects that tend to bring forth a completely new understanding of G4s. We observed that the telomere-repeat-binding-factor-2 (TRF2), known canonically to be telomere-associated, binds extensively outside telomeres throughout the genome. Moreover, a large fraction of the non-telomeric TRF2 sites comprise G4s. Second, the extent of non-telomeric TRF2 binding at promoters was dependent on telomere length. Thereby TRF2-induced epigenetic gene regulation was telomere-dependent. Together these implicate underlying connections that show signs of addressing an intriguing unanswered question that takes us back to the beginning: Why are G4s prevalent in two distinct regions, the telomeres and gene promoters?


Assuntos
Epigênese Genética , Quadruplex G , Animais , Humanos , Ligantes , Camundongos , Mutagênese , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Telomerase/genética , Telomerase/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sítio de Iniciação de Transcrição
8.
RNA Biol ; 18(12): 2261-2277, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33749516

RESUMO

Telomere is a specialized DNA-protein complex that plays an important role in maintaining chromosomal integrity. Shelterin is a protein complex formed by six different proteins, with telomeric repeat factors 1 (TRF1) and 2 (TRF2) binding to double-strand telomeric DNA. Telomeric DNA consists of complementary G-rich and C-rich repeats, which could form G-quadruplex and intercalated motif (i-motif), respectively, during cell cycle. Its G-rich transcription product, telomeric repeat-containing RNA (TERRA), is essential for telomere stability and heterochromatin formation. After extensive screening, we found that acridine derivative 2c and acridine dimer DI26 could selectively interact with TRF1 and telomeric i-motif, respectively. Compound 2c blocked the binding of TRF1 with telomeric duplex DNA, resulting in up-regulation of TERRA. Accumulated TERRA could bind with TRF1 at its allosteric site and further destabilize its binding with telomeric DNA. In contrast, DI26 could destabilize telomeric i-motif, resulting in down-regulation of TERRA. Both compounds exhibited anti-tumour activity for A549 cells, but induced different DNA damage pathways. Compound 2c significantly suppressed tumour growth in A549 xenograft mouse model. The function of telomeric i-motif structure was first studied with a selective binding ligand, which could play an important role in regulating TERRA transcription. Our results showed that appropriate level of TERRA transcript could be important for stability of telomere, and acridine derivatives could be further developed as anti-cancer agents targeting telomere. This research increased understanding for biological roles of telomeric i-motif, TRF1 and TERRA, as potential anti-cancer drug targets.


Assuntos
Acridinas/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , RNA Longo não Codificante/genética , Bibliotecas de Moléculas Pequenas/administração & dosagem , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Células A549 , Acridinas/química , Acridinas/farmacologia , Animais , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Camundongos , Estrutura Molecular , Transplante de Neoplasias , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804854

RESUMO

Telomere-binding factor 2 (TRF2) is part of the shelterin protein complex found at chromosome ends. Lamin A/C interacts with TRF2 and influences telomere position. TRF2 has an intrinsically disordered region between the ordered dimerization and DNA-binding domains. This domain is referred to as the long linker region of TRF2, or udTRF2. We suggest that udTRF2 might be involved in the interaction between TRF2 and lamins. The recombinant protein corresponding to the udTRF2 region along with polyclonal antibodies against this region were used in co-immunoprecipitation with purified lamina and nuclear extracts. Co-immunoprecipitation followed by Western blots and mass spectrometry indicated that udTRF2 interacts with lamins, preferably lamins A/C. The interaction did not involve any lamin-associated proteins, was not dependent on the post-translation modification of lamins, nor did it require their higher-order assembly. Besides lamins, a number of other udTRF2-interacting proteins were identified by mass spectrometry, including several heterogeneous nuclear ribonucleoproteins (hnRNP A2/B1, hnRNPA1, hnRNP A3, hnRNP K, hnRNP L, hnRNP M), splicing factors (SFPQ, NONO, SRSF1, and others), helicases (DDX5, DHX9, and Eif4a3l1), topoisomerase I, and heat shock protein 71, amongst others. Some of the identified interactors are known to be involved in telomere biology; the roles of the others remain to be investigated. Thus, the long linker region of TRF2 (udTRF2) is a regulatory domain responsible for the association between TRF2 and lamins and is involved in interactions with other proteins.


Assuntos
Laminas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sítios de Ligação , Células Cultivadas , Humanos , Ligação Proteica , Proteína 2 de Ligação a Repetições Teloméricas/química
10.
Nature ; 494(7438): 502-5, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389450

RESUMO

Mammalian telomeres repress DNA-damage activation at natural chromosome ends by recruiting specific inhibitors of the DNA-damage machinery that form a protective complex termed shelterin. Within this complex, TRF2 (also known as TERF2) has a crucial role in end protection through the suppression of ATM activation and the formation of end-to-end chromosome fusions. Here we address the molecular properties of TRF2 that are both necessary and sufficient to protect chromosome ends in mouse embryonic fibroblasts. Our data support a two-step mechanism for TRF2-mediated end protection. First, the dimerization domain of TRF2 is required to inhibit ATM activation, the key initial step involved in the activation of a DNA-damage response (DDR). Next, TRF2 independently suppresses the propagation of DNA-damage signalling downstream of ATM activation. This novel modulation of the DDR at telomeres occurs at the level of the E3 ubiquitin ligase RNF168 (ref. 3). Inhibition of RNF168 at telomeres involves the deubiquitinating enzyme BRCC3 and the ubiquitin ligase UBR5, and is sufficient to suppress chromosome end-to-end fusions. This two-step mechanism for TRF2-mediated end protection helps to explain the apparent paradox of frequent localization of DDR proteins at functional telomeres without concurrent induction of detrimental DNA-repair activities.


Assuntos
Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Enzimas Desubiquitinantes , Endopeptidases/deficiência , Endopeptidases/metabolismo , Ativação Enzimática , Camundongos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais , Telômero/genética , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA