Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Immunity ; 34(5): 665-79, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21616436

RESUMO

Nucleotide-binding, oligomerization domain (NOD)-like receptor (NLR) proteins are a family of innate immune receptors that play a pivotal role in microbial sensing, leading to the initiation of antimicrobial immune responses. Dysregulation of the function of multiple NLR family members has been linked, both in mice and humans, to a propensity for infection and autoinflammatory disease. Despite our increased understanding of NLR function and interactions, many aspects related to mechanisms of sensing, downstream signaling, and in vivo functions remain elusive. In this review, we focus on key members of the NLR family, describing their activation by diverse microbes, downstream effector functions, and interactions with each other and with other innate sensor protein families. Also discussed is the role of microbial sensing by NLR receptors leading to activation of the adaptive immune arm that collaborates in the antimicrobial defense.


Assuntos
Infecções Bacterianas/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Imunidade Adaptativa , Animais , Autofagia , Infecções Bacterianas/genética , Humanos , Imunidade Inata , Proteínas Adaptadoras de Sinalização NOD/genética
2.
Proc Natl Acad Sci U S A ; 111(34): 12294-9, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25136133

RESUMO

Innate immunity confers an immediate nonspecific mechanism of microbial recognition through germ line-encoded pattern recognition receptors (PRRs). Of these, Toll-like receptors (TLRs) and nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) have shaped our current understanding of innate regulation of adaptive immunity. It is now recognized that PRRs are paramount in instructing an appropriate adaptive immune response. Their ligands have been the focus of adjuvant research with the goal of generating modern vaccine combinations tailored to specific pathogens. In this review we will highlight the recent findings in the field of adjuvant research with a particular focus on the potential of TLR and NLR ligands as adjuvants and their influence on adaptive immune responses.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Proteínas Adaptadoras de Sinalização NOD/agonistas , Receptores Toll-Like/agonistas , Vacinas/administração & dosagem , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptores de Reconhecimento de Padrão/agonistas , Receptores de Reconhecimento de Padrão/imunologia , Receptores Toll-Like/imunologia , Vacinas/imunologia
3.
Physiology (Bethesda) ; 30(3): 241-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25933824

RESUMO

The NOD-like receptors (NLRs) are cytosolic pattern-recognition receptors, which are critically involved in mucosal immune defense. The association of the NLR, NOD2, with inflammatory bowel disease first pointed to the NLRs potential function as guardians of the intestinal barrier. Since then, several studies have emphasized the importance of NLRs in maintaining gut homeostasis and intestinal infections, and in shaping the microbiota. In this review, we will highlight the function of NLRs in intestinal inflammation.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Translocação Bacteriana , Gastroenterite/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Transdução de Sinais , Animais , Bactérias/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Gastroenterite/imunologia , Gastroenterite/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade nas Mucosas , Inflamassomos/imunologia , Inflamassomos/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Permeabilidade
4.
J Autoimmun ; 66: 76-88, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26403950

RESUMO

Type 1 Diabetes (T1D) is an autoimmune disease characterized by the pancreatic infiltration of immune cells resulting in T cell-mediated destruction of the insulin-producing beta cells. The successes of the Non-Obese Diabetic (NOD) mouse model have come in multiple forms including identifying key genetic and environmental risk factors e.g. Idd loci and effects of microorganisms including the gut microbiota, respectively, and how they may contribute to disease susceptibility and pathogenesis. Furthermore, the NOD model also provides insights into the roles of the innate immune cells as well as the B cells in contributing to the T cell-mediated disease. Unlike many autoimmune disease models, the NOD mouse develops spontaneous disease and has many similarities to human T1D. Through exploiting these similarities many targets have been identified for immune-intervention strategies. Although many of these immunotherapies did not have a significant impact on human T1D, they have been shown to be effective in the NOD mouse in early stage disease, which is not equivalent to trials in newly-diagnosed patients with diabetes. However, the continued development of humanized NOD mice would enable further clinical developments, bringing T1D research to a new translational level. Therefore, it is the aim of this review to discuss the importance of the NOD model in identifying the roles of the innate immune system and the interaction with the gut microbiota in modifying diabetes susceptibility. In addition, the role of the B cells will also be discussed with new insights gained through B cell depletion experiments and the impact on translational developments. Finally, this review will also discuss the future of the NOD mouse and the development of humanized NOD mice, providing novel insights into human T1D.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Imunidade Inata , Células Secretoras de Insulina/imunologia , Camundongos Endogâmicos NOD/imunologia , Linfócitos T/imunologia , Animais , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Microbioma Gastrointestinal/imunologia , Predisposição Genética para Doença , Antígenos HLA/genética , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Humanos , Imunoterapia , Insulina/imunologia , Camundongos , Camundongos Endogâmicos NOD/genética , Camundongos Transgênicos , Proteínas Adaptadoras de Sinalização NOD/imunologia , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Ratos , Ratos Endogâmicos BB , Transdução de Sinais , Linfócitos T/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
5.
Trends Immunol ; 34(5): 224-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23352728

RESUMO

Innate instruction of adaptive immunity was proposed more than 20 years ago as a mechanism by which long-lived lymphocyte responses are targeted to appropriate antigens. At the time Charles Janeway proposed this theory, most of the innate immune receptors were unknown, and the pivotal role of the dendritic cell in instructing T cell priming was debated. There is now overwhelming evidence that the innate and adaptive branches of the immune system must interact to generate immunity. Much of this work has focused on families of innate immune receptors called pattern recognition receptors (PRRs) on dendritic cells, which translate these inflammatory triggers into productive T cell responses. Nevertheless, we are only beginning to understand how these defence molecules shape the generation of immunity. We review the varied roles of one class of PRRs, the NOD-like receptors (NLRs), in immune responses and propose a new model in which adaptive immunity requires coordinated PRR activation within the dendritic cell.


Assuntos
Células Dendríticas/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Ativação Linfocitária
6.
Immunology ; 146(3): 359-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26211540

RESUMO

The composition of the microbiome in health and disease has only recently become a major research focus. Although it is clear that an imbalance or dysbiosis in the microbiota is associated with disease, its interrelatedness to disease penetrance is largely unknown. Inflammatory bowel disease (IBD) is an excellent disease in which to explore these questions because of the extensive genetic studies identifying disease susceptibility loci and the ability to easily sample the intestinal microbiota in IBD patients due to the accessibility of stool samples. In addition, mouse models of IBD have contributed to our understanding of the interrelatedness of the gut microbiota and genes associated with IBD. The power of the mouse studies is that multiple colitis models exist that can be used in combination with genetically modified mice that harbour deficiencies in IBD susceptibility genes. Collectively, these studies revealed that bacterial dysbiosis does occur in human IBD and in mouse colitis models. In addition, with an emphasis on immune genes, the mouse studies provided evidence that specific immune regulatory proteins associated with IBD influence the gut microbiota in a manner consistent with disease penetrance. In this review, we will discuss studies in both humans and mice that demonstrate the impact of immunodeficiences in interleukin-10, interleukin-17, nucleotide-binding oligomerization domain (NOD) 2, NOD-like receptor proteins 3 and 6, Toll-like receptor or IgA have on the interrelatedness between the composition of the gut microbiota and disease penetrance of IBD and its mouse models.


Assuntos
Colite/imunologia , Colite/microbiologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/microbiologia , Animais , Modelos Animais de Doenças , Disbiose/microbiologia , Humanos , Deficiência de IgA/imunologia , Deficiência de IgA/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Interleucina-10/deficiência , Interleucina-10/imunologia , Camundongos , Modelos Imunológicos , Proteínas Adaptadoras de Sinalização NOD/deficiência , Proteínas Adaptadoras de Sinalização NOD/imunologia , Penetrância , Células Th17/imunologia , Receptores Toll-Like/imunologia
7.
Immunol Rev ; 243(1): 40-60, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21884166

RESUMO

Peptidoglycan is a conserved structural component of the bacterial cell wall with molecular motifs unique to bacteria. The mammalian immune system takes advantage of these properties and has evolved to recognize this microbial associated molecular pattern. Mammals have four secreted peptidoglycan recognition proteins, PGLYRP-1-4, as well as two intracellular sensors of peptidoglycan, Nod1 and Nod2. Recognition of peptidoglycan is important in initiating and shaping the immune response under both homeostatic and infection conditions. During infection, peptidoglycan recognition drives both cell-autonomous and whole-organism defense responses. Here, we examine recent advances in the understanding of how peptidoglycan recognition shapes mammalian immune responses in these diverse contexts.


Assuntos
Bactérias/imunologia , Proteínas de Transporte/imunologia , Infecções/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Peptidoglicano/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Bactérias/metabolismo , Homeostase/imunologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Imunidade Celular , Infecções/microbiologia , Mamíferos , Peptidoglicano/metabolismo , Transdução de Sinais/imunologia
8.
Immunol Rev ; 243(1): 235-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21884180

RESUMO

One of the fundamental aspects of the innate immune system is its capacity to discriminate between self and non-self or altered self, and to quickly respond by eliciting effector mechanisms that act in concert to restore normalcy. This capacity is determined by a set of evolutionarily conserved pattern recognition receptors (PRRs) that sense the presence of microbial motifs or endogenous danger signals, including tissue damage, cellular transformation or metabolic perturbation, and orchestrate the nature, duration and intensity of the innate immune response. Nod-like receptors (NLRs), a group of intracellular PRRs, are particularly essential as evident by the high incidence of genetic variations in their genes in various diseases of homeostasis. Here, I overview the signaling mechanisms of NLRs and discuss the mounting evidence of evolutionary conservation between their pathways and the cell death machinery. I also describe their effector functions that link the sensing of danger to the induction of inflammation, autophagy or cell death.


Assuntos
Doenças do Sistema Imunitário/imunologia , Infecções/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Morte Celular/imunologia , Evolução Molecular , Predisposição Genética para Doença , Homeostase/genética , Homeostase/imunologia , Humanos , Doenças do Sistema Imunitário/genética , Imunidade Inata , Inflamação , Proteínas Adaptadoras de Sinalização NOD/genética , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Polimorfismo Genético , Transdução de Sinais/imunologia
9.
Trends Biochem Sci ; 35(4): 199-207, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20096590

RESUMO

The NLR (nucleotide-binding domain and leucine-rich repeat containing) proteins provide pathogen-sensing systems that are conserved in both plants and animals. They can be activated directly or indirectly by pathogen-derived molecules through mechanisms that remain largely elusive. Studies in plants revealed that the molecular chaperone, HSP90, and its co-chaperones, SGT1 and RAR1, are major stabilizing factors for NLR proteins. More recent work indicates that SGT1 and HSP90 are also required for the function of NLR proteins in mammals, underscoring the evolutionary conservation of innate immune system regulatory mechanisms. Comparative analyses of plant and mammalian NLR proteins, together with recent insights provided by the structure of SGT1-HSP90 complex, have begun to uncover the mechanisms by which immune NLR sensors are regulated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico HSP90/imunologia , Proteínas de Choque Térmico HSP90/metabolismo , Imunidade Inata/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Glucosiltransferases/imunologia , Glucosiltransferases/metabolismo , Proteínas de Choque Térmico HSP90/química , Imunidade Inata/fisiologia , Mamíferos/imunologia , Mamíferos/metabolismo , Proteínas Adaptadoras de Sinalização NOD/química , Plantas/imunologia , Plantas/metabolismo
10.
Int J Mol Sci ; 15(6): 9594-627, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24886810

RESUMO

The intestinal epithelium constitutes a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. Following injury, the epithelial integrity is restored by rapid migration of intestinal epithelial cells (IECs) across the denuded area in a process known as wound healing. Hence, through a sequence of events involving restitution, proliferation and differentiation of IECs the gap is resealed and homeostasis reestablished. Relapsing damage followed by healing of the inflamed mucosa is a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). While several regulatory peptides, growth factors and cytokines stimulate restitution of the epithelial layer after injury, recent evidence in the field underscores the contribution of innate immunity in controlling this process. In particular, nucleotide-binding and oligomerization domain-like receptors (NLRs) play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Here, we review the process of intestinal epithelial tissue repair and we specifically focus on the impact of NLR-mediated signaling mechanisms involved in governing epithelial wound healing during disease.


Assuntos
Homeostase , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Animais , Humanos , Imunidade Inata , Inflamassomos/análise , Inflamassomos/imunologia , Proteínas Adaptadoras de Sinalização NOD/análise , Receptores Toll-Like/análise , Receptores Toll-Like/imunologia , Cicatrização
11.
Semin Immunol ; 21(4): 242-53, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19748439

RESUMO

Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are two major forms of innate immune sensors, which provide immediate responses against pathogenic invasion or tissue injury. Activation of these sensors induces the recruitment of innate immune cells such as macrophages and neutrophils, initiates tissue repair processes, and results in adaptive immune activation. Abnormalities in any of these innate sensor-mediated processes may cause excessive inflammation due to either hyper responsive innate immune signaling or sustained compensatory adaptive immune activation. Recent gene association studies appear to reveal strong associations of NLR gene mutations and development of several idiopathic inflammatory disorders. In contrast, TLR polymorphisms are less often associated with inflammatory disorders. Nevertheless, TLRs are up-regulated in the affected tissue of most inflammatory disorders, suggesting TLR signaling is involved in the pathogenesis of chronic and/or idiopathic inflammatory disorders. NLR signaling results in the formation of a molecular scaffold complex (termed an inflammasome) and orchestrates with TLRs to induce IL-1beta and IL-18, both of which are important mediators in the majority of inflammatory disorders. Therefore, understanding the roles of TLRs and NLRs in the pathogenesis of chronic and idiopathic inflammatory disorders may provide novel targets for the prevention and/or treatment of many common and uncommon diseases involving inflammation.


Assuntos
Inflamação/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptores Toll-Like/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Epigênese Genética , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Proteínas Adaptadoras de Sinalização NOD/genética , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
12.
Adv Exp Med Biol ; 783: 121-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468107

RESUMO

The outcome of natural infections with pathogenic mycobacteria can range from early asymptomatic clearance through latent infection to clinical disease. Different host and pathogen-specific factors have been implicated in determining the outcome of these infections; however, it is clear that the interaction of mycobacteria with the innate and acquired components of the immune system plays a central role. Specifically, the recognition of mycobacterial components by innate immune cells through different pathogen recognition receptors (PPRs) induces a cytokine response that can promote early control of the infection. In fact, in the majority of individuals that come into contact with mycobacteria, this response is enough to control the infection. Among PRRs, Toll-like receptors (TLRs), Nucleotide Oligomerization Domain (NOD)-like receptors, and C-type lectins have all been implicated in recognition of mycobacteria and in the initiation of the cytokine response. Defining the mechanisms by which distinct mycobacterial components and their receptors stimulate the immune response is an area of intense research.


Assuntos
Citocinas/fisiologia , Infecções por Mycobacterium/imunologia , Suscetibilidade a Doenças , Eicosanoides/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interleucinas/imunologia , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Modelos Imunológicos , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia , Mycobacterium tuberculosis/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Fagocitose , Subpopulações de Linfócitos T/imunologia , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
13.
Immunol Rev ; 227(1): 106-28, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19120480

RESUMO

Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a specialized group of intracellular proteins that play a critical role in the regulation of the host innate immune response. NLRs act as scaffolding proteins that assemble signaling platforms that trigger nuclear factor-kappaB and mitogen-activated protein kinase signaling pathways and control the activation of inflammatory caspases. Importantly, mutations in several members of the NLR family have been linked to a variety of inflammatory diseases consistent with these molecules playing an important role in host-pathogen interactions and the inflammatory response. In this review, we focus on the role of Nod1 and Nod2 in host defense and in particular discuss recent finding regarding the role of Nlrc4, Nlpr1, and Nlrp3 inflammasomes in caspase-1 activation and subsequent release of proinflammatory cytokines such as interleukin-1 beta.


Assuntos
Infecções Bacterianas/imunologia , Caspase 1/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Fagocitose/imunologia , Animais , Apoptose/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Infecções Bacterianas/prevenção & controle , Caspase 1/imunologia , Predisposição Genética para Doença , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Camundongos , Mutação , Proteínas Adaptadoras de Sinalização NOD/genética , Transdução de Sinais/imunologia
14.
Immunol Rev ; 227(1): 221-33, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19120487

RESUMO

The mammalian immune system effectively fights infection through the cooperation of two connected systems, innate and adaptive immunity. Germ-line encoded pattern recognition receptors (PRRs) of the innate immune system sense the presence of infection and activate innate immunity. Some PRRs also induce signals that lead to the activation of adaptive immunity. Adaptive immunity is controlled by PRR-induced signals at multiple checkpoints dictating the initiation of a response, the type of response, the magnitude and duration of the response, and the production of long-term memory. PRRs thus instruct the adaptive immune system on when and how to best respond to a particular infection. In this review, we discuss the roles of various PRRs in control of adaptive immunity.


Assuntos
Imunidade Inata , Proteínas de Membrana/imunologia , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Receptores Citoplasmáticos e Nucleares/imunologia , Receptores Toll-Like/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/metabolismo , Animais , Formação de Anticorpos/imunologia , Epitopos/imunologia , Humanos , Imunidade Celular , Memória Imunológica , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptor Cross-Talk , Receptores Citoplasmáticos e Nucleares/metabolismo , Tolerância a Antígenos Próprios , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo
15.
Immunol Rev ; 227(1): 248-63, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19120489

RESUMO

The molecular apparatus that protects us against infection can also injure us by causing autoimmune or autoinflammatory disease. It now seems that at times, defects within the sensing arm of innate immunity contribute to diseases of this type. The initiation of an immune response is often microbe dependent and, in many cases, Toll-like receptor (TLR) dependent. Positive feedback loops triggering immune activation may occur when TLR signaling pathways stimulate host cells in an unchecked manner. Or, immune activation may persist because of failure to eradicate an inciting infection. Or on occasion, endogenous DNA may trigger specific immune responses that beget further responses in a TLR-dependent autoamplification loop. Specific biochemical defects that cause loop-related autoimmunity have been revealed by random germline mutagenesis and by gene targeting. We have also developed some insight into critical points at which feedback loops can be interrupted.


Assuntos
Doenças Autoimunes/etiologia , Proteínas do Sistema Complemento/metabolismo , Retroalimentação Fisiológica/imunologia , Receptores Toll-Like/metabolismo , Animais , Doenças Autoimunes/terapia , Proteínas do Sistema Complemento/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Imunoterapia/tendências , Infecções/imunologia , Camundongos , Proteínas Adaptadoras de Sinalização NOD/imunologia , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Receptores Tipo I de Interleucina-1/imunologia , Receptores Tipo I de Interleucina-1/metabolismo , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
16.
Immunol Rev ; 230(1): 9-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19594626

RESUMO

Innate immunity is the earliest response to invading microbes and acts to contain infection in the first minutes to hours of challenge. Unlike adaptive immunity that relies upon clonal expansion of cells that emerge days after antigenic challenge, the innate immune response is immediate. Soluble mediators, including complement components and the mannose binding lectin (MBL) make an important contribution to innate immune protection and work along with epithelial barriers, cellular defenses such as phagocytosis, and pattern-recognition receptors that trigger pro-inflammatory signaling cascades. These four aspects of the innate immune system act in concert to protect from pathogen invasion. Our work has focused on understanding the protection provided by this complex defense system and, as discussed in this review, the particular contribution of soluble mediators such as MBL and phagocytic cells. Over the past two decades both human epidemiological data and mouse models have indicated that MBL plays a critical role in innate immune protection against a number of pathogens. As demonstrated by our recent in vitro work, we show that MBL and the innate immune signaling triggered by the canonical pattern-recognition receptors (PRRs), the Toll-like receptors (TLRs), are linked by their spatial localization to the phagosome. These observations demonstrated a novel role for MBL as a TLR co-receptor and establishes a new paradigm for the role of opsonins, which we propose to function not only to increase microbial uptake but also to spatially coordinate, amplify, and synchronize innate immune defenses mechanism. In this review we discuss both the attributes of MBL that make it a unique soluble pattern recognition molecule and also highlight its broader role in coordinating innate immune activation.


Assuntos
Ativação do Complemento/imunologia , Imunidade Inata , Lectina de Ligação a Manose/metabolismo , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptores Toll-Like/imunologia , Animais , Carboidratos/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Camundongos , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Fagocitose/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo
17.
Immunol Rev ; 227(1): 189-202, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19120485

RESUMO

Autophagy is a physiologically and immunologically controlled intracellular homeostatic pathway that sequesters and degrades cytoplasmic targets including macromolecular aggregates, cellular organelles such as mitochondria, and whole microbes or their products. Recent advances show that autophagy plays a role in innate immunity in several ways: (i) direct elimination of intracellular microbes by digestion in autolysosomes, (ii) delivery of cytosolic microbial products to pattern recognition receptors (PRRs) in a process referred to as topological inversion, and (iii) as an anti-microbial effector of Toll-like receptors and other PRR signaling. Autophagy eliminates pathogens in vitro and in vivo but, when aberrant due to mutations, contributes to human inflammatory disorders such as Crohn's disease. In this review, we examine these relationships and propose that autophagy is one of the most ancient innate immune defenses that has possibly evolved at the time of alpha-protobacteria-pre-eukaryote relationships, leading up to modern eukaryotic cell-mitochondrial symbiosis, and that during the metazoan evolution, additional layers of immunological regulation have been superimposed and integrated with this primordial innate immunity mechanism.


Assuntos
Autofagia/imunologia , Proteínas de Ligação ao GTP/imunologia , Imunidade Inata , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Receptores Toll-Like/metabolismo , Animais , Apresentação de Antígeno/imunologia , Autofagia/genética , Doença de Crohn/genética , Doença de Crohn/imunologia , Citocinas/genética , Citocinas/metabolismo , Evolução Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Infecções/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Mitocôndrias/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Receptores Toll-Like/imunologia
18.
Cell Mol Life Sci ; 68(22): 3623-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21986983

RESUMO

The maintenance of mucosal barrier equilibrium in the intestine requires a delicate and dynamic balance between enterocyte loss by apoptosis and the generation of new cells by proliferation from stem cell precursors at the base of the intestinal crypts. When the balance shifts towards either excessive or insufficient apoptosis, a broad range of gastrointestinal diseases can manifest. Recent work from a variety of laboratories has provided evidence in support of a role for receptors of the innate immune system, including Toll-like receptors 2, 4, and 9 as well as the intracellular pathogen recognition receptor NOD2/CARD15, in the initiation of enterocyte apoptosis. The subsequent induction of enterocyte apoptosis in response to the activation of these innate immune receptors plays a key role in the development of various intestinal diseases, including necrotizing enterocolitis, Crohn's disease, ulcerative colitis, and intestinal cancer. This review will detail the regulatory pathways that govern enterocyte apoptosis, and will explore the role of the innate immune system in the induction of enterocyte apoptosis in gastrointestinal disease.


Assuntos
Apoptose/imunologia , Enterócitos/fisiologia , Gastroenteropatias/patologia , Imunidade Inata/imunologia , Inflamação/patologia , Mucosa Intestinal/imunologia , Animais , Enterócitos/citologia , Gastroenteropatias/imunologia , Humanos , Inflamação/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , NF-kappa B/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia
19.
Cell Mol Life Sci ; 68(22): 3661-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21984599

RESUMO

Pattern recognition receptors are somatically encoded and participate in the innate immune responses of a host to microbes. It is increasingly acknowledged that these receptors play a central role both in beneficial and pathogenic interactions with microbes. In particular, these receptors participate actively in shaping the gut environment to establish a fruitful life-long relationship between a host and its microbiota. Commensal bacteria engage Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs) to induce specific responses by intestinal epithelial cells such as production of antimicrobial products or of a functional mucus layer. Furthermore, a complex crosstalk between intestinal epithelial cells and the immune system is initiated leading to a mature gut-associated lymphoid tissue to secrete IgA. Impairment in NLR and TLR functionality in epithelial cells is strongly associated with chronic inflammatory diseases such as Crohn's disease, cancer, and with control of the commensal microbiota creating a more favorable environment for the emergence of new infections.


Assuntos
Células Epiteliais/imunologia , Imunidade Inata/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Receptores de Reconhecimento de Padrão/imunologia , Receptores Toll-Like/imunologia , Animais , Autofagia/imunologia , Células Epiteliais/citologia , Homeostase/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Metagenoma , Proteínas Adaptadoras de Sinalização NOD/genética , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais/imunologia , Receptores Toll-Like/genética
20.
Eur J Immunol ; 40(3): 624-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20201016

RESUMO

Recent years have witnessed a marked progress in our knowledge of NOD-like receptors (NLR), intracellular sensors with central roles in innate and adaptive immunity. A majority of the research has focused on caspase-1 inflammasomes. However, several members of the mammalian NLR family exert important roles in immunity beyond inflammasome signaling. Here we highlight the emerging roles of several of these NLR.


Assuntos
Inflamação/imunologia , Complexos Multiproteicos/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Transdução de Sinais/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA