RESUMO
Controlling plant disease has been a struggle for humankind since the advent of agriculture. Studies of plant immune mechanisms have led to strategies of engineering resistant crops through ectopic transcription of plants' own defence genes, such as the master immune regulatory gene NPR1 (ref. 1). However, enhanced resistance obtained through such strategies is often associated with substantial penalties to fitness, making the resulting products undesirable for agricultural applications. To remedy this problem, we sought more stringent mechanisms of expressing defence proteins. On the basis of our latest finding that translation of key immune regulators, such as TBF1 (ref. 3), is rapidly and transiently induced upon pathogen challenge (see accompanying paper), we developed a 'TBF1-cassette' consisting of not only the immune-inducible promoter but also two pathogen-responsive upstream open reading frames (uORFsTBF1) of the TBF1 gene. Here we demonstrate that inclusion of uORFsTBF1-mediated translational control over the production of snc1-1 (an autoactivated immune receptor) in Arabidopsis thaliana and AtNPR1 in rice enables us to engineer broad-spectrum disease resistance without compromising plant fitness in the laboratory or in the field. This broadly applicable strategy may lead to decreased pesticide use and reduce the selective pressure for resistant pathogens.
Assuntos
Regulação da Expressão Gênica de Plantas , Aptidão Genética/genética , Fases de Leitura Aberta/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Biossíntese de Proteínas , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Oryza/genética , Oryza/imunologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Transcrição GênicaRESUMO
Thermoregulation of virulence genes in bacterial pathogens is essential for environment-to-host transition. However, the mechanisms governing cold adaptation when outside the host remain poorly understood. Here, we found that the production of cold shock proteins CspB and CspC from Staphylococcus aureus is controlled by two paralogous RNA thermoswitches. Through in silico prediction, enzymatic probing and site-directed mutagenesis, we demonstrated that cspB and cspC 5'UTRs adopt alternative RNA structures that shift from one another upon temperature shifts. The open (O) conformation that facilitates mRNA translation is favoured at ambient temperatures (22°C). Conversely, the alternative locked (L) conformation, where the ribosome binding site (RBS) is sequestered in a double-stranded RNA structure, is folded at host-related temperatures (37°C). These structural rearrangements depend on a long RNA hairpin found in the O conformation that sequesters the anti-RBS sequence. Notably, the remaining S. aureus CSP, CspA, may interact with a UUUGUUU motif located in the loop of this long hairpin and favour the folding of the L conformation. This folding represses CspB and CspC production at 37°C. Simultaneous deletion of the cspB/cspC genes or their RNA thermoswitches significantly decreases S. aureus growth rate at ambient temperatures, highlighting the importance of CspB/CspC thermoregulation when S. aureus transitions from the host to the environment.
Assuntos
Regiões 5' não Traduzidas , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus/genética , Temperatura , Adaptação Fisiológica/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Mutação , Conformação de Ácido Nucleico , Staphylococcus aureus/metabolismoRESUMO
BACKGROUND: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. METHODS: In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNFα and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. RESULTS: Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNFα in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNFα compared to wild-type cells under inflammatory conditions. CONCLUSIONS: Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response.
Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/metabolismo , Etanol/toxicidade , Proteínas de Choque Térmico/biossíntese , Mediadores da Inflamação/metabolismo , Chaperonas Moleculares/biossíntese , Animais , Lesões Encefálicas/genética , Células Cultivadas , Etanol/administração & dosagem , Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/genéticaRESUMO
The adaptor protein Bcl10 is a critically important mediator of T cell receptor (TCR)-to-NF-κB signaling. Bcl10 degradation is a poorly understood biological phenomenon suggested to reduce TCR activation of NF-κB. Here we have shown that TCR engagement triggers the degradation of Bcl10 in primary effector T cells but not in naive T cells. TCR engagement promoted K63 polyubiquitination of Bcl10, causing Bcl10 association with the autophagy adaptor p62. Paradoxically, p62 binding was required for both Bcl10 signaling to NF-κB and gradual degradation of Bcl10 by autophagy. Bcl10 autophagy was highly selective, as shown by the fact that it spared Malt1, a direct Bcl10 binding partner. Blockade of Bcl10 autophagy enhanced TCR activation of NF-κB. Together, these data demonstrate that selective autophagy of Bcl10 is a pathway-intrinsic homeostatic mechanism that modulates TCR signaling to NF-κB in effector T cells. This homeostatic process may protect T cells from adverse consequences of unrestrained NF-κB activation, such as cellular senescence.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Autofagia/fisiologia , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Relacionadas à Autofagia , Proteína 10 de Linfoma CCL de Células B , Caspases/fisiologia , Diferenciação Celular , Citosol/imunologia , Citosol/ultraestrutura , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Homeostase , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Proteínas de Neoplasias/fisiologia , Fagossomos/fisiologia , Fagossomos/ultraestrutura , Mapeamento de Interação de Proteínas , Proteína Sequestossoma-1 , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/ultraestrutura , Células Th2/imunologia , Células Th2/ultraestrutura , Enzimas de Conjugação de Ubiquitina/fisiologiaRESUMO
Cell growth and product formation are two critical processes in polysaccharide welan biosynthesis, but the conflict between them is often encountered. In this study, a temperature-dependent strategy was designed for two-stage welan production through overexpressing heat shock proteins in Sphingomonas sp. The first stage was cell growth phase with higher TCA cycle activity at 42 °C; the second stage was welan formation phase with higher precursor synthesis pathway activity at 37 °C. The highest welan concentration 37.5 g/L was achieved after two-stage process. Ultimately, this strategy accumulated welan yield of 79.2 g/100 g glucose and productivity of 0.62 g/L/h at 60 h, which were the best reported results so far. The duration of fermentation was shortened. Besides, rheological behavior of welan gum solutions remained stable at wide range of temperature, pH, and NaCl. These results indicated that this approach efficiently improved welan synthesis.
Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico , Temperatura Alta , Polissacarídeos Bacterianos , Sphingomonas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Sphingomonas/genética , Sphingomonas/metabolismoRESUMO
Age-related cataract (ARC) is the leading cause of visual impairment or even blindness among the aged population globally. Long non-coding RNA (LncRNA) has been proven to be the potential regulator of ARC. The latest study reveals that maternally expressed gene 3 (MEG3) promotes the apoptosis and inhibits the proliferation of multiple cancer cells. However, the expression and role of MEG3 in ARC are unclear. In this study, we investigated the effects of MEG3 in ARC and explored the regulatory mechanisms underlying these effects. We observed that MEG3 expression was up-regulated in the age-related cortical cataract (ARCC) lens capsules and positively correlated with the histological degree of ARCC. The pro-apoptosis protein, active caspase-3 and Bax increased in the anterior lens capsules of ARCC tissue, while the anti-apoptotic protein Bcl-2 decreased compared to normal lens. Knockdown of MEG3 increased the viability and inhibited the apoptosis of LECs upon the oxidative stress induced by H2O2. MEG3 was localized in both nucleus and cytoplasm in LECs. MEG3 facilitated TP53INP1 expression via acting as miR-223 sponge and promoting P53 expression. Additionally, TP53INP1 knockdown alleviated H2O2-induced lens turbidity. In summary, MEG3 promoted ARC progression by up-regulating TP53INP1 expression through suppressing miR-223 and promoting P53 expression, which would provide a novel insight into the pathogenesis of ARC.
Assuntos
Proteínas de Transporte/genética , Catarata/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Cristalino/metabolismo , RNA Longo não Codificante/genética , Regulação para Cima , Idoso , Proteínas de Transporte/biossíntese , Catarata/metabolismo , Catarata/patologia , Proliferação de Células , Progressão da Doença , Feminino , Proteínas de Choque Térmico/biossíntese , Humanos , Cristalino/patologia , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/biossíntese , Transdução de SinaisRESUMO
Endoplasmic reticulum stress plays an important role in cardiovascular disease (CVD) and atherosclerosis. We aimed to assess the ability of 4-phenylbutyrate (4-PBA), a small chemical chaperone administered via drinking water, to reduce atherosclerotic lesion size in chow-fed apolipoprotein (Apo) e-/- mice and to identify mechanisms that contribute to its antiatherogenic effect. Chow-fed 17-wk-old female Apoe-/- mice treated with 4-PBA-supplemented drinking water for 5 wk exhibited smaller lesions as well as increased plasma levels of heat shock protein (HSP) 25, the mouse homolog of human HSP27, compared with controls. In addition, 4-PBA inhibited cell death and increased HSP27 expression as measured by real-time PCR and immunoblotting, as well as induced nuclear localization of its transcription factor, heat shock factor 1, in human monocyte/macrophage (THP-1) cells. Furthermore, HSP27 small interfering RNA diminished the protective effect of 4-PBA on THP-1 macrophage attachment and differentiation. In summary, drinking water containing 4-PBA attenuated early lesion growth in Apoe-/- mice fed a chow diet and increased expression of HSP25 and HSP27 in macrophages and HSP25 in the circulation of Apoe-/- mice. Given that increased expression of HSP27 is inversely correlated with CVD risk, our findings suggest that 4-PBA protects against the early stages of atherogenesis in part by enhancing HSP27 levels, leading to inhibition of both macrophage cell death and monocyte-macrophage differentiation.-Lynn, E. G., Lhoták, S., Lebeau, P., Byun, J. H., Chen, J., Platko, K., Shi, C., O'Brien, E. R., Austin, R. C. 4-Phenylbutyrate protects against atherosclerotic lesion growth by increasing the expression of HSP25 in macrophages and in the circulation of Apoe-/- mice.
Assuntos
Aterosclerose/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Proteínas de Choque Térmico/biossíntese , Macrófagos/metabolismo , Chaperonas Moleculares/biossíntese , Monócitos/metabolismo , Fenilbutiratos/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Diferenciação Celular/genética , Proteínas de Choque Térmico/genética , Humanos , Macrófagos/patologia , Camundongos , Camundongos Knockout para ApoE , Chaperonas Moleculares/genética , Monócitos/patologia , Células THP-1RESUMO
Dysfunction of trophoblast metastasis into the endometrium is the main cause of pre-eclampsia (PE); however, the factors affecting this process are still unclear. In this study, we found that endoplasmic reticulum protein 29 (ERp29), one molecular chaperone of the endoplasmic reticulum, was aberrantly upregulated in the placenta of pre-eclamptic patients compared with healthy controls. Then, an in vitro study using human extravillous trophoblast HTR-8/SVneo cells showed that ERp29 upregulation could inhibit the migratory and invasive ability of HTR-8/SVneo cells, while ERp29 downregulation had the opposite effect. Mechanical experiments confirmed that ERp29 blocked trophoblast metastasis via inhibiting the process of epithelial-mesenchymal transition and affecting the Wnt/ß-catenin signaling pathway. In conclusion, this study revealed the important role of ERp29 in trophoblast metastasis and improved the mechanical understanding of PE occurrence.
Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Choque Térmico/fisiologia , Pré-Eclâmpsia/etiologia , Trofoblastos/metabolismo , Adulto , Linhagem Celular , Feminino , Proteínas de Choque Térmico/biossíntese , Humanos , Metaloproteinases da Matriz/metabolismo , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/transplante , Regulação para Cima , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Adulto Jovem , beta Catenina/metabolismoRESUMO
In this study, the Chinese mitten crabs, Eriocheir sinensis were exposed to avermectin at 0.03, 0.06, 0.12, 0.24, and 0.48 mg/L respectively for 96 hours. The results showed that levels of superoxide dismutase, catalase, and glutathione peroxidase in hepatopancreas were slightly induced at concentration of 0.03 and 0.06 mg/L, but significantly (P < .05) decreased at higher concentrations, meanwhile similar trend of the activities of acid phosphatase, alkaline phosphatase and lysozyme were observed. Significant induction of HSP70 and HSP90 mRNA expression was detected at 24 hours whereas no significant change was found in HSP60. In addition, levels of reactive oxygen species in hepatocytes increased in dose- and time- dependent manners, and cell viabilities of hepatocytes and haemocytes decreased. These results indicated that sublethal concentration exposure of avermectin had a prominent oxidative stress effect on E. sinensis based on the antioxidative and immunological activity inhibition, and HSP60, 70, and 90 perform a protective response during the exposure.
Assuntos
Braquiúros , Proteínas de Choque Térmico/biossíntese , Ivermectina/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Braquiúros/efeitos dos fármacos , Braquiúros/imunologia , Braquiúros/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/enzimologia , Ivermectina/toxicidade , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de TempoRESUMO
Amyloid and amyloid-like protein aggregations are hallmarks of multiple, varied neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. We previously reported that spinocerebellar ataxia type 14 (SCA14), a dominant-inherited neurodegenerative disease that affects cerebellar Purkinje cells, is characterized by the intracellular formation of neurotoxic amyloid-like aggregates of genetic variants of protein kinase Cγ (PKCγ). A number of protein chaperones, including heat shock protein 70 (Hsp70), promote the degradation and/or refolding of misfolded proteins and thereby prevent their aggregation. Here, we report that, in various SCA14-associated, aggregating PKCγ variants, endogenous Hsp70 is incorporated into aggregates and that expression of these PKCγ mutants up-regulates Hsp70 expression. We observed that PKCγ binds Hsp70 and that this interaction is enhanced in the SCA14-associated variants, mediated by the kinase domain that is involved in amyloid-like fibril formation as well as the C2 domain of PKCγ. Pharmacological up-regulation of Hsp70 by the Hsp90 inhibitors celastrol and herbimycin A attenuated the aggregation of mutant PKCγ in primary cultured Purkinje cells. Up-regulation of Hsp70 diminished net PKCγ aggregation by preventing aggregate formation, resulting in decreased levels of apoptotic cell death among primary cultured Purkinje cells expressing the PKCγ variant. Of note, herbimycin A also ameliorated abnormal dendritic development. Extending our in vitro observations, administration of celastrol to mice up-regulated cerebellar Hsp70. Our findings identify heat shock proteins as important endogenous regulators of pathophysiological PKCγ aggregation and point to Hsp90 inhibition as a potential therapeutic strategy in the treatment of SCA14.
Assuntos
Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/toxicidade , Mutação , Proteína Quinase C/genética , Proteína Quinase C/toxicidade , Ataxias Espinocerebelares/enzimologia , Animais , Linhagem Celular , Cerebelo/metabolismo , Detergentes/química , Humanos , Rifabutina/análogos & derivados , Rifabutina/farmacologia , Solubilidade , Ataxias Espinocerebelares/genética , Regulação para CimaRESUMO
Heat stress is a major stressor that can lead to male reproductive dysfunction. Sertoli cells play a crucial role in spermatogenesis by providing germ cells with structural and nutritional support, and contributing to blood-testis barrier formation. Vitamin C (Vc) is an antioxidant capable of neutralizing reactive oxygen species and preventing lipid peroxidation widely used because it is inexpensive and highly accessible. In the present study, we investigated the protective effect of Vc on TM4 cells following heat stress. Pretreatment with Vc could effectively inhibit apoptosis (p < 0.01), lipid peroxidation, and lactate dehydrogenase (LDH) activity. However, a significant increase in the malondialdehyde (MDA) level and LDH activity (p < 0.01) was observed in TM4 cells without Vc-pretreatment, in conjunction with vacuole degeneration and karyopyknosis. In addition, both the messenger RNA and protein levels of CryAB, Hsp27, Hsp70, and Hsp110 substantially increased in the 3 and 12 hr recovery groups (p < 0.01). Vc also prevented microtubule aggregation following heat stress. These results suggest that pretreatment with Vc-protected TM4 cells against heat stress by reducing the level of oxidative stress and inducing heat shock protein expression.
Assuntos
Ácido Ascórbico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/biossíntese , Resposta ao Choque Térmico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células de Sertoli/metabolismo , Linhagem Celular , Humanos , Masculino , Células de Sertoli/citologiaRESUMO
PURPOSE: Cabazitaxel, a semi-synthetic taxane of the third generation, inhibits prostate cancer (PC) cell growth by affecting the microtubule architecture. Since cabazitaxel has also been demonstrated to inhibit androgen receptor (AR) functionality, AR and AR-associated heat shock protein (HSP) expressions in the presence of cabazitaxel were characterized. METHODS: AR and HSP expressions were assessed via Western blotting utilizing a PC-cell-line in vitro system incubated with cabazitaxel. RESULTS: Incubation experiments with 0.3 nM cabazitaxel exhibited significantly reduced levels of AR and the AR-associated factors HSP90α, HSP40, and HSP70/HSP90 organising protein. Furthermore, expression of the anti-apoptotic factor HSP60 was suppressed. In contrast to other anticancer compounds, cabazitaxel did not alter the cytoprotective chemoresistance factor HSP27. CONCLUSIONS: Despite the deregulation of microtubule organisation, cabazitaxel has been shown to suppress the expression of HSP. Very notably, and may be as a result of down-regulated HSP, cabazitaxel additionally inhibits the expression of the AR in AR-positive PC cells. Thus, cabazitaxel bears an additional anti-proliferative activity which is at least in part specific for PC cells.
Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Taxoides/farmacologia , Taxoides/uso terapêutico , Proteínas de Choque Térmico/biossíntese , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/biossíntese , Células Tumorais CultivadasRESUMO
BACKGROUND: Ethanol (EtOH) exposure during pregnancy may result in fetal alcohol spectrum disorders (FASD). One of the most deleterious consequences of EtOH exposure is neuronal loss in the developing brain. Previously, we showed that EtOH exposure induced neuroapoptosis in the brain of postnatal day 4 (PD4) mice but not PD12 mice. This differential susceptibility may result from an insufficient cellular stress response system such as unfolded protein response (also known as endoplasmic reticulum [ER] stress) in PD4 mice. In this study, we compared the effect of EtOH on ER stress in PD4 and PD12 mice and determined whether the inhibition of ER stress could protect the developing brain against EtOH damage. METHODS: We used a third-trimester equivalent mouse model of FASD. PD4 and PD12 C57BL/6 mice were subcutaneously injected with saline (control), EtOH, EtOH plus 4-phenylbutyric acid (4-PBA), a chemical chaperone known as ER stress inhibitor, and 4-PBA alone. The expression of apoptosis marker, ER stress markers, and markers for glial cell activation was examined in the cerebral cortex. RESULTS: EtOH induced neuroapoptosis and increased the expression of ER stress markers, such as activating transcription factor 6, 78-kDa glucose-regulated protein, inositol-requiring enzyme 1α, mesencephalic astrocyte-derived neurotrophic factor, and caspase-12 in PD4 but not PD12 mice. EtOH exposure also activated microglia and astrocytes. Interestingly, treatment with 4-PBA attenuated EtOH-induced neuroapoptosis. Moreover, 4-PBA inhibited the expression of the aforementioned ER stress markers and EtOH-induced glial activation in PD4 mice. CONCLUSIONS: ER stress plays an important role in EtOH-induced damage to the developing brain. Inhibition of ER stress is neuroprotective and may provide a new therapeutic strategy for treating FASD.
Assuntos
Envelhecimento/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Etanol/antagonistas & inibidores , Fenilbutiratos/farmacologia , Fator 6 Ativador da Transcrição/biossíntese , Animais , Astrócitos/metabolismo , Caspase 12/biossíntese , Córtex Cerebral/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/biossíntese , Etanol/efeitos adversos , Feminino , Proteínas de Choque Térmico/biossíntese , Masculino , Camundongos , Microglia/metabolismo , Fatores de Crescimento Neural/biossíntese , Fármacos Neuroprotetores/farmacologia , Proteínas Serina-Treonina Quinases/biossínteseRESUMO
The main topic of this study was to investigate the effect of benzo[a]pyrene (BP) on microRNAs and their target genes expression levels in primary cell cultures from normal and malignant endometrial tissue. MicroRNA-126 (miR-126) and miR-190a were most sensitive to BP treatment. The treatment of both cultures with BP was accompanied by a decrease of miR-126 level and an increase of EGFL7 gene expression level. BP-induced upregulation of miR-190a was detected only in normal cells and it was accompanied with decrease of mRNA levels of TP53INP1 and PHLPP1 genes. Taking into account that BP promoted the proliferation of normal cells and amplified apoptosis of cancer cells, it is possible that miR-190a is involved in general cellular response to BP. The findings of this study indicate that miR-190a and its target genes may be involved in the regulation of cell fate under BP treatment.
Assuntos
Benzo(a)pireno/toxicidade , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Transporte/biossíntese , Família de Proteínas EGF/biossíntese , Neoplasias do Endométrio/metabolismo , Endométrio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/biossíntese , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , Proteínas Nucleares/biossíntese , Fosfoproteínas Fosfatases/biossíntese , RNA Neoplásico/biossíntese , Neoplasias do Endométrio/patologia , Endométrio/patologia , Feminino , HumanosRESUMO
BACKGROUND: Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a key stress protein with tumor suppressor function. Several studies have demonstrated TP53INP1 downregulation in many cancers. In this study, we investigated the correlations of TP53INP1 mRNA expression in breast cancer tissues with prognosis and the correlations of microRNAs that regulate TP53INP1 expression in breast cancer patients with long follow-up. METHODS: A total of 453 invasive breast cancer tissues were analyzed for TP53INP1 mRNA expression. We examined correlations of clinicopathological factors and expression levels of TP53INP1 mRNA in these samples. The expressions of miR-155, miR-569 and markers associated with tumor-initiating capacity were also analyzed. The median follow-up period was 9.0 years. RESULTS: We found positive correlations between low expression of TP53INP1 mRNA and shorter disease-free survival and overall survival in breast cancer patients (P = 0.0002 and P < 0.0001, respectively), as well as in estrogen receptor α (ERα)-positive patients receiving adjuvant endocrine therapy (P = 0.01 and P = 0.0008, respectively). No correlations were found in ERα-negative patients. Low TP53INP1 mRNA levels positively correlated with higher grade and ERα-negativity. Multivariate analysis indicated that TP53INP1 mRNA level was an independent risk factor for overall survival both in overall breast cancer patients (hazard ratio, 2.13; 95% confidence interval, 1.17-3.92) and ERα-positive patients (hazard ratio, 2.34; 95% confidence interval, 1.18-4.64). CONCLUSIONS: We show that low expression of TP53INP1 is an independent factor of poor prognosis in breast cancer patients, especially ERα-positive patients. TP53INP1 might be a promising candidate biomarker and therapeutic target in ERα-positive breast cancer patients.
Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Proteínas de Transporte/biossíntese , Proteínas de Choque Térmico/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/mortalidade , Intervalo Livre de Doença , Receptor alfa de Estrogênio/análise , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , PrognósticoRESUMO
Safeguarding the proteome is central to the health of the cell. In multi-cellular organisms, the composition of the proteome, and by extension, protein-folding requirements, varies between cells. In agreement, chaperone network composition differs between tissues. Here, we ask how chaperone expression is regulated in a cell type-specific manner and whether cellular differentiation affects chaperone expression. Our bioinformatics analyses show that the myogenic transcription factor HLH-1 (MyoD) can bind to the promoters of chaperone genes expressed or required for the folding of muscle proteins. To test this experimentally, we employed HLH-1 myogenic potential to genetically modulate cellular differentiation of Caenorhabditis elegans embryonic cells by ectopically expressing HLH-1 in all cells of the embryo and monitoring chaperone expression. We found that HLH-1-dependent myogenic conversion specifically induced the expression of putative HLH-1-regulated chaperones in differentiating muscle cells. Moreover, disrupting the putative HLH-1-binding sites on ubiquitously expressed daf-21(Hsp90) and muscle-enriched hsp-12.2(sHsp) promoters abolished their myogenic-dependent expression. Disrupting HLH-1 function in muscle cells reduced the expression of putative HLH-1-regulated chaperones and compromised muscle proteostasis during and after embryogenesis. In turn, we found that modulating the expression of muscle chaperones disrupted the folding and assembly of muscle proteins and thus, myogenesis. Moreover, muscle-specific over-expression of the DNAJB6 homolog DNJ-24, a limb-girdle muscular dystrophy-associated chaperone, disrupted the muscle chaperone network and exposed synthetic motility defects. We propose that cellular differentiation could establish a proteostasis network dedicated to the folding and maintenance of the muscle proteome. Such cell-specific proteostasis networks can explain the selective vulnerability that many diseases of protein misfolding exhibit even when the misfolded protein is ubiquitously expressed.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Fatores de Regulação Miogênica/genética , Animais , Sítios de Ligação , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/biossíntese , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Proteínas Musculares , Fatores de Regulação Miogênica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Regiões Promotoras Genéticas , Fatores de TranscriçãoRESUMO
Juvenile hormone (JH) has a well known role in stimulating insect vitellogenesis (i.e. yolk deposition) and oocyte maturation, but the molecular mechanisms of JH action in insect reproduction are unclear. The 78-kDa glucose-regulated protein (Grp78) is a heat shock protein 70-kDa family member and one of the most abundant chaperones in the endoplasmic reticulum (ER) where it helps fold newly synthesized peptides. Because of its prominent role in protein folding, and also ER stress, we hypothesized that Grp78 might be involved in fat body cell homeostasis and vitellogenesis and a regulatory target of JH. We report here that the migratory locust Locusta migratoria possesses two Grp78 genes that are differentially regulated by JH. We found that Grp78-1 is regulated by JH through Mcm4/7-dependent DNA replication and polyploidization, whereas Grp78-2 expression is directly activated by the JH-receptor complex comprising methoprene-tolerant and Taiman proteins. Interestingly, Grp78-2 expression in the fat body is about 10-fold higher than that of Grp78-1 Knockdown of either Grp78-1 or Grp78-2 significantly reduced levels of vitellogenin (Vg) protein, accompanied by retarded maturation of oocytes. Depletion of both Grp78-1 and Grp78-2 resulted in ER stress and apoptosis in the fat body and in severely defective Vg synthesis and oocyte maturation. These results indicate a crucial role of Grp78 in JH-dependent vitellogenesis and egg production. The presence and differential regulation of two Grp78 genes in L. migratoria likely help accelerate the production of this chaperone in the fat body to facilitate folding of massively synthesized Vg and other proteins.
Assuntos
Corpo Adiposo/metabolismo , Proteínas de Choque Térmico/biossíntese , Hormônios Juvenis/metabolismo , Locusta migratoria/metabolismo , Vitelogênese/fisiologia , Vitelogeninas/biossíntese , Animais , Chaperona BiP do Retículo Endoplasmático , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico/genética , Hormônios Juvenis/genética , Locusta migratoria/genética , Oócitos/metabolismo , Vitelogeninas/genéticaRESUMO
Intervertebral disc degeneration (IDD) causes chronic back pain and is linked to production of proinflammatory molecules by nucleus pulposus (NP) and other disc cells. Activation of tonicity-responsive enhancer-binding protein (TonEBP)/NFAT5 by non-osmotic stimuli, including proinflammatory molecules, occurs in cells involved in immune response. However, whether inflammatory stimuli activate TonEBP in NP cells and whether TonEBP controls inflammation during IDD is unknown. We show that TNF-α, but not IL-1ß or LPS, promoted nuclear enrichment of TonEBP protein. However, TNF-α-mediated activation of TonEBP did not cause induction of osmoregulatory genes. RNA sequencing showed that 8.5% of TNF-α transcriptional responses were TonEBP-dependent and identified genes regulated by both TNF-α and TonEBP. These genes were over-enriched in pathways and diseases related to inflammatory response and inhibition of matrix metalloproteases. Based on RNA-sequencing results, we further investigated regulation of novel TonEBP targets CXCL1, CXCL2, and CXCL3 TonEBP acted synergistically with TNF-α and LPS to induce CXCL1-proximal promoter activity. Interestingly, this regulation required a highly conserved NF-κB-binding site but not a predicted TonE, suggesting cross-talk between these two members of the Rel family. Finally, analysis of human NP tissue showed that TonEBP expression correlated with canonical osmoregulatory targets TauT/SLC6A6, SMIT/SLC5A3, and AR/AKR1B1, supporting in vitro findings that the inflammatory milieu during IDD does not interfere with TonEBP osmoregulation. In summary, whereas TonEBP participates in the proinflammatory response to TNF-α, therapeutic strategies targeting this transcription factor for treatment of disc disease must spare osmoprotective, prosurvival, and matrix homeostatic activities.
Assuntos
Disco Intervertebral/metabolismo , Osmorregulação , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Aldeído Redutase/biossíntese , Aldeído Redutase/genética , Animais , Linhagem Celular , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Criança , Pré-Escolar , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Humanos , Lactente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Lipopolissacarídeos/toxicidade , Masculino , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Ratos , Simportadores/biossíntese , Simportadores/genética , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genéticaRESUMO
Aggregation of TAR-DNA-binding protein 43 (TDP-43) and of its fragments TDP-25 and TDP-35 occurs in amyotrophic lateral sclerosis (ALS). TDP-25 and TDP-35 act as seeds for TDP-43 aggregation, altering its function and exerting toxicity. Thus, inhibition of TDP-25 and TDP-35 aggregation and promotion of their degradation may protect against cellular damage. Upregulation of HSPB8 is one possible approach for this purpose, since this chaperone promotes the clearance of an ALS associated fragments of TDP-43 and is upregulated in the surviving motor neurones of transgenic ALS mice and human patients. We report that overexpression of HSPB8 in immortalized motor neurones decreased the accumulation of TDP-25 and TDP-35 and that protection against mislocalized/truncated TDP-43 was observed for HSPB8 in Drosophila melanogaster Overexpression of HSP67Bc, the functional ortholog of human HSPB8, suppressed the eye degeneration caused by the cytoplasmic accumulation of a TDP-43 variant with a mutation in the nuclear localization signal (TDP-43-NLS). TDP-43-NLS accumulation in retinal cells was counteracted by HSP67Bc overexpression. According with this finding, downregulation of HSP67Bc increased eye degeneration, an effect that is consistent with the accumulation of high molecular weight TDP-43 species and ubiquitinated proteins. Moreover, we report a novel Drosophila model expressing TDP-35, and show that while TDP-43 and TDP-25 expression in the fly eyes causes a mild degeneration, TDP-35 expression leads to severe neurodegeneration as revealed by pupae lethality; the latter effect could be rescued by HSP67Bc overexpression. Collectively, our data demonstrate that HSPB8 upregulation mitigates TDP-43 fragment mediated toxicity, in mammalian neuronal cells and flies.