Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.210
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(5): 1232-1244.e16, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626330

RESUMO

Human cytomegalovirus (HCMV) infects the majority of the human population and represents the leading viral cause of congenital birth defects. HCMV utilizes the glycoproteins gHgLgO (Trimer) to bind to platelet-derived growth factor receptor alpha (PDGFRα) and transforming growth factor beta receptor 3 (TGFßR3) to gain entry into multiple cell types. This complex is targeted by potent neutralizing antibodies and represents an important candidate for therapeutics against HCMV. Here, we determine three cryogenic electron microscopy (cryo-EM) structures of the trimer and the details of its interactions with four binding partners: the receptor proteins PDGFRα and TGFßR3 as well as two broadly neutralizing antibodies. Trimer binding to PDGFRα and TGFßR3 is mutually exclusive, suggesting that they function as independent entry receptors. In addition, Trimer-PDGFRα interaction has an inhibitory effect on PDGFRα signaling. Our results provide a framework for understanding HCMV receptor engagement, neutralization, and the development of anti-viral strategies against HCMV.


Assuntos
Citomegalovirus/química , Glicoproteínas de Membrana/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Microscopia Crioeletrônica , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas do Envelope Viral/metabolismo
2.
Annu Rev Biochem ; 83: 129-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606135

RESUMO

Numerous proteins, including cytokines and chemokines, enzymes and enzyme inhibitors, extracellular matrix proteins, and membrane receptors, bind heparin. Although they are traditionally classified as heparin-binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more membrane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate-binding proteins (HSBPs). This review provides an overview of the various modes of interaction between heparan sulfate and HSBPs, emphasizing biochemical and structural insights that improve our understanding of the many biological functions of heparan sulfate.


Assuntos
Heparitina Sulfato/química , Proteínas/química , Proteoglicanas/química , Animais , Sítios de Ligação , Carboidratos/química , Matriz Extracelular/metabolismo , Glucuronidase/química , Humanos , Ligação de Hidrogênio , Ligantes , Substâncias Macromoleculares , Oligossacarídeos/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína
3.
Immunity ; 52(2): 404-416.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32049054

RESUMO

Mast cells are rare tissue-resident cells of importance to human allergies. To understand the structural basis of principle mast cell functions, we analyzed the proteome of primary human and mouse mast cells by quantitative mass spectrometry. We identified a mast-cell-specific proteome signature, indicative of a unique lineage, only distantly related to other immune cell types, including innate immune cells. Proteome comparison between human and mouse suggested evolutionary conservation of core mast cell functions. In addition to specific proteases and proteins associated with degranulation and proteoglycan biosynthesis, mast cells expressed proteins potentially involved in interactions with neurons and neurotransmitter metabolism, including cell adhesion molecules, ion channels, and G protein coupled receptors. Toward targeted cell ablation in severe allergic diseases, we used MRGPRX2 for mast cell depletion in human skin biopsies. These proteome analyses suggest a unique role of mast cells in the immune system, probably intertwined with the nervous system.


Assuntos
Mastócitos/citologia , Mastócitos/imunologia , Animais , Biomarcadores/metabolismo , Degranulação Celular , Linhagem da Célula , Células Cultivadas , Tecido Conjuntivo/imunologia , Humanos , Imunoterapia , Mastócitos/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Neuroimunomodulação , Proteoglicanas/biossíntese , Proteoma , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/imunologia , Receptores de Neuropeptídeos/metabolismo , Pele/imunologia
4.
Nature ; 618(7966): 740-747, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344650

RESUMO

Load-bearing tissues, such as muscle and cartilage, exhibit high elasticity, high toughness and fast recovery, but have different stiffness (with cartilage being significantly stiffer than muscle)1-8. Muscle achieves its toughness through finely controlled forced domain unfolding-refolding in the muscle protein titin, whereas articular cartilage achieves its high stiffness and toughness through an entangled network comprising collagen and proteoglycans. Advancements in protein mechanics and engineering have made it possible to engineer titin-mimetic elastomeric proteins and soft protein biomaterials thereof to mimic the passive elasticity of muscle9-11. However, it is more challenging to engineer highly stiff and tough protein biomaterials to mimic stiff tissues such as cartilage, or develop stiff synthetic matrices for cartilage stem and progenitor cell differentiation12. Here we report the use of chain entanglements to significantly stiffen protein-based hydrogels without compromising their toughness. By introducing chain entanglements13 into the hydrogel network made of folded elastomeric proteins, we are able to engineer highly stiff and tough protein hydrogels, which seamlessly combine mutually incompatible mechanical properties, including high stiffness, high toughness, fast recovery and ultrahigh compressive strength, effectively converting soft protein biomaterials into stiff and tough materials exhibiting mechanical properties close to those of cartilage. Our study provides a general route towards engineering protein-based, stiff and tough biomaterials, which will find applications in biomedical engineering, such as osteochondral defect repair, and material sciences and engineering.


Assuntos
Materiais Biocompatíveis , Cartilagem , Hidrogéis , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Cartilagem/química , Colágeno/química , Conectina/química , Hidrogéis/síntese química , Hidrogéis/química , Proteoglicanas/química , Engenharia Tecidual/métodos , Humanos
5.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38117077

RESUMO

During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.


Assuntos
Osteogênese , Proteoglicanas , Animais , Osteogênese/genética , Proteoglicanas/genética , Proteoglicanas/metabolismo , Peixe-Zebra/genética , Cartilagem/metabolismo , Condrócitos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo
6.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251863

RESUMO

The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.


Assuntos
Células-Tronco Neurais , Proteoglicanas , Camundongos , Animais , Proteoglicanas/metabolismo , Sulfatos de Condroitina , Proteoglicanas de Sulfatos de Condroitina , Matriz Extracelular/metabolismo , Rombencéfalo/metabolismo , Células-Tronco Neurais/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(31): e2402755121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042673

RESUMO

The precise assembly of a functional nervous system relies on axon guidance cues. Beyond engaging their cognate receptors and initiating signaling cascades that modulate cytoskeletal dynamics, guidance cues also bind components of the extracellular matrix, notably proteoglycans, yet the role and mechanisms of these interactions remain poorly understood. We found that Drosophila secreted semaphorins bind specifically to glycosaminoglycan (GAG) chains of proteoglycans, showing a preference based on the degree of sulfation. Structural analysis of Sema2b unveiled multiple GAG-binding sites positioned outside canonical plexin-binding site, with the highest affinity binding site located at the C-terminal tail, characterized by a lysine-rich helical arrangement that appears to be conserved across secreted semaphorins. In vivo studies revealed a crucial role of the Sema2b C-terminal tail in specifying the trajectory of olfactory receptor neurons. We propose that secreted semaphorins tether to the cell surface through interactions with GAG chains of proteoglycans, facilitating their presentation to cognate receptors on passing axons.


Assuntos
Orientação de Axônios , Proteínas de Drosophila , Proteoglicanas , Semaforinas , Transdução de Sinais , Animais , Semaforinas/metabolismo , Semaforinas/genética , Proteoglicanas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Axônios/metabolismo , Drosophila melanogaster/metabolismo , Glicosaminoglicanos/metabolismo , Sítios de Ligação , Ligação Proteica , Neurônios Receptores Olfatórios/metabolismo
8.
Hum Mol Genet ; 33(5): 448-464, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-37975905

RESUMO

Biallelic mutations in interphotoreceptor matrix proteoglycan 2 (IMPG2) in humans cause retinitis pigmentosa (RP) with early macular involvement, albeit the disease progression varies widely due to genetic heterogeneity and IMPG2 mutation type. There are currently no treatments for IMPG2-RP. To aid preclinical studies toward eventual treatments, there is a need to better understand the progression of disease pathology in appropriate animal models. Toward this goal, we developed mouse models with patient mimicking homozygous frameshift (T807Ter) or missense (Y250C) Impg2 mutations, as well as mice with a homozygous frameshift mutation (Q244Ter) designed to completely prevent IMPG2 protein expression, and characterized the trajectory of their retinal pathologies across postnatal development until late adulthood. We found that the Impg2T807Ter/T807Ter and Impg2Q244Ter/Q244Ter mice exhibited early onset gliosis, impaired photoreceptor outer segment maintenance, appearance of subretinal deposits near the optic disc, disruption of the outer retina, and neurosensorial detachment, whereas the Impg2Y250C/Y250C mice exhibited minimal retinal pathology. These results demonstrate the importance of mutation type in disease progression in IMPG2-RP and provide a toolkit and preclinical data for advancing therapeutic approaches.


Assuntos
Proteoglicanas , Retinose Pigmentar , Humanos , Animais , Camundongos , Adulto , Proteoglicanas/genética , Retina , Mutação , Retinose Pigmentar/genética , Progressão da Doença
9.
Nat Rev Mol Cell Biol ; 15(12): 771-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25370693

RESUMO

The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.


Assuntos
Matriz Extracelular/química , Matriz Extracelular/metabolismo , Animais , Membrana Basal/química , Membrana Basal/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Humanos , Neurônios/citologia , Proteoglicanas/metabolismo
10.
Nature ; 577(7791): 537-542, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830756

RESUMO

Our understanding of how human embryos develop before gastrulation, including spatial self-organization and cell type ontogeny, remains limited by available two-dimensional technological platforms1,2 that do not recapitulate the in vivo conditions3-5. Here we report a three-dimensional (3D) blastocyst-culture system that enables human blastocyst development up to the primitive streak anlage stage. These 3D embryos mimic developmental landmarks and 3D architectures in vivo, including the embryonic disc, amnion, basement membrane, primary and primate unique secondary yolk sac, formation of anterior-posterior polarity and primitive streak anlage. Using single-cell transcriptome profiling, we delineate ontology and regulatory networks that underlie the segregation of epiblast, primitive endoderm and trophoblast. Compared with epiblasts, the amniotic epithelium shows unique and characteristic phenotypes. After implantation, specific pathways and transcription factors trigger the differentiation of cytotrophoblasts, extravillous cytotrophoblasts and syncytiotrophoblasts. Epiblasts undergo a transition to pluripotency upon implantation, and the transcriptome of these cells is maintained until the generation of the primitive streak anlage. These developmental processes are driven by different pluripotency factors. Together, findings from our 3D-culture approach help to determine the molecular and morphogenetic developmental landscape that occurs during human embryogenesis.


Assuntos
Técnicas de Cultura de Células/métodos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Linha Primitiva/citologia , Linha Primitiva/embriologia , Âmnio/citologia , Âmnio/embriologia , Blastocisto/citologia , Diferenciação Celular , Linhagem da Célula , Polaridade Celular , Colágeno , Combinação de Medicamentos , Epitélio/embriologia , Gastrulação , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Humanos , Laminina , Proteoglicanas , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/metabolismo , Transcriptoma , Trofoblastos/citologia , Saco Vitelino/citologia , Saco Vitelino/embriologia
11.
Nature ; 582(7812): 405-409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32076263

RESUMO

Gastruloids are three-dimensional aggregates of embryonic stem cells that display key features of mammalian development after implantation, including germ-layer specification and axial organization1-3. To date, the expression pattern of only a small number of genes in gastruloids has been explored with microscopy, and the extent to which genome-wide expression patterns in gastruloids mimic those in embryos is unclear. Here we compare mouse gastruloids with mouse embryos using single-cell RNA sequencing and spatial transcriptomics. We identify various embryonic cell types that were not previously known to be present in gastruloids, and show that key regulators of somitogenesis are expressed similarly between embryos and gastruloids. Using live imaging, we show that the somitogenesis clock is active in gastruloids and has dynamics that resemble those in vivo. Because gastruloids can be grown in large quantities, we performed a small screen that revealed how reduced FGF signalling induces a short-tail phenotype in embryos. Finally, we demonstrate that embedding in Matrigel induces gastruloids to generate somites with the correct rostral-caudal patterning, which appear sequentially in an anterior-to-posterior direction over time. This study thus shows the power of gastruloids as a model system for exploring development and somitogenesis in vitro in a high-throughput manner.


Assuntos
Gástrula , Células-Tronco Embrionárias Murinas/citologia , Organoides/citologia , Organoides/embriologia , Análise de Célula Única , Somitos/citologia , Somitos/embriologia , Transcriptoma , Animais , Colágeno , Combinação de Medicamentos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Gástrula/citologia , Gástrula/embriologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Laminina , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Organoides/metabolismo , Proteoglicanas , RNA-Seq , Somitos/metabolismo , Fatores de Tempo
12.
EMBO J ; 40(4): e105450, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347625

RESUMO

Wnt/ß-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/ß-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/ß-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of ß-catenin to stabilize ß-catenin-TCF4 complex and facilitate the transactivation of Wnt/ß-catenin signaling targets. Accordingly, activated ß-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/ß-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.


Assuntos
Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Proteoglicanas/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteoglicanas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
13.
FASEB J ; 38(6): e23547, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498368

RESUMO

Proteoglycan 4 (PRG4) is a boundary lubricant originally identified in articular cartilage and has been since shown to have immunomodulation and antifibrotic properties. Previously, we have demonstrated that recombinant human (rh)PRG4 treatment accelerates auricular cartilage injury closure through an inhibition of the fibrotic response, and promotion of tissue regeneration in mice. The purpose of the current study was to examine the effects of rhPRG4 treatment (vs. a DMSO carried control) on full-thickness skin wound healing in a preclinical porcine model. Our findings suggest that while rhPRG4 did not significantly accelerate nor impede full-thickness skin wound closure, it did improve repair quality by decreasing molecular markers of fibrosis and increasing re-vascularization. We also demonstrated that rhPRG4 treatment increased dermal adipose tissue during the healing process specifically by retaining adipocytes in the wound area but did not inhibit lipolysis. Overall, the results of the current study have demonstrated that rhPRG4 acts as antifibrotic agent and regulates dermal adipose tissue during the healing processes resulting in a tissue with a trajectory that more resembles the native skin vs. a fibrotic patch. This study provides strong rationale to examine if rhPRG4 can improve regeneration in human wounds.


Assuntos
Cartilagem Articular , Proteoglicanas , Suínos , Humanos , Animais , Camundongos , Proteoglicanas/farmacologia , Pele
14.
Cell ; 143(5): 672-6, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21111227

RESUMO

Cells run on carbohydrates. Glycans, sequences of carbohydrates conjugated to proteins and lipids, are arguably the most abundant and structurally diverse class of molecules in nature. Recent advances in glycomics reveal the scope and scale of their functional roles and their impact on human disease.


Assuntos
Glicômica , Animais , Biomarcadores Tumorais/análise , Glicolipídeos/análise , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Neoplasias/diagnóstico , Polissacarídeos/análise , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteoglicanas/análise
15.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795180

RESUMO

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Indóis , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Sulfonamidas , Neoplasias da Glândula Tireoide , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Humanos , Animais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Indóis/farmacologia , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sulfonamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Sorafenibe/farmacologia , Quinolinas/farmacologia , Mutação , Antígenos/metabolismo , Proteoglicanas/metabolismo , Proteínas de Membrana , Proteoglicanas de Sulfatos de Condroitina
16.
Proc Natl Acad Sci U S A ; 119(11): e2113991119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271396

RESUMO

SignificanceSonic Hedgehog (Shh) is a key signaling molecule that plays important roles in embryonic patterning, cell differentiation, and organ development. Although fundamentally important, the molecular mechanisms that regulate secretion of newly synthesized Shh are still unclear. Our study reveals a role for the cargo receptor, SURF4, in facilitating export of Shh from the endoplasmic reticulum (ER) via a ER export signal. In addition, our study provides evidence suggesting that proteoglycans promote the dissociation of SURF4 from Shh at the Golgi, suggesting a SURF4-to-proteoglycan relay mechanism. These analyses provide insight into an important question in cell biology: how do cargo receptors capture their clients in one compartment, then disengage at their destination?


Assuntos
Proteínas Hedgehog , Proteínas de Membrana , Proteoglicanas , Retículo Endoplasmático/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Proteoglicanas/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135877

RESUMO

Reduced blood flow and impaired neurovascular coupling are recognized features of glaucoma, the leading cause of irreversible blindness worldwide, but the mechanisms underlying these defects are unknown. Retinal pericytes regulate microcirculatory blood flow and coordinate neurovascular coupling through interpericyte tunneling nanotubes (IP-TNTs). Using two-photon microscope live imaging of the mouse retina, we found reduced capillary diameter and impaired blood flow at pericyte locations in eyes with high intraocular pressure, the most important risk factor to develop glaucoma. We show that IP-TNTs are structurally and functionally damaged by ocular hypertension, a response that disrupted light-evoked neurovascular coupling. Pericyte-specific inhibition of excessive Ca2+ influx rescued hemodynamic responses, protected IP-TNTs and neurovascular coupling, and enhanced retinal neuronal function as well as survival in glaucomatous retinas. Our study identifies pericytes and IP-TNTs as potential therapeutic targets to counter ocular pressure-related microvascular deficits, and provides preclinical proof of concept that strategies aimed to restore intrapericyte calcium homeostasis rescue autoregulatory blood flow and prevent neuronal dysfunction.


Assuntos
Estruturas da Membrana Celular/fisiologia , Glaucoma/patologia , Pericitos/fisiologia , Retina/citologia , Retina/patologia , Animais , Antígenos , Cálcio/metabolismo , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Glaucoma/etiologia , Fenômenos Magnéticos , Masculino , Camundongos , Microesferas , Nanotubos , Regiões Promotoras Genéticas , Proteoglicanas , Vasos Retinianos/patologia , Técnicas de Cultura de Tecidos
18.
J Neurosci ; 43(24): 4405-4417, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37188512

RESUMO

Although NG2 is known to be selectively expressed in oligodendrocyte precursor cells (OPCs) for many years, its expressional regulation and functional involvement in oligodendrocyte differentiation have remained elusive. Here, we report that the surface-bound NG2 proteoglycan can physically bind to PDGF-AA and enhances PDGF receptor alpha (PDGFRα) activation of downstream signaling. During differentiation stage, NG2 protein is cleaved by A disintegrin and metalloproteinase with thrombospondin motifs type 4 (Adamts4), which is highly upregulated in differentiating OPCs but gradually downregulated in mature myelinating oligodendrocytes. Genetic ablation of Adamts4 gene impedes NG2 proteolysis, leading to elevated PDGFRα signaling but impaired oligodendrocyte differentiation and axonal myelination in both sexes of mice. Moreover, Adamts4 deficiency also lessens myelin repair in adult brain tissue following Lysophosphatidylcholine-induced demyelination. Thus, Adamts4 could be a potential therapeutic target for enhancing oligodendrocyte differentiation and axonal remyelination in demyelinating diseases.SIGNIFICANCE STATEMENT NG2 is selectively expressed in OPCs and downregulated during differentiation stage. To date, the molecular mechanism underlying the progressive removal of NG2 surface proteoglycan in differentiating OPCs has been unknown. In this study, we demonstrate that ADAMTS4 released by differentiating OPCs cleaves surface NG2 proteoglycan, attenuates PDGFRα signaling, and accelerates oligodendrocyte differentiation. In addition, our study also suggests ADAMTS4 as a potential therapeutic target for promoting myelin recovery in demyelinating diseases.


Assuntos
Doenças Desmielinizantes , Remielinização , Masculino , Feminino , Camundongos , Animais , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Bainha de Mielina/metabolismo , Proteoglicanas/genética , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo
19.
J Cell Mol Med ; 28(1): e18039, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37968862

RESUMO

Sleep apnea syndrome (SAS) exposes cells throughout the body to intermittent hypoxia (IH). Intermittent hypoxia is a risk factor not only for hypertension and insulin resistance but also for vascular dysfunction. We have reported correlations between IH, insulin resistance and hypertension. However, the details of why IH leads to vascular dysfunction remain unclear. In this study, we investigated inflammation-related transcripts in vascular endothelial cells (human HUEhT-1 and mouse UV2) exposed to IH by real-time RT-PCR and found that intercellular adhesion molecule-1 (ICAM-1) and endothelial cell-specific molecule-1 (ESM1) mRNAs were significantly increased. ELISA confirmed that, in the UV2 cell medium, ICAM-1 and ESM1 were significantly increased by IH. However, the promoter activities of ICAM-1 and ESM1 were not upregulated. On the other hand, IH treatment significantly decreased microRNA (miR)-181a1 in IH-treated cells. The introduction of miR-181a1 mimic but not miR-181a1 mimic NC abolished the IH-induced upregulation of Ican-1 and ESM1. These results indicated that ICAM-1 and ESM1 were upregulated by IH via the IH-induced downregulation of miR-181a1 in vascular endothelial cells and suggested that SAS patients developed atherosclerosis via the IH-induced upregulation of ICAM-1 and ESM1.


Assuntos
Hipertensão , Resistência à Insulina , MicroRNAs , Animais , Humanos , Camundongos , Regulação para Baixo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Molécula 1 de Adesão Intercelular/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteoglicanas/metabolismo , Fatores de Transcrição/metabolismo
20.
J Physiol ; 602(9): 1939-1951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606903

RESUMO

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Assuntos
Aterosclerose , Inflamação , Camundongos Knockout , Proteoglicanas , Receptores de LDL , Proteínas Recombinantes , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Feminino , Proteoglicanas/farmacologia , Proteoglicanas/metabolismo , Proteoglicanas/genética , Receptores de LDL/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Camundongos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células Espumosas/metabolismo , Células Espumosas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA