Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Cell Mol Life Sci ; 77(3): 395-413, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31768608

RESUMO

Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed 'reverse CCR' (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.


Assuntos
Carbono/metabolismo , Repressão Catabólica/fisiologia , Pseudomonadaceae/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Humanos , Fenótipo
2.
Chem Biodivers ; 18(12): e2100516, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609783

RESUMO

Bacterial endophytes are known to protect Vitis vinifera L. against various harmful effects of the environment and support its growth. However, for the most part, biochemical responses of such co-existence have not yet been fully elucidated. In this work, we aimed to characterize the activities of endophytic consortia in a plant-endophyte extract by measuring five indicators of colonization (overall endophyte metabolic activity, microbial ACC deaminase activity, ability to solubilize phosphorus, ability to convert atmospheric nitrogen to ammonia ions, and ability to produce growth promoting indole acetic acid), and find relationships between these activities and metabolome. The V. vinifera canes for the metabolomics fingerprinting were extracted successively with water and methanol, and analysed by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. For data processing, the MS-DIAL - MS-CleanR - MS-FINDER software platform was used, and the data matrix was processed by PCA and PLS-DA multivariate statistical methods. The metabolites that were upregulated with the heavy endophyte colonization were mainly chlorins, phenolics, flavonoid and terpenoid glycosides, tannins, dihydropyranones, sesquiterpene lactones, and long-chain unsaturated fatty acids.


Assuntos
Endófitos/metabolismo , Metabolômica , Vitis/química , Bacillaceae/metabolismo , Enterobacteriaceae/metabolismo , Micrococcaceae/metabolismo , Pseudomonadaceae/metabolismo , Vitis/metabolismo
3.
Nat Prod Rep ; 37(1): 29-54, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436775

RESUMO

Bacteria of the genus Pseudomonas are ubiquitous in nature. Pseudomonads display a fascinating metabolic diversity, which correlates with their ability to colonize an extremely wide range of ecological niches. As a result, these bacteria are a prolific source of natural products. Biosynthesis of the latter is often orchestrated by arrays of chemical signals arising from intraspecies communication or interspecies relationships with bacteria, fungi, amoebae, plants, and insects. Especially nonribosomal lipopeptides, which have diverse biological activities, play important roles in the lifestyle of pseudomonads. In this review, we will focus on the molecular structures, properties, biosynthetic pathways, and biological functions of pseudomonal lipopeptides. This review is not only addressed to bio/chemists rather it serves as a comprehensive guide for all researchers (micro/biologists, ecologists, and environmental scientists) working in this multidisciplinary field.


Assuntos
Lipopeptídeos/biossíntese , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Pseudomonadaceae/metabolismo , Interações Hospedeiro-Patógeno , Estrutura Molecular , Plantas/microbiologia , Pseudomonadaceae/fisiologia , Pseudomonas/metabolismo , Pseudomonas/patogenicidade , Rizosfera , Ribossomos/metabolismo , Microbiologia do Solo
4.
Environ Microbiol ; 22(4): 1447-1466, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32011068

RESUMO

Siderophores are iron-chelating molecules produced by bacteria to access iron, a key nutrient. These compounds have highly diverse chemical structures, with various chelating groups. They are released by bacteria into their environment to scavenge iron and bring it back into the cells. The biosynthesis of siderophores requires complex enzymatic processes and expression of the enzymes involved is very finely regulated by iron availability and diverse transcriptional regulators. Recent data have also highlighted the organization of the enzymes involved in siderophore biosynthesis into siderosomes, multi-enzymatic complexes involved in siderophore synthesis. An understanding of siderophore biosynthesis is of great importance, as these compounds have many potential biotechnological applications because of their metal-chelating properties and their key role in bacterial growth and virulence. This review focuses on the biosynthesis of siderophores produced by fluorescent Pseudomonads, bacteria capable of colonizing a large variety of ecological niches. They are characterized by the production of chromopeptide siderophores, called pyoverdines, which give the typical green colour characteristic of fluorescent pseudomonad cultures. Secondary siderophores are also produced by these strains and can have highly diverse structures (such as pyochelins, pseudomonine, yersiniabactin, corrugatin, achromobactin and quinolobactin).


Assuntos
Pseudomonadaceae/metabolismo , Sideróforos/biossíntese , Ferro/metabolismo , Metabolismo Secundário
5.
Mol Biol Rep ; 46(3): 3357-3370, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997598

RESUMO

About 24 h incubation of Azomonas (A.) macrocytogenes isolate KC685000 in 14L fermenter produced 22% poly (3-hydroxybutyrate) (PHB) per cell dry weight (CDW) biopolymer using 1 vvm aeration, 10% inoculum size, and initial pH of 7.2. To control the fermentation process, Logistic and Leudeking-Piret models were used to describe the cell growth and PHB production, respectively. These two models were in good agreement with the experimental data confirming the growth associated nature of PHB production. The best method for recovery of PHB was chemical digestion using sodium hypochlorite alone. The characterization of the produced polymer was carried out using FT-IR, 1HNMR spectroscopy, gel permeation chromatography and transmission electron microscope. The analysis of the nucleotide sequences of PHA synthase enzyme revealed class III identity. The putative tertiary structure of PHA synthase enzyme was analyzed using Modular Approach to Structural class prediction software, Tied Mixture Hidden Markov Model server, and Swiss model software. It was deduced that PHA synthases' structural class was multidomain protein (α/ß) containing a conserved cysteine residue and lipase box as characteristic features of α/ß hydrolase super family. Taken together, all the results of molecular characterization and transmission electron microscope images supported that the PHB formation was attained by the micelle model. To the best of our knowledge, this is the first report on production of growth associated PHB polymer using A. macrocytogenes isolate KC685000, and its class III PHA synthase.


Assuntos
Ácido 3-Hidroxibutírico/biossíntese , Ácido 3-Hidroxibutírico/isolamento & purificação , Pseudomonadaceae/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Sequência de Bases , Cinética , Polímeros , Pseudomonadaceae/genética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
6.
Food Microbiol ; 77: 166-172, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30297047

RESUMO

Microbial spoilage is a complex event to which different bacterial populations and metabolites can contribute depending on the storage conditions. This study explored the evolution of spoilage and related volatile organic compounds (VOCs) in chilled beef under air and vacuum packaging (VP). The results suggested that different storage conditions affected changes in bacterial communities and metabolites in beef and consequently affected the odor properties of the stored beef, thereby leading to spoilage. Bacterial species belonging to Pseudomonadaceae (Pseudomonas spp.) and lactic acid bacteria (Lactobacillus sp.) dominated the bacterial communities in beef stored under air and VP, respectively, with several VOCs associated with off-odors of the stored beef and most likely produced by both bacteria. Our results suggested several microbial VOCs that could be used as potential spoilage indicators, including acetic acid, butanoic acid, and 2-butanone in VP-stored beef and 3-methylbutan-1-ol, ethyl acetate, acetoin, 2-butanone, and diacetyl in air-stored beef. These findings might provide valuable information regarding the quality monitoring of beef during storage.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Temperatura Baixa , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Microbiota , Carne Vermelha/microbiologia , Ar , Animais , Bactérias/crescimento & desenvolvimento , Biodiversidade , Bovinos , Contagem de Colônia Microbiana , Armazenamento de Alimentos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Odorantes/análise , Pseudomonadaceae/crescimento & desenvolvimento , Pseudomonadaceae/metabolismo , Vácuo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
7.
J Appl Microbiol ; 121(6): 1627-1636, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27709740

RESUMO

AIMS: Microbial community associated with hydrogen production and volatile fatty acids (VFAs) accumulation was characterized in acidogenic hydrogenesis using molasses wastewater as a feedstock. METHODS AND RESULTS: Hydrogen and VFAs production were measured under an organic loading rate (OLR) from 19 to 35 g-COD l-1  day-1 . The active microbial community was analysed using RNA-based massively parallel sequencing technique, and their correlation patterns were analysed using networking analysis. The continuous stirred tank reactor achieved stable hydrogen production at different OLR conditions, and the maximum hydrogen production rate (HPR) was 1·02 L-H2  l-1  day-1 at 31·0 g-COD l-1  day-1 . Butyrate (50%) and acetate (38%) positively increased with increase in OLR. Total VFA production stayed around 7135 mg l-1 during the operation period. Although Clostridiales and Lactobacillales were relatively abundant, the HPR was positively associated with Pseudomonadaceae and Micrococcineae. Total VFA and acetate, butyrate and propionate concentrations were positively correlated with lactic acid bacteria (LAB) such as Bacillales, Sporolactobacillus and Lactobacillus. CONCLUSIONS: The close relationship between Pseudomonadaceae and Micrococcineae, and LAB play important roles for stable hydrogen and VFA production from molasses wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: Microbial information on hydrogen and VFA production can be useful to design and operate for acidogenic hydrogenesis using high strength molasses wastewater.


Assuntos
Bactérias/metabolismo , Ácidos Graxos Voláteis/biossíntese , Hidrogênio/metabolismo , Melaço , Águas Residuárias , Actinobacteria/metabolismo , Pseudomonadaceae/metabolismo
8.
J Ind Microbiol Biotechnol ; 43(6): 795-805, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27033535

RESUMO

Removal of 3-nitro-1,2,4-triazol-5-one (NTO) was investigated in conjunction with heterotrophic and autotrophic denitrifying growth conditions by a microbial consortium from a wastewater treatment plant. Microcosms were supplemented with molasses, methanol, or thiosulfate. Cultures were passaged twice by transferring 10 % of the culture volume to fresh media on days 11 and 21. Rates of NTO removal were 18.71 ± 0.65, 9.04 ± 2.61, and 4.34 ± 2.72 mg/L/day while rates of nitrate removal were 20.08 ± 1.13, 21.58 ± 1.20, and 24.84 ± 1.26 mg/L/day, respectively, for molasses, methanol, or thiosulfate. Metagenomic analysis showed that Proteobacteria and Firmicutes were the major phyla in the microbial communities. In molasses supplemented cultures, the community profile at the family level changed over time with Pseudomonadaceae the most abundant (67.4 %) at day 11, Clostridiaceae (65.7 %) at day 21, and Sporolactobacillaceae (35.4 %) and Clostridiaceae (41.0 %) at day 29. Pseudomonadaceae was the dominant family in methanol and thiosulfate supplemented cultures from day 21 to 29 with 76.6 and 81.6 % relative abundance, respectively.


Assuntos
Desnitrificação , Metagenômica/métodos , Nitrocompostos/química , Triazóis/química , Águas Residuárias/química , Clostridiaceae/isolamento & purificação , Clostridiaceae/metabolismo , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Consórcios Microbianos , Nitratos/análise , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/metabolismo , Águas Residuárias/microbiologia
9.
Water Sci Technol ; 73(3): 643-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877048

RESUMO

Due to widespread utilization in many industrial spheres and agrochemicals, N-methyl-2-pyrrolidone (NMP) is a potential contaminant of different surface water ecosystems. Hence, investigation was made into its aerobic microbial degradability in samples of water from a river, wetland area and spring. The results showed that the compound was degradable in all water types, and that the fastest NMP removal occurred in 4 days in river water, while in the wetland and spring samples the process was relatively slow, requiring several months to complete. Key bacterial degraders were successfully isolated in all cases, and their identification proved that pseudomonads played a major role in NMP degradation in river water, while the genera Rhodococcus and Patulibacter fulfilled a similar task in the wetland sample. Regarding spring water, degrading members of the Mesorhizobium and Rhizobium genera were found.


Assuntos
Bactérias/metabolismo , Nascentes Naturais/análise , Pirrolidinonas/metabolismo , Rios/química , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Actinobacteria/metabolismo , República Tcheca , Nascentes Naturais/microbiologia , Pseudomonadaceae/metabolismo , Rhodococcus/metabolismo , Rios/microbiologia , Fatores de Tempo
10.
Water Sci Technol ; 65(11): 2003-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22592471

RESUMO

Industrial production leads to toxic heavy metal pollution in water bodies. Copper is one of the examples that requires removal from effluents before being discharged. It is difficult and sometimes very expensive to remove toxic heavy metals by conventional treatment techniques. This study aims to remove copper by the use of bacterial alginate as a non-conventional technique. Bacterial alginates (natural polymers composed of mannuronic and guluronic acid monomers) were synthesized by Azotobacter vinelandii ATCC(®) 9046 in a laboratory fermentor under controlled environmental conditions. The alginates produced, with a range of different characteristics in terms of monomer distribution and viscosity, were investigated for maximum copper uptake capacities. The average copper uptake capacities of alginates produced were found to be about 1.90 mmol/L Cu(2+)/g alginate. Although the GG-block amount of alginates was varied from 12 to 87% and culture broth viscosities were changed within the range of 1.47 and 14 cP, neither the block distribution nor viscosities of alginate samples considerably affected the copper uptake of alginates.


Assuntos
Alginatos/química , Alginatos/metabolismo , Cobre/química , Pseudomonadaceae/metabolismo , Poluentes Químicos da Água/química , Purificação da Água/métodos , Fermentação , Pseudomonadaceae/química
11.
J Appl Microbiol ; 111(2): 456-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21624018

RESUMO

AIMS: Fluorescent pseudomonads are widely used as bioinoculants for improving plant growth and controlling phytopathogenic fungi. Piriformospora indica (Pi), a symbiotic root endophyte, also has beneficial effects on a number of plants. The present study focuses on the improvement of growth yields of tomato plants and control of Fusarium wilt using inorganic carrier-based formulations of two fluorescent pseudomonad strains (R62 and R81) and Pi. METHODS AND RESULTS: The inorganic carrier-based formulations of pseudomonad strains and Pi were tested for plant growth promotion of tomato plants under glass house and field conditions. In controlled glass house experiments, 8·8-fold increase in dry root weight and 8·6-fold increase in dry shoot weight were observed with talcum powder-based consortium formulation of R81 and Pi. Field trial experiments ascertained the glfass house results with a considerable amount of increase in plant growth responses, and amongst all the treatments, R81 + Pi treatment performed consistently well in field conditions with an increase of 2·6-, 3·1- and 3·9-fold increase in dry root weight, shoot weight and fruit yield, respectively. The fluorescent pseudomonad R81 and Pi also acted as biocontrol agents, as their treatments could control the incidence of wilt disease caused by Fusarium oxysporum f.sp. lycopersici in tomato plants under glass house conditions. CONCLUSIONS: The culture broths of pseudomonads R62, R81 and Pi were successfully used for development of talcum- and vermiculite-based bioinoculant formulations. In controlled glasshouse experiments, the talcum-based bioinoculant formulations performed significantly better over vermiculite-based formulations. In field experiments the talcum-based consortium formulation of pseudomonad R81 and Pi was most effective. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests that the formulations of pseudomonad strains (R62 and R81) and Pi can be used as bioinoculants for improving the productivity of tomato plants. The application of such formulations is a step forward towards sustainable agriculture.


Assuntos
Antibiose , Basidiomycota/fisiologia , Fusarium/crescimento & desenvolvimento , Pseudomonadaceae/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Meios de Cultura , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Testes de Sensibilidade Microbiana , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Pseudomonadaceae/metabolismo
12.
Prikl Biokhim Mikrobiol ; 47(3): 302-7, 2011.
Artigo em Russo | MEDLINE | ID: mdl-21790030

RESUMO

New strains of rhizosphere microorganisms Azotobacter chroococcum Az d10, Bacillus megaterium P1-04, and Bacillus mucilaginosus B-1574 were found to be able to synthesize cytokinins (CKs) and indolylacetic acid (IAA). Three forms of CKs-dihydrozeatin riboside, isopentenyl adenosine, and trans-zeatin riboside-were identified, whose ratio was different in the three bacterial cultures. Inoculation of cucumber (Cucumis sativus L.) plants increased the content of CKs and IAA in them by 35.6 and 21.3%, respectively, and also stimulated seed germination and increased the growth rate, the biomass of shoots, the number of lateral roots, and the root hair area, which ensured better plant nutrition. The IAA/CKs ratio shifted during bacterization towards CKs due to increase in the content of riboside forms, which apparently caused growth stimulation.


Assuntos
Cucumis sativus/efeitos dos fármacos , Citocininas/farmacologia , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Bacillus megaterium/metabolismo , Cromatografia em Camada Fina , Cucumis sativus/crescimento & desenvolvimento , Citocininas/biossíntese , Ensaio de Imunoadsorção Enzimática , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Pseudomonadaceae/metabolismo , Rizosfera , Simbiose
13.
Nat Plants ; 7(5): 644-654, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972713

RESUMO

Maintaining microbiome structure is critical for the health of both plants and animals. By re-screening a collection of Arabidopsis mutants affecting root immunity and hormone crosstalk, we identified a FERONIA (FER) receptor kinase mutant (fer-8) with a rhizosphere microbiome enriched in Pseudomonas fluorescens without phylum-level dysbiosis. Using microbiome transplant experiments, we found that the fer-8 microbiome was beneficial. The effect of FER on rhizosphere pseudomonads was largely independent of its immune scaffold function, role in development and jasmonic acid autoimmunity. We found that the fer-8 mutant has reduced basal levels of reactive oxygen species (ROS) in roots and that mutants deficient in NADPH oxidase showed elevated rhizosphere pseudomonads. The addition of RALF23 peptides, a FER ligand, was sufficient to enrich P. fluorescens. This work shows that FER-mediated ROS production regulates levels of beneficial pseudomonads in the rhizosphere microbiome.


Assuntos
Proteínas de Arabidopsis/fisiologia , Fosfotransferases/fisiologia , Pseudomonas fluorescens/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rizosfera , Microbiologia do Solo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfotransferases/metabolismo , Pseudomonadaceae/metabolismo , Pseudomonadaceae/fisiologia , Pseudomonas fluorescens/fisiologia
14.
Microbiol Spectr ; 9(1): e0045221, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378950

RESUMO

A group of 11 bacterial strains was isolated from streams and lakes located in a deglaciated northern part of James Ross Island, Antarctica. They were rod-shaped, Gram-stain-negative, motile, and catalase-positive and produced blue-violet-pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, automated ribotyping, repetitive element sequence-based PCR (rep-PCR), MALDI-TOF MS, fatty acid profile, chemotaxonomy analyses, and extensive biotyping was applied in order to clarify the taxonomic position of these isolates. Phylogenetic analysis based on the 16S rRNA gene indicated that all the isolates constituted a coherent group belonging to the genus Rugamonas. The closest relatives to the representative isolate P5900T were Rugamonas rubra CCM 3730T, Rugamonas rivuli FT103WT, and Rugamonas aquatica FT29WT, exhibiting 99.2%, 99.1%, and 98.6% 16S rRNA pairwise similarity, respectively. The average nucleotide identity and digital DNA-DNA hybridization values calculated from the whole-genome sequencing data clearly proved that P5900T represents a distinct Rugamonas species. The G+C content of genomic DNAs was 66.1 mol%. The major components in fatty acid profiles were summed feature 3 (C16:1ω7c/C16:1ω6c), C 16:0, and C12:0. The cellular quinone content contained exclusively ubiquinone Q-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The polyamine pattern was composed of putrescine, 2-hydroxputrescine, and spermidine. IMPORTANCE Our polyphasic approach provides a new understanding of the taxonomy of novel pigmented Rugamonas species isolated from freshwater samples in Antarctica. The isolates showed considerable extracellular bactericidal secretions. The antagonistic activity of studied isolates against selected pathogens was proved by this study and implied the importance of such compounds' production among aquatic bacteria. The psychrophilic and violacein-producing species Roseomonas violacea may play a role in the diverse consortium among pigmented bacteria in the Antarctic water environment. Based on all the obtained results, we propose a novel species for which the name Rugamonas violacea sp. nov. is suggested, with the type strain P5900T (CCM 8940T; LMG 32105T). Isolates of R. violacea were obtained from different aquatic localities, and they represent the autochthonous part of the water microbiome in Antarctica.


Assuntos
Indóis/metabolismo , Filogenia , Pseudomonadaceae/classificação , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/metabolismo , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Lagos , Pseudomonadaceae/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo
15.
J Food Prot ; 73(2): 385-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20132689

RESUMO

A total of 364 bacterial isolates, obtained from spinach leaves, were assayed in a decarboxylase broth containing histidine, lysine, and ornithine to check their ability to produce biogenic amines, and then quantified by high-performance liquid chromatography. Among these isolates, 240 formed cadaverine, 208 formed putrescine, and 196 formed histamine, in widely varying amounts. They frequently produced more than one biogenic amine. Klebsiella pneumoniae subsp. pneumoniae and Morganella morganii were the main histamine producers, with mean values of 1,600 and 2,440 mg/liter, respectively, followed by Pantoea spp. 3 (1,710 mg/liter) and Hafnia alvei (2,500 mg/liter). Enterobacter amnigenus and Enterobacter cloacae produced particularly high amounts of putrescine, with mean values of 2,340 and 2,890 mg/liter, respectively. The strongest cadaverine formation was shown by Serratia liquefaciens (3,300 mg/liter), Serratia marcescens (3,280 mg/liter), and Stenotrophomonas maltophilia (1,000 mg/liter).


Assuntos
Aminas Biogênicas/biossíntese , Enterobacteriaceae/metabolismo , Contaminação de Alimentos/análise , Pseudomonadaceae/metabolismo , Spinacia oleracea/microbiologia , Cadaverina/biossíntese , Cromatografia Líquida de Alta Pressão , Enterobacteriaceae/isolamento & purificação , Histamina/biossíntese , Pseudomonadaceae/isolamento & purificação , Putrescina/biossíntese , Especificidade da Espécie
16.
Environ Toxicol ; 25(5): 479-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20549622

RESUMO

Contaminated site assessment and monitoring requires efficient risk-management tools including innovative environmental toxicity tests. The first application of microcalorimetry for toxicity testing draw the attention to a possible new tool to increase sensitivity, to eliminate matrix effect and to study effect-mechanism. A Thermal Activity Monitor (TAM) microcalorimeter was used for measuring the heat production of various test organisms when getting in contact with sterile toxic soils. Well known bacterial (Azomonas agilis), animal (Folsomia candida) and plant test organisms (Sinapis alba) were tested for heat production. The heat response of selected testorganisms was measured in case of metal (Cu and Zn) and organic pollutant (Diesel oil, DBNPA and PCP) contaminated soils. In addition to the quantitative determination of the heat production, the mechanism of the toxic effect can be characterized from the shape of the power-time curve (slope of the curve, height and time of the maximum). In certain concentration ranges the higher the pollutant concentration of the soil the lower the maximum of the time-heat curve. At low pollutant concentrations an increased heat production was measured in case of A. agile and 20 and 200 mg Zn kg(-1) soil. The microcalorimetric testing was more sensitive in all cases than the traditional test methods. Our results showed that the microcalorimetric test method offers a new and sensitive option in environmental toxicology, both for research and routine testing.


Assuntos
Artrópodes/efeitos dos fármacos , Calorimetria/métodos , Monitoramento Ambiental/métodos , Pseudomonadaceae/efeitos dos fármacos , Sinapis/efeitos dos fármacos , Poluentes do Solo/toxicidade , Testes de Toxicidade/métodos , Animais , Artrópodes/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Metais/toxicidade , Microquímica , Compostos Orgânicos/toxicidade , Pseudomonadaceae/metabolismo , Sinapis/metabolismo , Fatores de Tempo
17.
Biochim Biophys Acta Biomembr ; 1861(12): 183060, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31499020

RESUMO

In recent years, hopanoids, a group of pentacyclic compounds found in bacterial membranes, are in the spotlight since it was proposed that they induce order in lipid membranes in a similar way cholesterol do in eukaryotes, despite their structural differences. We studied here whether diplopterol (an abundant hopanoid) promoted similar effects on model membranes as sterols do. We analyzed the compaction, dynamics, phase segregation, permeability and compressibility of model membranes containing diplopterol, and compared with those containing sterols from animals, plants and fungi. We also tested the effect that the incubation with diplopterol had on hopanoid-lacking bacteria. Our results show that diplopterol induces phase segregation, increases lipid compaction, and decreases permeability on phospholipid membranes, while retaining membrane fluidity and compressibility. Furthermore, the exposition to this hopanoid decreases the permeability of the opportunistic pathogen Pseudomonas aeruginosa and increases the resistance to antibiotics. All effects promoted by diplopterol were similar to those generated by the sterols. Our observations add information on the functional significance of hopanoids as molecules that play an important role in membrane organization and dynamics in model membranes and in a bacterial system.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Membrana Celular/química , Triterpenos/metabolismo , Membrana Celular/fisiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/fisiologia , Membranas/química , Membranas/fisiologia , Modelos Biológicos , Permeabilidade , Fosfolipídeos/química , Fosfolipídeos/fisiologia , Pseudomonadaceae/metabolismo , Esteróis/química , Triterpenos/farmacologia
18.
Food Microbiol ; 25(7): 915-21, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18721682

RESUMO

The changes in microbial flora of minced pork during aerobic storage at 0, 5, 10 and 15 degrees C were studied. Minced pork samples (100g) were packed using two types of packaging films: (a) a common food film with high permeability (HPF) and (b) a film with low permeability (LPF). The respiratory activity of meat microflora and the use of a LPF resulted in a modified atmosphere in the package headspace developed during storage. Oxygen concentration decreased from 18.7% (after packaging) to 7% (after 15 days of storage) in packages with LPF, stored at 0 degrees C, while CO(2) increased from 3% to 10.5%, respectively. On the contrary, no significant atmosphere changes were observed during storage of HPF packages. The self-developed modified atmosphere in LPF packages resulted in a significant inhibition of pseudomonad growth which was more pronounced at low storage temperatures. For example, during storage at 0 degrees C, the growth rate of pseudomonads in meat packed with LPF was reduced by 48.7% compared to HPF. At 10 degrees C the latter reduction decreased to 13.7%. LPF packaging was also found to inhibit the growth of Brochothrix thermosphacta but this inhibition was weaker compared to pseudomonads. The effect of storage temperature on the growth rate of pseudomonads and B. thermosphacta in minced pork packed with the different films was modeled using an Arrhenius equation. For both bacteria, the activation energy was higher for LPF packaging. This can be attributed to the increased inhibitory effect of the modified atmosphere at lower storage temperature. The Arrhenius model was further used to evaluate the effect of temperature on the time required by the two bacteria to reach a spoilage level of 10(7)CFU/g. The results showed that when LPF packaging is combined with effective temperature control the time-to-spoilage can be significantly extended compared to HPF packaging.


Assuntos
Bactérias/crescimento & desenvolvimento , Embalagem de Alimentos/instrumentação , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Produtos da Carne/microbiologia , Pseudomonadaceae/crescimento & desenvolvimento , Animais , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Contagem de Colônia Microbiana , Comportamento do Consumidor , Qualidade de Produtos para o Consumidor , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Humanos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Produtos da Carne/normas , Oxigênio/metabolismo , Permeabilidade , Pseudomonadaceae/metabolismo , Suínos , Temperatura , Fatores de Tempo
19.
Plant Physiol Biochem ; 130: 277-288, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30036857

RESUMO

The inoculation of tree species with plant growth-promoting bacteria (PGPB) has emerged as an important strategy for the acclimation of seedlings by improving plant tolerance to biotic and abiotic stresses. This study aimed to evaluate the effects of inoculation with bacterial species (Azospirillum brasilense - Ab-V5, Bacillus sp., Azomonas sp. and Azorhizophillus sp.) on the growth and physiology of the Neotropical tree species Trema micrantha and Cariniana estrellensis under drought conditions. When associated with Ab-V5 and Azomonas sp., T. micrantha showed increased protein in the leaves, starch in the leaves and roots, photosynthesis, instantaneous carboxylation efficiency and root and shoot dry mass. Moreover, there were reductions in hydrogen peroxide, lipid peroxidation, water potential and proline. In C. estrellensis associated with Ab-V5, higher values of photosynthesis and instantaneous carboxylation efficiency were observed, in addition to higher starch content in the leaves and roots and higher protein content in the leaves; lower hydrogen peroxide and lipid peroxidation contents were also observed. The associations of T. micrantha with Ab-V5 and Azomonas sp. and C. estrellensis with Ab-V5 favored the activation of metabolic processes under drought, leading to greater drought tolerance. This work demonstrates the effects of compatible associations of Neotropical tree and PGPB species and suggests that the identification of compatible PGPB strains can result in tree seedlings with increased tolerance to abiotic stresses, such as drought.


Assuntos
Azospirillum brasilense/metabolismo , Bacillus/metabolismo , Lecythidaceae/fisiologia , Pseudomonadaceae/metabolismo , Plântula/fisiologia , Árvores/fisiologia , Trema/fisiologia , Desidratação , Lecythidaceae/microbiologia , Peroxidação de Lipídeos , Fotossíntese , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Prolina/metabolismo , Plântula/microbiologia , Amido/metabolismo , Árvores/microbiologia , Trema/microbiologia
20.
Talanta ; 182: 536-543, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29501189

RESUMO

The identification of microorganisms is very important in different fields and alternative methods are necessary for a rapid and simple identification. The use of fatty acids for bacterial identification is gaining attention as phenotypic characteristics are reflective of the genotype and are more easily analyzed. In this work, gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) was used to determine bacteria fatty acid methyl esters (FAMEs), to identify and discriminate different environmental bacteria based on their fatty acid profile. Microorganisms were grown in agar and their fatty acids extracted, saponified, and esterified before analysis. Unique FAME profiles were obtained for each microorganism mainly composed of branched, cyclopropane, hydroxy, saturated, and unsaturated fatty acid methyl esters. S. maltophilia showed a higher diversity of fatty acids while Bacillus species showed higher complexity in terms of branched-chain FAMEs, with several iso and anteiso forms. 12 different bacteria genera and 15 species were successfully differentiated based on their fatty acid profiles after performing PCA and cluster analysis. Some difficult to differentiate species, such as Bacillus sp., which are genetically very similar, were differentiated with the developed method.


Assuntos
Bactérias/isolamento & purificação , Cromatografia Gasosa/métodos , Ácidos Graxos/isolamento & purificação , Água Subterrânea/microbiologia , Espectroscopia Fotoeletrônica/métodos , Aeromonadaceae/classificação , Aeromonadaceae/isolamento & purificação , Aeromonadaceae/metabolismo , Alcaligenaceae/classificação , Alcaligenaceae/isolamento & purificação , Alcaligenaceae/metabolismo , Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Bacillaceae/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Análise por Conglomerados , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Comamonadaceae/metabolismo , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Ésteres , Ácidos Graxos/química , Ácidos Graxos/classificação , Moraxellaceae/classificação , Moraxellaceae/isolamento & purificação , Moraxellaceae/metabolismo , Análise de Componente Principal , Pseudomonadaceae/classificação , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/metabolismo , Vácuo , Microbiologia da Água , Xanthomonadaceae/classificação , Xanthomonadaceae/isolamento & purificação , Xanthomonadaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA