Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 751, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090588

RESUMO

BACKGROUND: Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada. METHODS AND RESULTS: To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associations (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delimited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single candidate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene underlies the locus. CONCLUSIONS: The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution and mechanism/s of Pgt virulence on Rpg1.


Assuntos
Resistência à Doença , Estudo de Associação Genômica Ampla , Hordeum , Doenças das Plantas , Puccinia , Hordeum/microbiologia , Hordeum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Puccinia/patogenicidade , Puccinia/genética , Virulência/genética , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Genes de Plantas , Fenótipo
2.
Arch Microbiol ; 206(5): 241, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698267

RESUMO

The epidemic of stripe rust, caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), would reduce wheat (Triticum aestivum) yields seriously. Traditional experimental methods are difficult to discover the interaction between wheat and Pst. Multi-omics data analysis provides a new idea for efficiently mining the interactions between host and pathogen. We used 140 wheat-Pst RNA-Seq data to screen for differentially expressed genes (DEGs) between low susceptibility and high susceptibility samples, and carried out Gene Ontology (GO) enrichment analysis. Based on this, we constructed a gene co-expression network, identified the core genes and interacted gene pairs from the conservative modules. Finally, we checked the distribution of Nucleotide-binding and leucine-rich repeat (NLR) genes in the co-expression network and drew the wheat NLR gene co-expression network. In order to provide accessible information for related researchers, we built a web-based visualization platform to display the data. Based on the analysis, we found that resistance-related genes such as TaPR1, TaWRKY18 and HSP70 were highly expressed in the network. They were likely to be involved in the biological processes of Pst infecting wheat. This study can assist scholars in conducting studies on the pathogenesis and help to advance the investigation of wheat-Pst interaction patterns.


Assuntos
Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Doenças das Plantas , Puccinia , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , Puccinia/genética , Resistência à Doença/genética , Ontologia Genética , Regulação da Expressão Gênica de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Basidiomycota/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
3.
Phytopathology ; 114(6): 1356-1365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38114076

RESUMO

Puccinia coronata f. sp. avenae is the causal agent of the disease known as crown rust, which represents a bottleneck in oat production worldwide. Characterization of pathogen populations often involves race (pathotype) assignments using differential sets, which are not uniform across countries. This study compared the virulence profiles of 25 P. coronata f. sp. avenae isolates from Australia using two host differential sets, one from Australia and one from the United States. These differential sets were also genotyped using diversity arrays technology sequencing technology. Phenotypic and genotypic discrepancies were detected on 8 out of 29 common lines between the two sets, indicating that pathogen race assignments based on those lines are not comparable. To further investigate molecular markers that could assist in the stacking of rust resistance genes important for Australia, four published Pc91-linked markers were validated across the differential sets and then screened across a collection of 150 oat cultivars. Drover, Aladdin, and Volta were identified as putative carriers of the Pc91 locus. This is the first report to confirm that the cultivar Volta carries Pc91 and demonstrates the value of implementing molecular markers to characterize materials in breeding pools of oat. Overall, our findings highlight the necessity of examining seed stocks using pedigree and molecular markers to ensure seed uniformity and bring robustness to surveillance methodologies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Avena , Resistência à Doença , Genótipo , Doenças das Plantas , Puccinia , Avena/microbiologia , Avena/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Austrália , Puccinia/genética , Fenótipo , Virulência/genética , Estados Unidos , Marcadores Genéticos/genética , Basidiomycota/genética , Basidiomycota/fisiologia
4.
Plant Dis ; 108(6): 1659-1669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38128078

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases worldwide. In China, wheat stripe rust generally occurs in the northwestern and southwestern regions; however, the genetic relationships of Pst populations between these regions are largely unclear. To determine the population structure and potential migration route in these regions, 235 isolates collected from Xinjiang (XJ), Gansu (GS), Ningxia (NX), Shaanxi (SX), Sichuan (SC), and Yunnan (YN) provinces in 2021 and 2022 were phenotyped using two sets of Pst differentials and genotyped using 20 competitive allele-specific PCR-single nucleotide polymorphism (KASP-SNP) markers. The phenotype tests indicated that CYR34, CYR32, and CYR33 were the predominant races with different occurrence frequencies in different regions and years. Genotypic analysis revealed that a total of 183 multilocus genotypes were identified, and the genetic diversity in the YN subpopulation was the highest. The genetic background in the SX subpopulation was similar to that in the GS and NX subpopulations, and the genetic background in the YN subpopulation was similar to that in the SC and SX subpopulations. A high level of gene flow (Nm) was found between the SX and GS, SX and NX, GS and NX, and SC and YN subpopulations, suggesting the migration of Pst among these regions, while a small amount of Nm existed between the SX and SC subpopulations. SC may serve as a bridge connecting Pst subpopulations between the northwestern provinces (SX, GS, and NX) and the southwestern provinces (SC and YN). With a relatively high genetic distance and low Nm values compared with other Pst subpopulations, XJ is considered a relatively independent epidemiological region in China. These results improved our current understanding of the wheat stripe rust epidemic in northwestern and southwestern regions of China.


Assuntos
Genótipo , Doenças das Plantas , Puccinia , Triticum , China , Triticum/microbiologia , Doenças das Plantas/microbiologia , Puccinia/genética , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Variação Genética , Filogenia
5.
Plant Dis ; 108(8): 2341-2353, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38268170

RESUMO

Stripe rust of wheat and barley is caused by different formae speciales, Puccinia striiformis f. sp. tritici (Pst) and P. striiformis f. sp. hordei (Psh), respectively. To understand the relationship between the populations of the two formae speciales, a total of 260 P. striiformis isolates, including 140 from barley and 120 from wheat collected from Linzhi, Tibet, China, from 2018 to 2020, were tested on 18 barley and 13 wheat genotypes and genotyped with 26 single-nucleotide polymorphism (SNP)-based Kompetitive allele-specific PCR (KASP) markers. As a result, 260 isolates were identified as 83 virulence phenotypes (VPs), 115 of which as 9 VPs and could infect only wheat (wheat population), 111 as 54 VPs and could infect only barley (barley population), and 34 belonged to 20 VPs that could infect both wheat and barley (mixed population). Of the 149 multilocus genotypes (MLGs) that were identified, 92 were from wheat, 56 from barley, and 1 from both wheat and barley. Phenotypic and genotypic diversity was high in the populations from wheat and barley. Low linkage disequilibrium was found in most of the sampling sites of both crops, indicating strong signs of sexual reproduction (|r̄d| = 0.022 to 0.393, P = 0.004 to 0.847), whereas it was not observed in the overall population (wheat and barley sources) and the wheat, barley, and mixed populations, which may be because of the complex composition of isolates. Population structure analyses based on phenotyping and SNP-KASP genotypes supported the separation of the two formae speciales. However, MLGs and clusters containing isolates from both wheat and barley obviously indicated sexual genetic recombination between the two formae speciales. The results of the study provided an insight into evolution of Pst and Psh and showed the importance of management strategies for stripe rust of wheat and barley in regions where both crops are grown.


Assuntos
Genótipo , Hordeum , Doenças das Plantas , Puccinia , Recombinação Genética , Triticum , Tibet , Triticum/microbiologia , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Puccinia/genética , Puccinia/patogenicidade , Virulência/genética , Polimorfismo de Nucleotídeo Único , Fenótipo , Filogenia
6.
Plant Dis ; 108(8): 2454-2461, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38537139

RESUMO

Wheat yellow (stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Pst populations are composed of multiple genetic groups, each carrying one or more races characterized by different avirulence/virulence combinations. Since the severe epidemics in 2017, yellow rust has become the most economically important wheat foliar disease in Uruguay. A set of 124 Pst isolates collected from wheat fields in Uruguay between 2017 and 2021 were characterized phenotypically, and 27 of those isolates were subsequently investigated in-depth by additional molecular genotyping and race phenotyping analyses. Three genetic groups were identified, PstS7, PstS10, and PstS13, with the latter being the most prevalent. Two races previously reported in Europe, Warrior (PstS7) and Benchmark (PstS10), were detected in four and two isolates, respectively. A third race, known as Triticale2015 (PstS13), that was first detected in Europe in 2015 and in Argentina in 2017 was detected at several locations. Additional virulence to Yr3, Yr17, Yr25, Yr27, or Yr32 was detected in three new race variants within PstS13. The identification of these new races, which have not been reported outside South America, provides strong evidence of the local evolution of virulence in Pst during the recent epidemic years.


Assuntos
Doenças das Plantas , Puccinia , Triticum , Virulência/genética , Doenças das Plantas/microbiologia , Puccinia/patogenicidade , Puccinia/genética , Triticum/microbiologia , Uruguai , Genótipo , Evolução Biológica , Fenótipo , Basidiomycota/genética , Basidiomycota/patogenicidade , Basidiomycota/classificação , Basidiomycota/fisiologia
7.
Plant Dis ; 108(7): 1959-1963, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38277650

RESUMO

Puccinia coronata f. sp. avenae (Pca) is an important foliar pathogen of oat which causes crown rust disease. The virulence profile of 48 Pca isolates derived from different locations in Australia was characterized using a collection of oat lines often utilized in rust surveys in the United States and Australia. This analysis indicates that Pca populations in Eastern Australia are broadly virulent, which contrasts with the population in Western Australia (WA). Several oat lines/Pc genes are effective against all rust samples collected from WA, suggesting they may provide useful resistance in this region if deployed in combination. We identified 19 lines from the United States oat differential set that display disease resistance to Pca in WA, with some in agreement with previous rust survey reports. We adopted the 10-letter nomenclature system to define oat crown rust races in Australia and compare the frequency of those virulence traits to published data from the United States. Based on this nomenclature, 42 unique races were detected among the 48 isolates, reflecting the high diversity of virulence phenotypes for Pca in Australia. Nevertheless, the Pca population in the United States is substantially more broadly virulent than that of Australia. Close examination of resistance profiles for the oat differential set lines after infection with Pca supports hypotheses of allelism or redundancy among Pc genes or the presence of several resistance genes in some oat differential lines. These findings illustrate the need to deconvolute the oat differential set using molecular tools.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Avena , Doenças das Plantas , Puccinia , Avena/microbiologia , Doenças das Plantas/microbiologia , Austrália , Virulência/genética , Puccinia/patogenicidade , Puccinia/genética , Resistência à Doença/genética , Estados Unidos , Basidiomycota/genética , Basidiomycota/patogenicidade , Basidiomycota/fisiologia
8.
Plant Dis ; 108(7): 2197-2205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956749

RESUMO

Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.


Assuntos
Dactylis , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Puccinia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Puccinia/genética , Puccinia/fisiologia , Dactylis/genética , Dactylis/microbiologia , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Glutationa Transferase/genética , Genes de Plantas/genética , Transcriptoma , Basidiomycota/fisiologia , Basidiomycota/genética
9.
Sci Data ; 11(1): 508, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755209

RESUMO

Stripe rust fungus Puccinia striiformis f. sp. tritici (Pst) is a destructive pathogen of wheat worldwide. Pst has a macrocyclic-heteroecious lifecycle, in which one-celled urediniospores are dikaryotic, each nucleus containing one haploid genome. We successfully generated the first fully haplotype-resolved and nearly gap-free chromosome-scale genome assembly of Pst by combining PacBio HiFi sequencing and trio-binning strategy. The genome size of the two haploid assemblies was 75.59 Mb and 75.91 Mb with contig N50 of 4.17 Mb and 4.60 Mb, and both had 18 pseudochromosomes. The high consensus quality values of 55.57 and 59.02 for both haplotypes confirmed the correctness of the assembly. Of the total 18 chromosomes, 15 and 16 were gapless while there were only five and two gaps for the remaining chromosomes of the two haplotypes, respectively. In total, 15,046 and 15,050 protein-coding genes were predicted for the two haplotypes, and the complete BUSCO scores achieved 97.7% and 97.9%, respectively. The genome will lay the foundation for further research on genetic variations and the evolution of rust fungi.


Assuntos
Genoma Fúngico , Haplótipos , Puccinia , Triticum , Cromossomos Fúngicos/genética , Doenças das Plantas/microbiologia , Puccinia/genética , Triticum/microbiologia
10.
Genes (Basel) ; 15(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790172

RESUMO

Puccinia striiformis f. sp. tritici (Pst) is adept at overcoming resistance in wheat cultivars, through variations in virulence in the western provinces of China. To apply disease management strategies, it is essential to understand the temporal and spatial dynamics of Pst populations. This study aimed to evaluate the virulence and molecular diversity of 84 old Pst isolates, in comparison to 59 newer ones. By using 19 Chinese wheat differentials, we identified 98 pathotypes, showing virulence complexity ranging from 0 to 16. Associations between 23 Yr gene pairs showed linkage disequilibrium and have the potential for gene pyramiding. The new Pst isolates had a higher number of polymorphic alleles (1.97), while the older isolates had a slightly higher number of effective alleles, Shannon's information, and diversity. The Gansu Pst population had the highest diversity (uh = 0.35), while the Guizhou population was the least diverse. Analysis of molecular variance revealed that 94% of the observed variation occurred within Pst populations across the four provinces, while 6% was attributed to differences among populations. Overall, Pst populations displayed a higher pathotypic diversity of H > 2.5 and a genotypic diversity of 96%. This underscores the need to develop gene-pyramided cultivars to enhance the durability of resistance.


Assuntos
Doenças das Plantas , Puccinia , Triticum , Puccinia/patogenicidade , Puccinia/genética , Triticum/microbiologia , Triticum/genética , China , Virulência/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Variação Genética , Desequilíbrio de Ligação , Resistência à Doença/genética
12.
Braz. j. biol ; 84: e249472, 2024. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364512

RESUMO

Leaf rust, caused by Puccinia triticina, is the most common rust disease of wheat. The fungus is an obligate parasite capable of producing infectious urediniospores. To study the genetic structure of the leaf rust population 20 RAPD primers were evaluated on 15 isolates samples collected in Pakistan. A total of 105 RAPD fragments were amplified with an average of 7 fragments per primer. The number of amplified fragments varied from 1 to 12. GL Decamer L-07 and GL Decamer L-01 amplified the highest number of bands (twelve) and primer GL Decamer A-03 amplified the lowest number of bands i.e one. Results showed that almost all investigated isolates were genetically different that confirms high genetic diversity within the leaf rust population. Rust spores can follow the migration pattern in short and long distances to neighbor areas. Results indicated that the greatest variability was revealed by 74.9% of genetic differentiation within leaf rust populations. These results suggested that each population was not completely identical and high gene flow has occurred among the leaf rust population of different areas. The highest differentiation and genetic distance among the Pakistani leaf rust populations were detected between the leaf rust population in NARC isolate (NARC-4) and AARI-11and the highest similarity was observed between NARC isolates (NARC-4) and (NARC-5). The present study showed the leaf rust population in Pakistan is highly dynamic and variable.


A ferrugem da folha, causada por Puccinia triticina, é a ferrugem mais comum do trigo. O fungo é um parasita obrigatório, capaz de produzir urediniósporos infecciosos. Para estudar a estrutura genética da população de ferrugem da folha, 20 primers RAPD foram avaliados em 15 amostras de isolados coletadas no Paquistão. Um total de 105 fragmentos RAPD foram amplificados com uma média de 7 fragmentos por primer. O número de fragmentos amplificados variou de 1 a 12. GL Decamer L-07 e GL Decamer L-01 amplificaram o maior número de bandas (doze), e o primer GL Decamer A-03 amplificou o menor número de bandas, ou seja, um. Os resultados mostraram que quase todos os isolados investigados eram geneticamente diferentes, o que confirma a alta diversidade genética na população de ferrugem da folha. Os esporos de ferrugem podem seguir o padrão de migração em distâncias curtas e longas para áreas vizinhas. Os resultados indicaram que a maior variabilidade foi revelada por 74,9% da diferenciação genética nas populações de ferrugem. Esses resultados sugeriram que cada população não era completamente idêntica e um alto fluxo gênico ocorreu entre a população de ferrugem da folha de diferentes áreas. A maior diferenciação e distância genética entre as populações de ferrugem da folha do Paquistão foram detectadas entre a população de ferrugem da folha no isolado NARC (NARC-4) e AARI-11 e a maior similaridade foi observada entre os isolados NARC (NARC-4) e (NARC-5). O presente estudo mostrou que a população de ferrugem da folha no Paquistão é altamente dinâmica e variável.


Assuntos
Triticum/parasitologia , Biomarcadores , Pragas da Agricultura , Fungos/genética , Puccinia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA