Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.065
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Res ; 250: 118487, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365055

RESUMO

With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.


Assuntos
Filtração , Membranas Artificiais , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Filtração/métodos , Filtração/instrumentação , Incrustação Biológica/prevenção & controle
2.
Environ Res ; 252(Pt 3): 119053, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714223

RESUMO

Water treatment is one of the most important issues for all walks of life around the world. The unique advantages of the solid-state power electronic pulses in water treatment make it attractive and promising in practical applications. The output voltage, rising time, repetition rate, and peak power of output pulses have a significant impact on the effectiveness of water treatment. Especially in pulse electric field treatment and pulse discharge treatment, the pulse with fast rising time achieves the advantage of generating plasma without corona, which can avoid water heating effect and greatly improve the efficiency of the pulse generator. High repetition rate can significantly reduce the peak power requirement of the pulse in water treatment application, making the equipment smaller and improving the power density. Therefore, the study developed a high-voltage high frequency sub-nanosecond pulse power generator (PPG) system for wastewater treatment. It adopts SiC DSRD (Drift Step Recovery Diode) solid-state switches and realize modular design, which can achieve high performance and can be flexible expanded according to the requirements of water treatment capacity. Finally, an expandable high-voltage PPG for water treatment is built. The output parameters of the PPG include output pulse voltage range from 1 to 5.28 kV, rise time <600 ps (20%-90%), repetition up to 1 MHz. The experiment results of PPG application for pulse discharge water treatment is presented. The results indicate that the proposed generator achieves high-efficiency degradation of 4-Chlorophenol (4-CP), which is one of the most common chlorophenol compounds in wastewater. From experiment, the homemade system can degrade 450 mL waste water containing 500 mg/L 4-CP in 35 min, with a degradation rate of 98%. Thereby, the requirement for electric field intensity decreased. Through the further quantitative analysis, the impact of frequency, voltage, and electrode spacing on the degradation effect of 4-CP is confirmed.


Assuntos
Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Poluentes Químicos da Água/análise , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/instrumentação , Eletricidade
3.
J Water Health ; 22(6): 967-977, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935449

RESUMO

The anaerobic membrane bioreactor (AnMBR) is a promising technology for not only water reclamation but also virus removal; however, the virus removal efficiency of AnMBR has not been fully investigated. Additionally, the removal efficiency estimation requires datasets of virus concentration in influent and effluent, but its monitoring is not easy to perform for practical operation because the virus quantification process is generally time-consuming and requires specialized equipment and trained personnel. Therefore, in this study, we aimed to identify the key, monitorable variables in AnMBR and establish the data-driven models using the selected variables to predict virus removal efficiency. We monitored operational and environmental conditions of AnMBR in Sendai, Japan and measured virus concentration once a week for six months. Spearman's rank correlation analysis revealed that the pH values of influent and mixed liquor suspended solids (MLSS) were strongly correlated with the log reduction value of pepper mild mottle virus, indicating that electrostatic interactions played a dominant role in AnMBR virus removal. Among the candidate models, the random forest model using selected variables including influent and MLSS pH outperformed the others. This study has demonstrated the potential of AnMBR as a viable option for municipal wastewater reclamation with high microbial safety.


Assuntos
Reatores Biológicos , Membranas Artificiais , Reatores Biológicos/virologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/virologia , Projetos Piloto , Purificação da Água/métodos , Purificação da Água/instrumentação , Tobamovirus/isolamento & purificação , Japão
4.
J Environ Manage ; 365: 121525, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897085

RESUMO

As an important part of the membrane field, hollow fiber membranes (HFM) have been widely concerned by scholars. HFM fouling in the industrial application results in a reduction in its lifespan and an increase in cost. In recent years, various explorations on the HFM fouling control strategies have been carried out. In the current work, we critically review the influence of flow field characteristics in HFM-based bioreactor on membrane fouling control. The flow field characteristics mainly refer to the spatial and temporal variation of the related physical parameters. In the HFM field, the physical parameter mainly refers to the variation characteristics of the shear force, flow velocity and turbulence caused by hydraulics. The factors affecting the flow field characteristics will be discussed from three levels: the micro-flow field near the interface of membrane (micro-interface), the flow field around the membrane module and the reactor design related to flow field, which involves surface morphology, crossflow, aeration, fiber packing density, membrane vibration, structural design and other related parameters. The study of flow field characteristics and influencing factors in the HFM separation process will help to improve the performance of HFM in full-scale water treatment plants.


Assuntos
Reatores Biológicos , Membranas Artificiais , Purificação da Água/métodos , Purificação da Água/instrumentação
5.
Water Sci Technol ; 90(3): 985-994, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141046

RESUMO

The study analyses the performance of a pilot plant using a rotating hollow fibre (HF) membrane bioreactor system. The experiments evaluated the effect of operational parameters such as rotational speed, aeration strategies, and maintenance cleaning (MC) procedures on the efficiency of the system, in particular transmembrane pressure (TMP) and filtrate quality. The results indicate that the rotating membrane module reduces TMP increase and can operate for 48 days with satisfactory performance, even without aeration. This has the potential to significantly improve efficiency, resulting in significant energy savings. In addition, two MC methods, clean in air and clean in place, were tested and found to be efficient for weekly MC. It was observed that operating without aeration during colder seasons may not be effective. Therefore, adaptive strategies are needed to address seasonal temperature variations.


Assuntos
Reatores Biológicos , Membranas Artificiais , Pressão , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/instrumentação , Projetos Piloto , Purificação da Água/métodos , Purificação da Água/instrumentação
6.
Water Sci Technol ; 89(11): 3035-3046, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877629

RESUMO

This study examines the impact of incorporating a mobile bed into a membrane bioreactor (MBR) system on the treatment efficiency of dairy industry effluents. Initially, a conventional MBR system was operated for 60 days, followed by a modification that included a support material and ran for another 60 days under identical conditions. Performance was evaluated based on the removal efficiencies for soluble chemical oxygen demand (CODs), phenolic compounds, and oils and greases (OG), alongside measurements of solid content, dissolved oxygen, temperature, mixed liquor pH, and transmembrane pressure (TMP). The introduction of the mobile bed led to an increase in removal efficiencies for COD and phenolic compounds from 94.4 and 92.7% to 98 and 94.4%, respectively, marking statistically significant improvements (p < 0.05), while OG removal remained the same in both strategies (87.7%) (p > 0.05). Moreover, the modified system showed a more stable TMP profile, reducing the need for cleaning interventions compared to the conventional system, which experienced a notable TMP increase requiring cleaning at a 0.6 bar threshold. The findings suggest that integrating a mobile bed into MBR systems significantly enhances the treatment of dairy effluents, presenting an interesting solution for the upgrade of this type of system.


Assuntos
Reatores Biológicos , Indústria de Laticínios , Membranas Artificiais , Eliminação de Resíduos Líquidos , Indústria de Laticínios/métodos , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/instrumentação , Análise da Demanda Biológica de Oxigênio , Purificação da Água/métodos , Purificação da Água/instrumentação
7.
Water Sci Technol ; 89(11): 2991-3006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877626

RESUMO

Recent decades have seen a shortage of water, which has led scientists to concentrate on solar desalination technologies. The present study examines the solar water desalination system with inclined steps, while considering various phase change materials (PCMs). The findings suggest that the incorporation of PCM generally enhances the productivity of the solar desalination system. Additionally, the combination of nanoparticles has been used to PCM, which is a popular technique utilized nowadays to improve the efficiency of these systems. The current investigation involves the transient modeling of a solar water desalination system, utilizing energy conservation equations. The equations were solved using the Runge-Kutta technique of the ODE23s order. The temperatures of the salt water, the absorbent plate of the glass cover, and the PCM were calculated at each time. Without a phase changer, the rate at which fresh water is produced is around 5.15 kg/m2·h. The corresponding mass flow rates of paraffin, n-PCM I, n-PCM III, n-PCM II, and stearic acid are 22.9, 28.9, 5.9, 11.9, and 73 kg/m2·h. PCMs, with the exception of stearic acid, exhibit similar energy efficiency up to an ambient temperature of around 29°. However, at temperatures over 29°, n-PCM II outperforms other PCM.


Assuntos
Nanoestruturas , Luz Solar , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Nanoestruturas/química , Temperatura
8.
Water Sci Technol ; 89(2): 454-469, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39219141

RESUMO

Nanofiltration (NF) has been used as the default sulfate removal process in platforms to treat seawater for water flooding. Seawater is generally pretreated by chlorination and cartridge filters to reduce fouling of the membranes; however, this pretreatment is insufficient to provide water quality high enough to maintain the productivity of the NF membranes. In this study, the performances of two different pretreatment routes were evaluated. Microfiltration (MF) was evaluated as a replacement for cartridge filters, and the advanced oxidation process UV/H2O2 was evaluated as an additional stage of pretreatment upstream of the cartridge filters. The permeability of the NF membranes after 12 h of seawater sulfate removal in a bench system was 4.4 L·h-1·m-2·bar-1 when the UV/H2O2 process was adopted as the pretreatment and 2.9 L·h-1·m-2·bar-1 when the MF process was adopted, compared to 1.6 L·h-1·m-2·bar-1 achieved for the pretreatment with the cartridge filter alone. These results indicate that NF membrane fouling was significantly higher when seawater was pretreated only by the cartridge filter in comparison to both proposed pretreatments. An economic analysis showed that both systems are economically viable and can potentially reduce the operational costs of the NF sulfate removal process on platforms.


Assuntos
Filtração , Água do Mar , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Filtração/métodos , Filtração/instrumentação , Membranas Artificiais , Sulfatos/química , Nanotecnologia , Peróxido de Hidrogênio/química
9.
Water Sci Technol ; 89(11): 3079-3092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877631

RESUMO

Granular activated carbon (GAC) filtration is a commonly used method for advanced wastewater treatment. Filters can be operated continuously or discontinuously, with continuous operation not requiring feed flow interruption for backwashing and circulation (B/C). This study investigated the influence of B/C on the effluent quality of continuous filters. Two continuous GAC filters were operated for 1.5 years, with analysis of dissolved substances and particulate matter in the influent and effluent. The results indicated that various B/C modes had no impact on the removal of dissolved organic carbon and organic micropollutants (OMP), achieving an OMP removal of over 70% after 5,600 treated bed volumes (m3 treated wastewater per m3 GAC). However, it was evident that continuous B/C over 2-4 h resulted in increased turbidity, total suspended solids over 30 mg/L and total phosphorus concentrations of 1.3 mg/L in the filter effluent. Additionally, the study demonstrated that longer and more intensive B/C processes resulted in GAC size degradation with AC concentrations of up to 6.9 mg/L in the filter effluent, along with a change in GAC particle size. Furthermore, the importance of pre-filtration in reducing particulate matter in the filter influent and decreasing hydraulic head loss could be demonstrated.


Assuntos
Carvão Vegetal , Filtração , Filtração/métodos , Filtração/instrumentação , Carvão Vegetal/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Purificação da Água/instrumentação , Poluentes Químicos da Água/química , Carbono/química , Tamanho da Partícula , Fósforo/química , Fósforo/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-39091064

RESUMO

Down-flow hanging sponge (DHS) reactors, employed in domestic wastewater treatment, have demonstrated efficacy in eliminating Escherichia coli and other potentially pathogenic bacteria. The aim of this study was to elucidate the mechanism of removal of E. coli by employing a cube-shaped polyurethane sponge carrier within a compact hanging reactor. An E. coli removal experiment was conducted on this prepared sponge. Escherichia. coli level was found to decrease by more than 2 logs after passing through five nutrient-restricted DHS sponges. Conversely, a newly introduced sponge did not exhibit a comparable reduction in E. coli level. Furthermore, under conditions of optimal nutritional status, the reduction in E. coli level was limited to 0.5 logs, underscoring the crucial role of nutrient restriction in achieving effective elimination. Analysis of the sponge-associated bacterial community revealed the presence of a type VI secretion system (T6SS), a competitive mechanism observed in bacteria. This finding suggests that T6SS might play a pivotal role in contributing to the observed decline in E. coli level.


Assuntos
Reatores Biológicos , Escherichia coli , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/microbiologia , Purificação da Água/métodos , Purificação da Água/instrumentação
11.
Environ Res ; 219: 115115, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574794

RESUMO

The incorporation of a spacer among membranes has a major influence on fluid dynamics and performance metrics. Spacers create feed channels and operate as turbulence promoters to increase mixing and reduce concentration/temperature polarization effects. However, spacer geometry remains unoptimized, and studies continue to investigate a wide range of commercial and custom-made spacer designs. The in-depth discussion of the present systematic review seeks to discover the influence of Reynolds number or solution flowrate on flow hydrodynamics throughout a spacer-filled channel. A fast-flowing solution sweeping one membrane's surface first, then the neighboring membrane's surface produces good mixing action, which does not happen commonly at laminar solution flowrates. A sufficient flowrate can suppress the polarization layer, which may normally require the utilization of a simple feed channel rather than complex spacer configurations. When a recirculation eddy occurs, it disrupts the continuous flow and effectively curves the linear fluid courses. The higher the flowrate, the better the membrane performance, the higher the critical flux (or recovery rate), and the lower the inherent limitations of spacer design, spacer shadow effect, poor channel hydrodynamics, and high concentration polarization. In fact, critical flow achieves an acceptable balance between improving flow dynamics and reducing the related trade-offs, such as pressure losses and the occurrence of concentration polarization throughout the cell. If the necessary technical flowrate is not used, the real concentration potential for transport is relatively limited at low velocities than would be predicted based on bulk concentrations. Electrodialysis stack therefore may suffer from the dissociation of water molecules. Next studies should consider that applying a higher flowrate results in greater process efficiency, increased mass transfer potential at the membrane interface, and reduced stack thermal and electrical resistance, where pressure drop should always be indicated as a consequence of the spacer and circumstances used, rather than a problem.


Assuntos
Diálise , Membranas Artificiais , Purificação da Água , Hidrodinâmica , Purificação da Água/instrumentação , Purificação da Água/métodos , Salinidade , Diálise/instrumentação , Diálise/métodos , Eletroquímica/instrumentação , Eletroquímica/métodos
12.
Water Sci Technol ; 86(9): 2071-2088, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36378167

RESUMO

Suspended solids removal is a key performance measure for proprietary stormwater treatment devices. Various technologies are available, with manufacturers claiming hydrodynamic separators offer performance advantages. However, it is important to assess manufacturers' claims. Accordingly, this study seeks to compare the performance of proprietary devices, by applying dimensional analysis to third-party certification data and experimental data from uncertified devices, and to determine the accuracy of a single parameter estimation (Hazen or Péclet number) of removal efficiency. Statistical analysis indicates that device performance is well described by a single parameter estimation transitioning from Hazen (Nash-Sutcliffe coefficient = 0.81 and root mean square error = 5.1%) at low surface loading rates (SLR) in all technology types (high removal efficiency) to Péclet (Nash-Sutcliffe coefficient = 0.5 to 0.61 and root mean square error = 5.9% to 4.3%) at higher SLR (low removal efficiency) for hydrodynamic separators. This indicates that performance at low SLR is well explained by gravity separation in all technology types, whilst in hydrodynamic separators removal at high SLR is better explained by gravity separation plus advection. Consequently, when high (>80%) removal efficiency is required there is no performance advantage between technology types. However, when low (<50%) removal efficiency is required hydrodynamic separators offer a 33% increase in treatment area.


Assuntos
Purificação da Água , Humanos , Hidrodinâmica , Chuva , Purificação da Água/instrumentação , Purificação da Água/métodos , Abastecimento de Água , Reprodutibilidade dos Testes
13.
J Am Chem Soc ; 143(31): 12194-12201, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34291944

RESUMO

The coronavirus SARS-CoV-2 can survive in wastewater for several days with a potential risk of waterborne human transmission, hence posing challenges in containing the virus and reducing its spread. Herein, we report on an active biohybrid microrobot system that offers highly efficient capture and removal of target virus from various aquatic media. The algae-based microrobot is fabricated by using click chemistry to functionalize microalgae with angiotensin-converting enzyme 2 (ACE2) receptor against the SARS-CoV-2 spike protein. The resulting ACE2-algae-robot displays fast (>100 µm/s) and long-lasting (>24 h) self-propulsion in diverse aquatic media including drinking water and river water, obviating the need for external fuels. Such movement of the ACE2-algae-robot offers effective "on-the-fly" removal of SARS-CoV-2 spike proteins and SARS-CoV-2 pseudovirus. Specifically, the active biohybrid microrobot results in 95% removal of viral spike protein and 89% removal of pseudovirus, significantly exceeding the control groups such as static ACE2-algae and bare algae. These results suggest considerable promise of biologically functionalized algae toward the removal of viruses and other environmental threats from wastewater.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Biotecnologia/métodos , Microalgas/química , SARS-CoV-2/isolamento & purificação , Águas Residuárias/virologia , Purificação da Água/métodos , Enzima de Conversão de Angiotensina 2/metabolismo , Biotecnologia/instrumentação , Linhagem Celular , Química Click , Humanos , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , Purificação da Água/instrumentação
14.
Photochem Photobiol Sci ; 20(1): 123-137, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33721244

RESUMO

Solar water disinfection (SODIS) is an effective and inexpensive microbiological water treatment technique, applicable to communities lacking access to safely managed drinking water services, however, the lower volume of treated water per day (< 2.5 L per batch) is a limitation for the conventional SODIS process. To overcome this limitation, a continuous-flow solar water disinfection system was developed and tested for inactivation of Acanthamoeba castellanii cysts and Escherichia coli, Salmonella Typhimurium, Enterococcus faecalis, and Pseudomonas aeruginosa. The system consisted of a solar heater composed of a cylindrical-parabolic concentrator and a UV irradiator formed by a fresnel-type flat concentrator combined with a cylindrical-parabolic concentrator. Deionized water with low or high turbidity (< 1 or 50 nephelometric turbidity unit (NTU) where previously contaminated by 108 Cysts/L or 105-106 CFU/mL of each of four bacterial species. Then was pumped from the heating tank flowing through the heater and through the UV irradiator, then returning to the heating tank, until reaching 45, 55, 60 or 70 °C. The water was kept at the desired temperature, flowing through the UV irradiator for 0.5 and 10 min. Trophozoites were not recovered from cysts (during 20 days of incubation) when water with < 1 NTU was exposed to UV and 60 °C for 0.5 min. In water with 50 NTU, the same result was obtained after 10 min. In water with < 1 NTU, the inactivation of all bacteria was achieved when the water with < 1 NTU was exposed to 55 °C and UV for 0.5 min; in water, with 50 NTU the same result was achieved by exposure to 60 °C and UV for 0.5 min. The prototype processes 1 L of water every 90s. The system is effective and has the potential to be applied as an alternative to the large-scale public drinking water supply.


Assuntos
Acanthamoeba castellanii/efeitos da radiação , Bactérias/efeitos da radiação , Raios Ultravioleta , Purificação da Água/métodos , Desinfecção/métodos , Temperatura , Purificação da Água/instrumentação
15.
J Toxicol Environ Health A ; 84(10): 418-439, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33622194

RESUMO

The aim of this interdisciplinary research project in North Rhine-Westphalia (NRW), Germany, entitled "Elimination of pharmaceuticals and organic micropollutants from waste water" involved the conception of cost-effective and innovative waste-water cleaning methods. In this project in vitro assays, in vivo assays and chemical analyses were performed on three municipal waste-water treatment plants (WWTP). This publication focuses on the study of the in vitro bioassays. Cytotoxic, estrogenic, genotoxic and mutagenic effects of the original as well as enriched water samples were monitored before and after wastewater treatment steps using MTT and PAN I, ER Calux and A-YES, micronucleus and Comet assays as well as AMES test. In most cases, the measured effects were reduced after ozonation, but in general, the biological response depended upon the water composition of the WWTP, in particular on the formed by-products and concentration of micropollutants. In order to be able to assess the genotoxic and/or mutagenic potential of waste-water samples using bioassays like Ames test, Comet assay or micronucleus test an enrichment of the water sample via solid-phase extraction is recommended. This is in agreement with previous studies such as the "ToxBox"-Project of the Environmental Agency in Germany.


Assuntos
Ozônio/química , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/instrumentação , Alemanha
16.
Bioprocess Biosyst Eng ; 44(4): 759-768, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33420818

RESUMO

Microbial fuel cells (MFCs) have significant interest in the research community due to their ability to generate electricity from biodegradable organic matters. Anode materials and their morphological structures play a crucial role in the formation of electroactive biofilms that enable the direct electron transfer. In this work, modified electrodes with nanomaterials, such as multiwalled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), Al2O3/rGO or MnO2/MWCNTs nanocomposites were synthesized, characterized and utilized to support the growth of electrochemically active biofilms. The MFC's performance is optimized using anode-respiring strains isolated from biofilm-anode surface, while the adjusted operation is conducted with the consortium of (Enterobacter sp.). Besides the formation of matured biofilm on its surface, MnO2/MWCNTs nanocomposite produced the highest electrical potential outputs (710 mV) combined with the highest power density (372 mW/m2). Thus, a correlation between the anode nanostructured materials and the progression of the electrochemically active biofilms formation is presented, allowing new thoughts for enhancing the MFC's performance for potential applications ranging from wastewater treatment to power sources.


Assuntos
Materiais Biocompatíveis/química , Fontes de Energia Bioelétrica , Eletrodos , Nanotubos de Carbono/química , Biofilmes , Eletricidade , Transporte de Elétrons , Desenho de Equipamento , Grafite , Compostos de Manganês , Teste de Materiais , Nanoestruturas , Óxidos , Purificação da Água/instrumentação , Difração de Raios X
17.
Bioprocess Biosyst Eng ; 44(4): 635-652, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387005

RESUMO

Moving bed bioreactor (MBBR), used for treatment of municipal and industrial wastewater, is a completely mixed attached growth type system that involves microorganisms which grow as biofilm on the surface of the suspended carriers within the reactor. If the biofilm is thick enough, dissolved oxygen in the reactor would not diffuse into deeper strata and thus anoxic/anaerobic condition develops in those regions facilitating growth of heterotrophic denitrifying bacteria. Autotrophic nitrifiers colonize the outer surface of biofilm in biocarriers as usual. Thus, development of aerobic nitrifying and anoxic denitrifying microorganisms facilitates nitrification and denitrification simultaneously within different zones of the same biofilm. The present paper summarizes the feasibility of nitrogen removal in MBBR systems via autotrophic nitrification followed by heterotrophic denitrification, including various aspects of simultaneous nitrification and denitrification (SND) process in other biofilm units as well. Apart from that, the areas for further investigation are briefly narrated from studies conducted earlier.


Assuntos
Reatores Biológicos , Desnitrificação , Hipóxia/patologia , Nitrificação , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/microbiologia , Purificação da Água/instrumentação , Processos Autotróficos , Bactérias , Biofilmes , Biomassa , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Nitrogênio , Oxigênio , Esgotos , Temperatura , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
18.
Bioprocess Biosyst Eng ; 44(4): 661-671, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33211199

RESUMO

Bacterial cellulose produced from soybean oil refinery effluent is a good immobilization carrier because of the large pores in its fiber network, its high water-holding capacity, and its good biocompatibility. In this study, it was applied to immobilization of oleaginous yeasts for treating soybean oil refinery effluent. The immobilization percentage reached 50%, and the removal of chemical oxygen demand and oil content reached 92.1% and 93.1%, respectively, during dynamic immobilization using a mass percentage of bacterial cellulose of 30% and an immobilization time of 24 h, which were significantly higher than those of free oleaginous yeasts or yeasts immobilized by bacterial cellulose from rich medium. The immobilized oleaginous yeasts facilitated the recovery of the yeasts and effectively treated three batches of soybean oil refinery effluent. The immobilized oleaginous yeasts recovered after soybean oil refinery effluent treatment were pyrolyzed to produce bio-oil, which contributed to more alkanes and a higher calorific value of bio-oil in the pyrolysis products as compared to those of free oleaginous yeasts. As bacterial cellulose used as an oleaginous yeast cell carrier is produced from soybean oil refinery effluent, no waste of immobilization materials is involved and an efficient waste-into-oil bioprocess is developed.


Assuntos
Bactérias/metabolismo , Celulose/química , Glycine max/metabolismo , Pirólise , Eliminação de Resíduos Líquidos/instrumentação , Purificação da Água/instrumentação , Análise da Demanda Biológica de Oxigênio , Meios de Cultura , Fermentação , Glucose/química , Resíduos Industriais , Microscopia Eletrônica de Varredura , Indústria de Petróleo e Gás , Peptonas/química , Temperatura , Termogravimetria , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Leveduras
19.
J Sci Food Agric ; 101(10): 4298-4307, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33417261

RESUMO

BACKGROUND: Nanoscale tapioca starch (NTS) was successfully developed by high-speed jet in our previous study. In this study, the adsorption capacity of Cu2+ onto NTS was further discussed. The optimal adsorption conditions (pH, contact time, contact temperature, initial Cu2+ concentration, and adsorbent concentration), adsorption kinetics, isotherms, and thermodynamic were also evaluated. RESULTS: The results showed that NTS exhibited excellent performance in adsorption of Cu2+ , with adsorption capacities of 122.31 mg g-1 for Cu2+ (pH 7, 0.04 g L-1 , 0.2 g L-1 , 313.15 K and 10 min). The pseudo-second-order and Langmuir isotherms models could be used to explain the adsorption kinetics and adsorption equilibrium, respectively. The thermodynamic results showed that the adsorption process was spontaneous and endothermic with an increase in entropy. Cu2+ was adsorbed onto NTS, which was confirmed by energy dispersive spectrometry analysis. CONCLUSION: These findings indicated that NTS might be an effective, environment-friendly and renewable bio-resource adsorbent for removing heavy metals in industrial effluent. © 2021 Society of Chemical Industry.


Assuntos
Cobre/química , Manihot/química , Extratos Vegetais/química , Amido/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Resíduos Industriais/análise , Cinética , Temperatura , Termodinâmica , Purificação da Água/instrumentação
20.
Environ Geochem Health ; 43(1): 375-389, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32974885

RESUMO

In the lowlands of Nepal (Terai), the WHO drinking water guideline concentration of 10 µg/L for arsenic (As) is frequently exceeded. Since their introduction in 2006, iron-assisted bio-sand filters (Kanchan filters) are widely used to treat well water in Nepal. The filters are constructed on the basis of As-removal with corroding zero-valent iron (ZVI), with water flowing through a filter bed of iron nails placed above a sand filter. According to several studies, the performance of Kanchan filters varies greatly and depends on the size of the iron nails, filter design, water composition, and operating conditions, leading to concerns about their actual efficiency. This study examined 38 Kanchan household filters for which insufficient As-removal was reported, to evaluate the reasons for limited removal efficiency and to define measures for improved performance. The measured arsenic removal ranged from 6.3% to 98.5%. The most relevant factors were the concentrations of As and Fe in the raw water, with the best removal efficiency observed for water with low As (123 µg/L) and high Fe (5.0 mg/L). Although the concentrations of other elements, pH, flow rates, and contact time with ZVI also played a role, the combined evidence indicated that the reactivity of the frequently drying nail beds between filtrations was insufficient for efficient As-removal. Optimized filters with added top layers of sand and raised water outlets with flow restrictions to keep nails permanently immersed and to increase contact times, should be able to achieve higher and more consistent arsenic removal efficiencies.


Assuntos
Arsênio/isolamento & purificação , Filtração/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Arsênio/análise , Arsênio/química , Características da Família , Filtração/instrumentação , Ferro/análise , Ferro/química , Nepal , Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA