Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2207020119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858345

RESUMO

Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN-TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL-/- mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+-Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.


Assuntos
Síndrome Coronariana Aguda , Proteína C-Reativa , Fármacos Cardiovasculares , Doença da Artéria Coronariana , Ranolazina , Bloqueadores dos Canais de Sódio , Sódio , Síndrome Coronariana Aguda/tratamento farmacológico , Animais , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
2.
Br J Cancer ; 130(9): 1415-1419, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424164

RESUMO

BACKGROUND: Multi-faceted evidence from a range of cancers suggests strongly that de novo expression of voltage-gated sodium channels (VGSCs) plays a significant role in driving cancer cell invasiveness. Under hypoxic conditions, common to growing tumours, VGSCs develop a persistent current (INaP) which can be blocked selectively by ranolazine. METHODS: Several different carcinomas were examined. We used data from a range of experimental approaches relating to cellular invasiveness and metastasis. These were supplemented by survival data mined from cancer patients. RESULTS: In vitro, ranolazine inhibited invasiveness of cancer cells especially under hypoxia. In vivo, ranolazine suppressed the metastatic abilities of breast and prostate cancers and melanoma. These data were supported by a major retrospective epidemiological study on breast, colon and prostate cancer patients. This showed that risk of dying from cancer was reduced by ca.60% among those taking ranolazine, even if this started 4 years after the diagnosis. Ranolazine was also shown to reduce the adverse effects of chemotherapy on heart and brain. Furthermore, its anti-cancer effectiveness could be boosted by co-administration with other drugs. CONCLUSIONS: Ranolazine, alone or in combination with appropriate therapies, could be reformulated as a safe anti-metastatic drug offering many potential advantages over current systemic treatment modalities.


Assuntos
Ranolazina , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Feminino , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Invasividade Neoplásica , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
3.
Medicina (Kaunas) ; 60(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256425

RESUMO

Background and Objectives: Remote ischemic preconditioning (RIPC) has demonstrated efficacy in protecting against myocardial ischemia-reperfusion injury when applied before percutaneous coronary revascularization. Ranolazine, an anti-ischemic drug, has been utilized to minimize ischemic events in chronic angina patients. However, there is a lack of trials exploring the combined effects of ranolazine pretreatment and RIPC in patients undergoing percutaneous coronary interventions (PCIs). Materials and Methods: The present study is a prospective study which enrolled 150 patients scheduled for nonemergent percutaneous coronary revascularization. Three groups were formed: a control group undergoing only PCIs, an RIPC group with RIPC applied to either upper limb before the PCI (preconditioning group), and a group with RIPC before the PCI along with prior ranolazine treatment for stable angina (ranolazine group). Statistical analyses, including ANOVAs and Kruskal-Wallis tests, were conducted, with the Bonferroni correction for type I errors. A repeated-measures ANOVA assessed the changes in serum enzyme levels (SGOT, LDH, CRP, CPK, CK-MB, troponin I) over the follow-up. Statistical significance was set at p < 0.05. Results: The ranolazine group showed (A) significantly lower troponin I level increases compared to the control group for up to 24 h, (B) significantly lower CPK levels after 4, 10, and 24 h compared to the preconditioning group (p = 0.020, p = 0.020, and p = 0.019, respectively) and significantly lower CPK levels compared to the control group after 10 h (p = 0.050), and (C) significantly lower CK-MB levels after 10 h compared to the control group (p = 0.050). Conclusions: This study suggests that combining RIPC before scheduled coronary procedures with ranolazine pretreatment may be linked to reduced ischemia induction, as evidenced by lower myocardial enzyme levels.


Assuntos
Precondicionamento Isquêmico , Intervenção Coronária Percutânea , Humanos , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Estudos Prospectivos , Troponina I
4.
Bull Exp Biol Med ; 177(2): 203-206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39093469

RESUMO

We studied changes of pulmonary microhemodynamics when modeling pulmonary artery thromboembolism on perfused isolated rabbit lungs after pretreatment with ranolazine and ivabradine. The increase in pulmonary artery pressure, pulmonary vascular resistance, and pre- and postcapillary resistance was less pronounced than in control animals, but was close to that in case of pulmonary thromboembolism after pretreatment with voltage-gated Na+ channel blockers lidocaine and ropivacaine. The increase of capillary filtration coefficient inversely correlated with values of capillary hydrostatic pressure. Thus, ranolazine and ivabradine exhibit the properties of voltage-gated Na+ channel blockers mainly in smooth muscles of pulmonary arterial vessels and promote the decrease in endothelial permeability.


Assuntos
Ivabradina , Artéria Pulmonar , Embolia Pulmonar , Ranolazina , Resistência Vascular , Animais , Coelhos , Ivabradina/farmacologia , Ivabradina/uso terapêutico , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/fisiopatologia , Ranolazina/farmacologia , Resistência Vascular/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/irrigação sanguínea , Modelos Animais de Doenças , Masculino , Lidocaína/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
5.
Am J Physiol Heart Circ Physiol ; 325(2): H264-H277, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389950

RESUMO

Clinical studies suggest low testosterone levels are associated with cardiac arrhythmias, especially in later life. We investigated whether chronic exposure to low circulating testosterone promoted maladaptive electrical remodeling in ventricular myocytes from aging male mice and determined the role of late inward sodium current (INa,L) in this remodeling. C57BL/6 mice had a gonadectomy (GDX) or sham surgery (1 mo) and were aged to 22-28 mo. Ventricular myocytes were isolated; transmembrane voltage and currents were recorded (37°C). Action potential duration at 70 and 90% repolarization (APD70 and APD90) was prolonged in GDX compared with sham myocytes (APD90, 96.9 ± 3.2 vs. 55.4 ± 2.0 ms; P < 0.001). INa,L was also larger in GDX than sham (-2.4 ± 0.4 vs. -1.2 ± 0.2 pA/pF; P = 0.002). When cells were exposed to the INa,L antagonist ranolazine (10 µM), INa,L declined in GDX cells (-1.9 ± 0.5 vs. -0.4 ± 0.2 pA/pF; P < 0.001) and APD90 was reduced (96.3 ± 14.8 vs. 49.2 ± 9.4 ms; P = 0.001). GDX cells had more triggered activity (early/delayed afterdepolarizations, EADs/DADs) and spontaneous activity than sham. EADs were inhibited by ranolazine in GDX cells. The selective NaV1.8 blocker A-803467 (30 nM) also reduced INa,L, decreased APD and abolished triggered activity in GDX cells. Scn5a (NaV1.5) and Scn10a (NaV1.8) mRNA was increased in GDX ventricles, but only NaV1.8 protein abundance was increased in GDX compared with sham. In vivo studies showed QT prolongation and more arrhythmias in GDX mice. Thus, triggered activity in ventricular myocytes from aging male mice with long-term testosterone deficiency arises from APD prolongation mediated by larger NaV1.8- and NaV1.5-associated currents, which may explain the increase in arrhythmias.NEW & NOTEWORTHY Older men with low testosterone levels are at increased risk of developing cardiac arrhythmias. We found aged mice chronically exposed to low testosterone had more arrhythmias and ventricular myocytes had prolonged repolarization, abnormal electrical activity, larger late sodium currents, and increased expression of NaV1.8 sodium channels. Drugs that inhibit late sodium current or NaV1.8 channels abolished abnormal electrical activity and shortened repolarization. This suggests the late sodium current may be a novel target to treat arrhythmias in older testosterone-deficient men.


Assuntos
Sódio , Testosterona , Camundongos , Masculino , Animais , Ranolazina/farmacologia , Ranolazina/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo , Sódio/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas , Canais de Sódio/metabolismo , Potenciais de Ação , Envelhecimento
6.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686345

RESUMO

Ranolazine (RN) is a drug used in the treatment of chronic coronary ischemia. Different clinical trials have shown that RN behaves as an anti-diabetic drug by lowering blood glucose and glycosylated hemoglobin (HbA1c) levels. However, RN has not been shown to improve insulin (IN) sensitivity. Our study investigates the possible facilitating effects of RN on the actions of IN in the rabbit aorta. IN induced vasodilation of the abdominal aorta in a concentration-dependent manner, and this dilatory effect was due to the phosphorylation of endothelial nitric oxide synthase (eNOS) and the formation of nitric oxide (NO). On the other hand, IN facilitated the vasodilator effects of acetylcholine but not the vasodilation induced by sodium nitroprusside. RN facilitated all the vasodilatory effects of IN. In addition, IN decreased the vasoconstrictor effects of adrenergic nerve stimulation and exogenous noradrenaline. Both effects were in turn facilitated by RN. The joint effect of RN with IN induced a significant increase in the ratio of p-eNOS/eNOS and pAKT/AKT. In conclusion, RN facilitated the vasodilator effects of IN, both direct and induced, on the adrenergic system. Therefore, RN increases vascular sensitivity to IN, thus decreasing tissue resistance to the hormone, a key mechanism in the development of type II diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Coelhos , Ranolazina/farmacologia , Vasodilatadores , Aorta Abdominal , Adrenérgicos
7.
J Neurosci ; 41(16): 3597-3609, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33664134

RESUMO

Dynamic changes in motor abilities and motivated behaviors occur during the juvenile and adolescent periods. The striatum is a subcortical nucleus critical to action selection, motor learning, and reward processing. Its tonically active cholinergic interneuron (ChI) is an integral regulator of the synaptic activity of other striatal neurons, as well as afferent axonal projections of midbrain dopamine (DA) neurons; however, little is known about its development. Here, we report that ChI spontaneous activity increases during postnatal development of male and female mice, concomitant with a decreased afterhyperpolarization (AHP). We characterized the postnatal development of four currents that contribute to the spontaneous firing rate of ChIs, including ISK, IA, Ih, and INaP We demonstrated that the developmental increase in INaP drives increased ChI firing rates during the postnatal period and can be reversed by the INaP inhibitor, ranolazine. We next addressed whether immature cholinergic signaling may lead to functional differences in DA release during the juvenile period. In the adult striatum, nicotinic acetylcholine receptors (nAChRs) prevent linear summation of DA release in response to trains of high-frequency stimuli. We show that, in contrast, during the second postnatal week, DA release linearly sums with trains of high-frequency stimuli. Consistently, nAChR antagonists exert little effect on dopamine release at postnatal day (P)10, but enhance the summation of evoked DA release in mice older than postnatal day P28. Together, these results reveal that postnatal maturation of ChI activity is due primarily to enhanced INaP and identify an interaction between developing cholinergic signaling and DA neurotransmission in the juvenile striatum.SIGNIFICANCE STATEMENT Motor skills and motivated behavior develop rapidly in juvenile rodents. Recent work has highlighted processes that contribute to the postnatal maturation of striatal principal neurons during development. The functional development of the striatal cholinergic interneuron (ChI), however, has been unexplored. In this study, we tracked the ontogeny of ChI activity and cellular morphology, as well as the developmental trajectory of specific conductances that contribute to the activity of these cells. We further report a link between cholinergic signaling and dopamine (DA) release, revealing a change in the frequency-dependence of DA release during the early postnatal period that is mediated by cholinergic signaling. This study provides evidence that striatal microcircuits are dynamic during the postnatal period and that they undergo coordinated maturation.


Assuntos
Envelhecimento/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Interneurônios/fisiologia , Neostriado/crescimento & desenvolvimento , Neostriado/metabolismo , Sistema Nervoso Parassimpático/crescimento & desenvolvimento , Potenciais de Ação/fisiologia , Animais , Dendritos/metabolismo , Dendritos/ultraestrutura , Fenômenos Eletrofisiológicos , Feminino , Canais Iônicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ranolazina/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/fisiologia
8.
Clin Sci (Lond) ; 136(5): 329-343, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35190819

RESUMO

ß-Cyfluthrin, a class II Pyrethroid, is an insecticide used worldwide in agriculture, horticulture (field and protected crops), viticulture, and domestic applications. ß-Cyfluthrin may impair the function of biological systems; however, little information is available about its potential cardiotoxic effect. Here, we explored the acute toxicity of ß-Cyfluthrin in isolated heart preparations and its cellular basis, using isolated cardiomyocytes. Moreover, ß-Cyfluthrin effects on the sodium current, especially late sodium current (INa-L), were investigated using human embryonic kidney cells (HEK-293) cells transiently expressing human NaV1.5 channels. We report that ß-Cyfluthrin raised INa-L in a dose-dependent manner. ß-Cyfluthrin prolonged the repolarization of the action potential (AP) and triggered oscillations on its duration. Cardiomyocytes contraction and calcium dynamics were disrupted by the pesticide with a marked incidence of non-electronic-stimulated contractions. The antiarrhythmic drug Ranolazine was able to reverse most of the phenotypes observed in isolated cells. Lastly, ventricular premature beats (VPBs) and long QT intervals were found during ß-Cyfluthrin exposure, and Ranolazine was able to attenuate them. Overall, we demonstrated that ß-Cyfluthrin can cause significant cardiac alterations and Ranolazine ameliorated the phenotype. Understanding the insecticides' impacts upon electromechanical properties of the heart is important for the development of therapeutic approaches to treat cases of pesticides intoxication.


Assuntos
Inseticidas , Piretrinas , Potenciais de Ação , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Células HEK293 , Humanos , Inseticidas/toxicidade , Miócitos Cardíacos , Nitrilas , Fenótipo , Piretrinas/farmacologia , Ranolazina/farmacologia , Sódio , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
9.
Exp Mol Pathol ; 127: 104818, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882281

RESUMO

Doxorubicin (Dox), a powerful chemotherapeutic agent, has been shown to cause cardiotoxicity and neurotoxicity. Ranolazine, a drug that is commonly used to treat patients with chronic angina, has been shown to reduce toxicity from Dox therapy. Therefore, the present study aims to investigate the mechanisms behind the protective effects of ranolazine on the heart and brain in Dox-treatment. Twenty-four male Wistar rats received 6 doses of either 0.9% normal saline (0.9% NSS, i.p., n = 8) or Dox (3 mg/kg, i.p., n = 16). All Dox-treated rats were assigned into 2 groups to receive vehicle (0.9% NSS, orally; n = 8) or ranolazine (305 mg/kg/day, orally; n = 8) for 30 consecutive days. Following the treatments, left ventricular (LV) function and cognition were determined. Animals were euthanized, then the heart and brain were collected for further analysis. Dox induced systemic oxidative stress/inflammation, and cardiac injury evidenced by mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis, resulting in LV dysfunction. Ranolazine significantly improved LV function via attenuating cardiac injury. Dox also caused brain pathologies as indicated by increased brain inflammation, impaired blood-brain barrier integrity, brain mitochondrial dysfunction, microglial dysmorphology, hippocampal dysplasticity, and increased apoptosis, resulting in cognitive decline. Ranolazine exerted neuroprotective effects by suppressing brain pathologies and restoring cognitive function. These findings suggest that ranolazine has a potential role in cardio- and neuro-protection against chemotherapy.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Encéfalo , Doxorrubicina/efeitos adversos , Masculino , Estresse Oxidativo , Ranolazina/farmacologia , Ratos , Ratos Wistar
10.
Can J Physiol Pharmacol ; 100(5): 393-401, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34851748

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of excess fat in the liver in the absence of alcohol and increases one's risk for both diabetes and cardiovascular disease (e.g., angina). We have shown that the second-line anti-anginal therapy, ranolazine, mitigates obesity-induced NAFLD, and our aim was to determine whether these actions of ranolazine also extend to NAFLD associated with type 2 diabetes (T2D). Eight-week-old male C57BL/6J mice were fed either a low-fat diet or a high-fat diet for 15 weeks, with a single dose of streptozotocin (STZ; 75 mg/kg) administered in the high-fat diet-fed mice at 4 weeks to induce experimental T2D. Mice were treated with either vehicle control or ranolazine during the final 7 weeks (50 mg/kg once daily). We assessed glycemia via monitoring glucose tolerance, insulin tolerance, and pyruvate tolerance, whereas hepatic steatosis was assessed via quantifying triacylglycerol content. We observed that ranolazine did not improve glycemia in mice with experimental T2D, while also having no impact on hepatic triacylglycerol content. Therefore, the salutary actions of ranolazine against NAFLD may be limited to obese individuals but not those who are obese with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Glicemia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Estreptozocina , Triglicerídeos
11.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555798

RESUMO

Recent studies suggest a pathogenetic association between metabolic disturbances, including type 2 diabetes (T2DM), and cognitive decline and indicate that T2DM may represent a risk factor for Alzheimer's disease (AD). There are a number of experimental studies presenting evidence that ranolazine, an antianginal drug, acts as a neuroprotective drug. The aim of the present study was to evaluate the effects of ranolazine on hippocampal neurodegeneration and astrocytes activation in a T2DM rat model. Diabetes was induced by a high fat diet (HFD) and streptozotocin (STZ) injection. Animals were divided into the following groups: HFD/STZ + Ranolazine, HFD/STZ + Metformin, HFD/STZ + Vehicle, NCD + Vehicle, NCD + Ranolazine and NCD + Metformin. The presence of neurodegeneration was evaluated in the hippocampal cornus ammonis 1 (CA1) region by cresyl violet staining histological methods, while astrocyte activation was assessed by western blot analysis. Staining with cresyl violet highlighted a decrease in neuronal density and cell volume in the hippocampal CA1 area in diabetic HFD/STZ + Vehicle rats, while ranolazine and metformin both improved T2DM-induced neuronal loss and neuronal damage. Moreover, there was an increased expression of GFAP in the HFD/STZ + Vehicle group compared to the treated diabetic groups. In conclusion, in the present study, we obtained additional evidence supporting the potential use of ranolazine to counteract T2DM-associated cognitive decline.


Assuntos
Diabetes Mellitus Tipo 2 , Encefalite , Metformina , Doenças não Transmissíveis , Ratos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Estreptozocina
12.
Int J Mol Sci ; 23(19)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233271

RESUMO

Ranolazine (Rn) is a drug used to treat persistent chronic coronary ischemia. It has also been shown to have therapeutic benefits on the central nervous system and an anti-diabetic effect by lowering blood glucose levels; however, no effects of Rn on cellular sensitivity to insulin (Ins) have been demonstrated yet. The present study aimed to investigate the permissive effects of Rn on the actions of Ins in astrocytes in primary culture. Ins (10-8 M), Rn (10-6 M), and Ins + Rn (10-8 M and 10-6 M, respectively) were added to astrocytes for 24 h. In comparison to control cells, Rn and/or Ins caused modifications in cell viability and proliferation. Rn increased protein expression of Cu/Zn-SOD and the pro-inflammatory protein COX-2 was upregulated by Ins. On the contrary, no significant changes were found in the protein expression of NF-κB and IκB. The presence of Rn produced an increase in p-ERK protein and a significant decrease in COX-2 protein expression. Furthermore, Rn significantly increased the effects of Ins on the expression of p-AKT, p-eNOS, p-ERK, Mn-SOD, and PPAR-γ. In addition, Rn + Ins produced a significant decrease in COX-2 expression. In conclusion, Rn facilitated the effects of insulin on the p-AKT, p-eNOS, p-ERK, Mn-SOD, and PPAR-γ signaling pathways, as well as on the anti-inflammatory and antioxidant effects of the hormone.


Assuntos
Astrócitos , Insulina , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Astrócitos/metabolismo , Glicemia/metabolismo , Ciclo-Oxigenase 2/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Insulina Regular Humana , NF-kappa B/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ranolazina/farmacologia , Superóxido Dismutase/metabolismo
13.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558088

RESUMO

Ranolazine, an antianginal and antiarrhythmic drug blocking slow inactivating persistent sodium currents, is described as a compound with anticonvulsant potential. Since arrhythmia often accompanies seizures, patients suffering from epilepsy are frequently co-treated with antiepileptic and antiarrhythmic drugs. The aim of this study was to evaluate the effect of ranolazine on maximal-electroshock (MES)-induced seizures in mice as well as interactions between ranolazine and classical antiepileptic drugs in this model of epilepsy. Types of pharmacodynamic interactions were established by isobolographic analysis of obtained data. The main findings of the study were that ranolazine behaves like an antiseizure drug in the MES test. Moreover, ranolazine interacted antagonistically with carbamazepine, phenytoin, and phenobarbital in the proportions of 1:3 and 1:1. These interactions occurred pharmacodynamic, since ranolazine did not change the brain levels of antiepileptic drugs measured in the fluorescence polarization immunoassay. Ranolazine and its combinations with carbamazepine, phenytoin, and phenobarbital did not impair motor coordination evaluated in the chimney test. Unfortunately, an attempt to conduct a passive avoidance task (evaluating long-term memory) resulted in ranolazine-induced delayed lethality. In conclusion, ranolazine exhibits clear-cut anticonvulsant properties in the MES test but interacts antagonistically with some antiepileptic drugs. The obtained results need confirmation in clinical studies. The mechanisms of ranolazine-induced toxicity require specific explanation.


Assuntos
Anticonvulsivantes , Epilepsia , Animais , Camundongos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Fenitoína/farmacologia , Interações Medicamentosas , Convulsões/tratamento farmacológico , Convulsões/etiologia , Epilepsia/tratamento farmacológico , Carbamazepina/farmacologia , Fenobarbital/farmacologia , Encéfalo , Eletrochoque/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Aprendizagem da Esquiva
14.
Zhonghua Xin Xue Guan Bing Za Zhi ; 50(11): 1087-1093, 2022 Nov 24.
Artigo em Chinês | MEDLINE | ID: mdl-36418277

RESUMO

Objective: To determine the electrophysiological effects and related mechanisms of late sodium current inhibitors on hearts with short QT intervals. Methods: The electrophysiological study was performed on isolated Langendorff perfused rabbit hearts. A total of 80 New Zealand White rabbits were used and 34 hearts without drug treatment were defined as control group A, these hearts were then treated with IKATP opener pinacidil, defined as pinacidil group A. Then, 27 hearts from pinacidil group A were selected to receive combined perfusion with sodium channel inhibitors or quinidine, a traditional drug used to treat short QT syndrome, including ranolazine combined group (n=9), mexiletine combined group (n=9), and quinidine combined group (n=9). Nineteen out of the remaining 46 New Zealand rabbits were selected as control group B (no drug treatments, n=19), and then treated with pinacidil, defined as pinacidil group B (n=19). The remaining 27 rabbits were treated with sodium inhibitors or quinidine alone, including ranolazine alone group (n=9), mexiletine alone group (n=9), and quinidine alone group (n=9). Electrocardiogram (ECG) physiological parameters of control group A and pinacidil group A were collected. In control group B and pinacidil group B, programmed electrical stimulation was used to induce ventricular arrhythmias and ECG was collected. ECG physiological parameters and ventricular arrhythmia status of various groups were analyzed. The concentrations of pinacidil, ranolazine, mexiletine and quinidine used in this study were 30, 10, 30 and 1 µmol/L, respectively. Results: Compared with control group A, the QT interval, 90% of the repolarization in epicardial and endocardial monophasic action potential duration (MAPD90-Epi, MAPD90-Endo) was shortened, the transmural dispersion of repolarization (TDR) was increased, and the effective refractor period (ERP) and post-repolarization refractoriness (PRR) were reduced in pinacidil group A (all P<0.05). Compared with the pinacidil group A, MAPD90-Epi, MAPD90-Endo, QT interval changes were reversed in quinidine combined group and mexiletine combined group (all P<0.05), but not in ranolazine combined group. All these three drugs reversed the pinacidil-induced increases of TDR and the decreases of ERP and PRR. The induced ventricular arrhythmia rate was 0 in control group B, and increased to 10/19 (χ2=13.6, P<0.05) in pinacidil group B during programmed electrical stimulation. Compared with the pinacidil group B, incidences of ventricular arrhythmia decreased to 11% (1/9), 11% (1/9) and 0 (0/9) (χ2=4.5, 4.5, 7.4, P<0.05) respectively in ranolazine group, mexiletine group and quinidine group. Conclusions: Inhibition of late sodium current does not increase but even decreases the risk of malignant arrhythmia in hearts with a shortened QT interval. The antiarrhythmic mechanism might be associated with the reversal of the increase of TDR and the decrease of refractoriness (including both ERP and PRR) of hearts with shortened QT interval.


Assuntos
Mexiletina , Quinidina , Coelhos , Animais , Quinidina/farmacologia , Quinidina/uso terapêutico , Mexiletina/farmacologia , Mexiletina/uso terapêutico , Pinacidil/farmacologia , Pinacidil/uso terapêutico , Sódio , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Técnicas Eletrofisiológicas Cardíacas , Arritmias Cardíacas/tratamento farmacológico
15.
J Card Fail ; 27(2): 253-257, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33223140

RESUMO

INTRODUCTION: A major outcome determinant in patients with precapillary pulmonary hypertension (PH) is right ventricular (RV) function. We studied the effect of ranolazine on RV function over 6 months using cardiovascular magnetic resonance (CMR) imaging in patients with precapillary PH (groups I, III, and IV). METHODS AND RESULTS: We enrolled patients with PH and RV dysfunction (CMR imaging ejection fraction [EF] of <45%) in a longitudinal, randomized, double-blinded, placebo controlled, multicenter study of ranolazine treatment. All enrolled patients were on stable PH-specific therapy. Enrolled patients were assessed using CMR imaging, New York Heart Association functional class, N-terminal pro brain natriuretic peptide, 6-minute walk test, and quality of life health outcomes at baseline and repeated at the end of treatment. The primary outcome was change in RVEF after 6 months of treatment. Analysis of covariance was used to analyze the longitudinal changes taking into account baseline values, age, and sex, based on per protocol population. Twenty-two patients were enrolled, and 9 patients completed follow-up CMR imaging after ranolazine treatment and 6 completed placebo treatment. There was significant increase in RVEF at end of treatment compared with baseline in the ranolazine group adjusted for baseline values, age, and sex. There were no statistically significant changes in secondary outcomes such as changes in New York Heart Association functional class, 6-minute walk distance, N-terminal pro brain natriuretic peptide, or quality of life measures. Ranolazine treated patients experienced a higher number of adverse events, but only one was discontinued owing to side effects. CONCLUSIONS: Ranolazine may improve RV function in patients with precapillary PH. Larger studies are needed to confirm the beneficial effects of ranolazine.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/tratamento farmacológico , Qualidade de Vida , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Volume Sistólico , Função Ventricular Direita
16.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830135

RESUMO

Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.


Assuntos
Dislipidemias/fisiopatologia , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Força Muscular/fisiologia , Nucleotídeos de Adenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Glicemia/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Ácidos Graxos/sangue , Resistência à Insulina/genética , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Oxirredução/efeitos dos fármacos , Ranolazina/farmacologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Troponina/metabolismo
17.
Mol Pharmacol ; 98(5): 540-547, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938719

RESUMO

GS-967 and eleclazine (GS-6615) are novel sodium channel inhibitors exhibiting antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current (I NaL). Here, we took advantage of a high throughput automated electrophysiology platform (SyncroPatch 768PE) to investigate the molecular pharmacology of GS-967 and eleclazine on peak sodium current (I NaP) recorded from human induced pluripotent stem cell-derived cardiomyocytes. We compared the effects of GS-967 and eleclazine with the antiarrhythmic drug lidocaine, the prototype I NaL inhibitor ranolazine, and the slow inactivation enhancing drug lacosamide. In human induced pluripotent stem cell-derived cardiomyocytes, GS-967 and eleclazine caused a reduction of I NaP in a frequency-dependent manner consistent with use-dependent block (UDB). GS-967 and eleclazine had similar efficacy but evoked more potent UDB of I NaP (IC50 = 0.07 and 0.6 µM, respectively) than ranolazine (7.8 µM), lidocaine (133.5 µM), and lacosamide (158.5 µM). In addition, GS-967 and eleclazine exerted more potent effects on slow inactivation and recovery from inactivation compared with the other sodium channel blocking drugs we tested. The greater UDB potency of GS-967 and eleclazine was attributed to the higher association rates and moderate unbinding rate of these two compounds with sodium channels. We propose that substantial UDB contributes to the observed antiarrhythmic efficacy of GS-967 and eleclazine. SIGNIFICANCE STATEMENT: We investigated the molecular pharmacology of GS-967 and eleclazine on sodium channels in human induced pluripotent stem cell-derived cardiomyocytes using a high throughput automated electrophysiology platform. Sodium channel inhibition by GS-967 and eleclazine has unique effects, including accelerating the onset of slow inactivation and impairing recovery from inactivation. These effects combined with rapid binding and moderate unbinding kinetics explain potent use-dependent block, which we propose contributes to their observed antiarrhythmic efficacy.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Oxazepinas/farmacologia , Piridinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Triazóis/farmacologia , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/farmacologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Lidocaína/farmacologia , Miócitos Cardíacos/metabolismo , Ranolazina/farmacologia
18.
J Cell Mol Med ; 24(6): 3669-3677, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32064746

RESUMO

Cardiovascular complications are leading causes of morbidity and mortality in patients with chronic kidney disease (CKD). CKD significantly affects cardiac calcium (Ca2+ ) regulation, but the underlying mechanisms are not clear. The present study investigated the modulation of Ca2+ homeostasis in CKD mice. Echocardiography revealed impaired fractional shortening (FS) and stroke volume (SV) in CKD mice. Electrocardiography showed that CKD mice exhibited longer QT interval, corrected QT (QTc) prolongation, faster spontaneous activities, shorter action potential duration (APD) and increased ventricle arrhythmogenesis, and ranolazine (10 µmol/L) blocked these effects. Conventional microelectrodes and the Fluo-3 fluorometric ratio techniques indicated that CKD ventricular cardiomyocytes exhibited higher Ca2+ decay time, Ca2+ sparks, and Ca2+ leakage but lower [Ca2+ ]i transients and sarcoplasmic reticulum Ca2+ contents. The CaMKII inhibitor KN93 and ranolazine (RAN; late sodium current inhibitor) reversed the deterioration in Ca2+ handling. Western blots revealed that CKD ventricles exhibited higher phosphorylated RyR2 and CaMKII and reduced phosphorylated SERCA2 and SERCA2 and the ratio of PLB-Thr17 to PLB. In conclusions, the modulation of CaMKII, PLB and late Na+ current in CKD significantly altered cardiac Ca2+ regulation and electrophysiological characteristics. These findings may apply on future clinical therapies.


Assuntos
Cálcio/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Benzilaminas/farmacologia , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Eletrocardiografia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ranolazina/farmacologia , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/patologia , Sulfonamidas/farmacologia
19.
Am J Physiol Heart Circ Physiol ; 318(1): H189-H202, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834840

RESUMO

We hypothesized that ranolazine-induced adenosine release is responsible for its beneficial effects in ischemic heart disease. Sixteen open-chest anesthetized dogs with noncritical coronary stenosis were studied at rest, during dobutamine stress, and during dobutamine stress with ranolazine. Six additional dogs without stenosis were studied only at rest. Regional myocardial function and perfusion were assessed. Coronary venous blood was drawn. Murine endothelial cells and cardiomyocytes were incubated with ranolazine and adenosine metabolic enzyme inhibitors, and adenosine levels were measured. Cardiomyocytes were also exposed to dobutamine and dobutamine with ranolazine. Modeling was employed to determine whether ranolazine can bind to an enzyme that alters adenosine stores. Ranolazine was associated with increased adenosine levels in the absence (21.7 ± 3.0 vs. 9.4 ± 2.1 ng/mL, P < 0.05) and presence of ischemia (43.1 ± 13.2 vs. 23.4 ± 5.3 ng/mL, P < 0.05). Left ventricular end-systolic wall stress decreased (49.85 ± 4.68 vs. 57.42 ± 3.73 dyn/cm2, P < 0.05) and endocardial-to-epicardial myocardial blood flow ratio tended to normalize (0.89 ± 0.08 vs. 0.76 ± 0.10, P = nonsignificant). Adenosine levels increased in cardiac endothelial cells and cardiomyocytes when incubated with ranolazine that was reversed when cytosolic-5'-nucleotidase (cN-II) was inhibited. Point mutation of cN-II aborted an increase in its specific activity by ranolazine. Similarly, adenosine levels did not increase when cardiomyocytes were incubated with dobutamine. Modeling demonstrated plausible binding of ranolazine to cN-II with a docking energy of -11.7 kcal/mol. We conclude that the anti-adrenergic and cardioprotective effects of ranolazine-induced increase in tissue adenosine levels, likely mediated by increasing cN-II activity, may contribute to its beneficial effects in ischemic heart disease.NEW & NOTEWORTHY Ranolazine is a drug used for treatment of angina pectoris in patients with ischemic heart disease. We discovered a novel mechanism by which this drug may exhibit its beneficial effects. It increases coronary venous levels of adenosine both at rest and during dobutamine-induced myocardial ischemia. Ranolazine also increases adenosine levels in endothelial cells and cardiomyocytes in vitro, by principally increasing activity of the enzyme cytosolic-5'-nucleotidase. Adenosine has well-known myocardial protective and anti-adrenergic properties that may explain, in part, ranolazine's beneficial effect in ischemic heart disease.


Assuntos
Adenosina/metabolismo , Fármacos Cardiovasculares/farmacologia , Estenose Coronária/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Ranolazina/farmacologia , 5'-Nucleotidase/química , 5'-Nucleotidase/metabolismo , Animais , Sítios de Ligação , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/metabolismo , Células Cultivadas , Estenose Coronária/metabolismo , Estenose Coronária/fisiopatologia , Modelos Animais de Doenças , Cães , Hemodinâmica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Ligação Proteica , Conformação Proteica , Ranolazina/química , Ranolazina/metabolismo , Relação Estrutura-Atividade , Regulação para Cima , Função Ventricular Esquerda/efeitos dos fármacos
20.
Int J Toxicol ; 39(6): 530-541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33063577

RESUMO

INTRODUCTION: Corrected QT (QTc) interval is an essential proarrhythmic risk biomarker, but recent data have identified limitations to its use. The J to T-peak (JTp) interval is an alternative biomarker for evaluating drug-induced proarrhythmic risk. The aim of this study was to evaluate pharmacological effects using spatial magnitude leads and DII electrocardiogram (ECG) leads and common ECG confounders (ie, stress and body temperature changes) on covariate adjusted QT (QTca), covariate adjusted JTp (JTpca), and covariate adjusted T-peak to T-end (Tpeca) intervals. METHODS: Beagle dogs were exposed to body hyper- (42 °C) or hypothermic (33 °C) conditions or were administered epinephrine to assess confounding effects on heart rate corrected QTca, JTpca, and Tpeca intervals. Dofetilide (0.1, 0.3, 1.0 mg/kg), ranolazine (100, 140, 200 mg/kg), and verapamil (7, 15, 30, 43, 62.5 mg/kg) were administered to evaluate pharmacological effects. RESULTS: Covariate adjusted QT (slope -12.57 ms/°C) and JTpca (-14.79 ms/°C) were negatively correlated with body temperature but Tpeca was minimally affected. Epinephrine was associated with QTca and JTpca shortening, which could be related to undercorrection in the presence of tachycardia, while minimal effects were observed for Tpeca. There were no significant ECG change following ranolazine administration. Verapamil decreased QTca and JTpca intervals and increased Tpeca, whereas dofetilide increased QTca and JTpca intervals but had inconsistent effects on Tpeca. CONCLUSION: Results highlight potential confounders on QTc interval, but also on JTpca and Tpeca intervals in nonclinical studies. These potential confounding effects may be relevant to the interpretation of ECG data obtained from nonclinical drug safety studies with Beagle dogs.


Assuntos
Arritmias Cardíacas/etiologia , Epinefrina/farmacologia , Fenetilaminas/farmacologia , Ranolazina/farmacologia , Sulfonamidas/farmacologia , Verapamil/farmacologia , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/farmacologia , Arritmias Cardíacas/prevenção & controle , Biomarcadores , Temperatura Corporal , Cães , Relação Dose-Resposta a Droga , Eletrocardiografia , Feminino , Frequência Cardíaca , Masculino , Fenetilaminas/administração & dosagem , Ranolazina/administração & dosagem , Estresse Fisiológico/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Verapamil/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA