RESUMO
Whereas the actions of enhancers in gene transcriptional regulation are well established, roles of JmjC-domain-containing proteins in mediating enhancer activation remain poorly understood. Here, we report that recruitment of the JmjC-domain-containing protein 6 (JMJD6) to estrogen receptor alpha (ERα)-bound active enhancers is required for RNA polymerase II recruitment and enhancer RNA production on enhancers, resulting in transcriptional pause release of cognate estrogen target genes. JMJD6 is found to interact with MED12 in the mediator complex to regulate its recruitment. Unexpectedly, JMJD6 is necessary for MED12 to interact with CARM1, which methylates MED12 at multiple arginine sites and regulates its chromatin binding. Consistent with its role in transcriptional activation, JMJD6 is required for estrogen/ERα-induced breast cancer cell growth and tumorigenesis. Our data have uncovered a critical regulator of estrogen/ERα-induced enhancer coding gene activation and breast cancer cell potency, providing a potential therapeutic target of ER-positive breast cancers.
Assuntos
Neoplasias da Mama/enzimologia , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Complexo Mediador/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Ativação Transcricional , Animais , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Células MCF-7 , Complexo Mediador/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Ligação Proteica , Transporte Proteico , Proteína-Arginina N-Metiltransferases/genética , Transdução de Sinais , Ativação Transcricional/efeitos dos fármacosRESUMO
The molecular mechanisms underlying the opposing functions of glucocorticoid receptors (GRs) and estrogen receptor α (ERα) in breast cancer development remain poorly understood. Here we report that, in breast cancer cells, liganded GR represses a large ERα-activated transcriptional program by binding, in trans, to ERα-occupied enhancers. This abolishes effective activation of these enhancers and their cognate target genes, and it leads to the inhibition of ERα-dependent binding of components of the MegaTrans complex. Consistent with the effects of SUMOylation on other classes of nuclear receptors, dexamethasone (Dex)-induced trans-repression of the estrogen E2 program appears to depend on GR SUMOylation, which leads to stable trans-recruitment of the GR-N-CoR/SMRT-HDAC3 corepressor complex on these enhancers. Together, these results uncover a mechanism by which competitive recruitment of DNA-binding nuclear receptors/transcription factors in trans to hot spot enhancers serves as an effective biological strategy for trans-repression, with clear implications for breast cancer and other diseases.
Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor Cross-Talk , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Dexametasona/farmacologia , Regulação para Baixo , Elementos Facilitadores Genéticos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Células MCF-7 , Complexos Multiproteicos , Mutação , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Ligação Proteica , Interferência de RNA , Receptor Cross-Talk/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/genética , Transdução de Sinais , Sumoilação , Transcrição Gênica/efeitos dos fármacos , Transcriptoma , TransfecçãoRESUMO
Estrogen receptor (ER) α is involved in male sexual function. Here, we aim to investigate how ERα activation influences sexual satiety and the Coolidge effect (i.e., when a rat, that has reached sexual satiety, experiences an increased arousal after exposure to a novel sexual partner) in estrogen-deprived male rats. Male rats (8 per group) were treated daily for 29 days with either saline (Control group) or fadrozole dissolved in saline (1 mg/kg/day) 1 h before mating. On Days 13 and 29, rats treated with fadrozole received either no additional treatment (fadrozole group) or a single injection of propyl-pyrazole-triol (ERα-agonist group, dissolved in sesame oil, 1 mg/kg). Rats mated until reaching sexual satiety on Days 13 and 29. In these sessions, the Control group displayed higher frequency of intromission and ejaculation than the other groups. The ERα-agonist group mounted more frequently but reached sexual satiety sooner than the Control group. On Day 29, when exposed to a new sexual partner, the fadrozole-treated rats were less likely to display intromission than the other groups, or ejaculation than the Control group, or mounting than the ERα-agonist group. The Control group showed more ejaculatory behavior and shorter ejaculation latency than the other groups. Body weights, testosterone levels, estradiol levels, and ERα-immunoreactive cell counts in brain regions for sexual behavior were comparable between groups after 29 days of treatments. Our data suggest that estrogen helps regulate sexual satiety and the Coolidge effect in male rats.
Assuntos
Receptor alfa de Estrogênio , Fadrozol , Fenóis , Pirazóis , Comportamento Sexual Animal , Animais , Masculino , Pirazóis/farmacologia , Ratos , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Fadrozol/farmacologia , Feminino , Ratos WistarRESUMO
The endocrine system functions by interactions between ligands and receptors. Ligands exhibit potency for binding to and interacting with receptors. Potency is the product of affinity and efficacy. Potency and physiological concentration determine the ability of a ligand to produce physiological effects. The kinetic behavior of ligand-receptor interactions conforms to the laws of mass action. The laws of mass action define the relationship between the affinity of a ligand and the fraction of cognate receptors that it occupies at any physiological concentration. We previously identified the minimum ligand potency required to produce clinically observable estrogenic agonist effects via the human estrogen receptor-alpha (ERα). By examining data on botanical estrogens and dietary supplements, we demonstrated that ERα ligands with potency lower than one one-thousandth that of the primary endogenous hormone 17ß-estradiol (E2) do not produce clinically observable estrogenic effects. This allowed us to propose a Human-Relevant Potency Threshold (HRPT) for ERα ligands of 1 × 10-4 relative to E2. Here, we test the hypothesis that the HRPT for ERα arises from the receptor occupancy by the normal metabolic milieu of endogenous ERα ligands. The metabolic milieu comprises precursors to hormones, metabolites of hormones, and other normal products of metabolism. We have calculated fractional receptor occupancies for ERα ligands with potencies below and above the previously established HRPT when normal circulating levels of some endogenous ERα ligands and E2 were also present. Fractional receptor occupancy calculations showed that individual ERα ligands with potencies more than tenfold higher than the HRPT can compete for occupancy at ERα against individual components of the endogenous metabolic milieu and against mixtures of those components at concentrations found naturally in human blood. Ligands with potencies less than tenfold higher than the HRPT were unable to compete successfully for ERα. These results show that the HRPT for ERα agonism (10-4 relative to E2) proposed previously is quite conservative and should be considered strong evidence against the potential for disruption of the estrogenic pathway. For chemicals with potency 10-3 of E2, the potential for estrogenic endocrine disruption must be considered equivocal and subject to the presence of corroborative evidence. Most importantly, this work demonstrates that the endogenous metabolic milieu is responsible for the observed ERα agonist HRPT, that this HRPT applies also to ERα antagonists, and it provides a compelling mechanistic explanation for the HRPT that is grounded in basic principles of molecular kinetics using well characterized properties and concentrations of endogenous components of normal metabolism.
Assuntos
Disruptores Endócrinos , Estradiol , Receptor alfa de Estrogênio , Humanos , Disruptores Endócrinos/análise , Disruptores Endócrinos/química , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/agonistas , Estrogênios/metabolismo , LigantesRESUMO
The sex steroid hormone 17ß-estradiol (estradiol) and its Estrogen Receptors (ERs) have been linked to modulation of anxiety-related and locomotor behaviors in female rodents. Research suggests that estradiol mitigates anxiety-related behaviors through activating Estrogen Receptor (ER)ß and increases locomotor behaviors through ERα. The influence of ERs on these behaviors cannot always be detected. Here we discuss two experiments in which we tested the hypothesis that anxiety-related behaviors would decrease after ERß activation and locomotor behaviors would increase after ERα activation, and also assessed the persistence of these behavioral effects by varying the timing of behavioral testing. Two cohorts of adult female ovariectomized rats were exposed to estradiol, the ERß agonist DPN, the ERα agonist PPT, or oil for four consecutive days. Body mass was assessed throughout as a positive control. In both cohorts, open field behaviors were assessed on the first day of exposure. In one cohort (Experiment 1), open field, light/dark box, and elevated plus maze behaviors were assessed on the final day of injections. In the second cohort (Experiment 2), these behaviors were assessed 24 h after the final exposure. As expected, significant differences in body mass were detected in response to estradiol and PPT exposure, validating the estradiol and ER manipulation. No significant differences were observed in anxiety-related or locomotor behaviors across treatment groups, indicating that the efficacy of these agonists as therapeutic agents may be limited. We review these results in the context of previous literature, emphasizing relevant variables that may obscure ER-related actions on behavior.
Assuntos
Estradiol , Receptores de Estrogênio , Ratos , Feminino , Animais , Humanos , Estradiol/farmacologia , Estradiol/fisiologia , Receptor beta de Estrogênio/agonistas , Receptor alfa de Estrogênio/agonistas , Ansiedade/tratamento farmacológico , Nitrilas , OvariectomiaRESUMO
Granulosa cell tumor (GCT) is a form of ovarian tumor characterized by its tendency to recur years after surgical ablation. Little is known about the mechanisms involved in GCT development and progression. GCTs can produce estradiol (E2), but whether this hormone could play a role in this cancer through its nuclear receptors, i.e. ERα and ERß, remains unknown. Here, we addressed this issue by cell-based and molecular studies on human GCTs and GCT cell lines. Importantly, we observed that E2 significantly increased the growth of GCT cells by promoting cell survival. The use of selective agonists of each type of receptor, together with Esr1 (ERα) or Esr2 (ERß)-deleted GCT cells, revealed that E2 mediated its effects through ERα-dependent genomic mechanisms and ERß/ERα-dependent extra-nuclear mechanisms. Notably, the expression of Greb1, a prototypical ER target gene, was dose-dependently upregulated by E2 specifically through ERα in GCT cells. Accordingly, using GCTs from patients, we found that GREB1 mRNA abundance was positively correlated to intra-tumoral E2 concentrations. Tissue microarray analyses showed that there were various combinations of ER expression in primary and recurrent GCTs, and that ERα expression persisted only in combination with ERß in ~40% of recurrent tumors. Altogether, this study demonstrates that E2 can promote the progression of GCTs, with a clear dependence on ERα. In addition to demonstrating that GCTs can be classified as a hormone-related cancer, our results also highlight that the nature of ER forms present in recurrent GCTs could underlie the variable efficiency of endocrine therapies. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Tumor de Células da Granulosa/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Idoso , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/patologia , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Regulação para CimaRESUMO
Cell fate perturbations underlie many human diseases, including breast cancer. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs 5, 6), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1-cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.
Assuntos
Mama/citologia , Mama/enzimologia , Diferenciação Celular , Linhagem da Célula , Receptor alfa de Estrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/agonistas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mama/patologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Receptor alfa de Estrogênio/agonistas , Feminino , Genes Supressores de Tumor , Humanos , Fosfoproteínas/agonistas , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteólise , Transdução de Sinais , Fatores de Transcrição , Proteínas Supressoras de Tumor/deficiência , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Proteínas de Sinalização YAPRESUMO
BACKGROUND: Menopausal hormone therapy (MHT) is recommended for only five years to treat vasomotor symptoms and vulvovaginal atrophy because of safety concerns with long-term treatment. We investigated the ability of 2',3',4'-trihydroxychalcone (2',3',4'-THC) to modulate estrogen receptor (ER)-mediated responses in order to find drug candidates that could potentially prevent the adverse effects of long-term MHT treatment. METHODS: Transfection assays, real time-polymerase chain reaction, and microarrays were used to evaluate the effects of 2',3',4'-THC on gene regulation. Radioligand binding studies were used to determine if 2',3',4'-THC binds to ERα. Cell proliferation was examined in MCF-7 breast cancer cells by using growth curves and flow cytometry. Western blots were used to determine if 2',3',4'-THC alters the E2 activation of the MAPK pathway and degradation of ERα. Chromatin immunoprecipitation was used to measure ERα binding to genes. RESULTS: The 2',3',4'-THC/E2 combination produced a synergistic activation with ERα on reporter and endogenous genes in human U2OS osteosarcoma cells. Microarrays identified 824 genes that we termed reprogrammed genes because they were not regulated in U2OS-ERα cells unless they were treated with 2',3',4'-THC and E2 at the same time. 2',3',4'-THC blocked the proliferation of MCF-7 cells by preventing the E2-induced activation of MAPK and c-MYC transcription. The antiproliferative mechanism of 2',3',4'-THC differs from selective estrogen receptor modulators (SERMs) because 2',3',4'-THC did not bind to the E2 binding site in ERα like SERMs. CONCLUSION: Our study suggests that 2',3',4'-THC may represent a new class of ERα modulators that do not act as a direct agonists or antagonists. We consider 2',3',4'-THC to be a reprogramming compound, since it alters the activity of ERα on gene regulation and cell proliferation without competing with E2 for binding to ERα. The addition of a reprogramming drug to estrogens in MHT may offer a new strategy to overcome the adverse proliferative effects of estrogen in MHT by reprogramming ERα as opposed to an antagonist mechanism that involves blocking the binding of estrogen to ERα.
Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Estradiol/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologiaRESUMO
Elevations in estrogen (17ß-estradiol, E2) are associated with increased alcohol drinking by women and experimentally in rodents. E2 alters the activity of the dopamine system, including the VTA and its projection targets, which plays an important role in binge drinking. A previous study demonstrated that, during high E2 states, VTA neurons in female mice are more sensitive to ethanol excitation. However, the mechanisms responsible for the ability of E2 to enhance ethanol sensitivity of VTA neurons have not been investigated. In this study, we used selective agonists and antagonists to examine the role of ER subtypes (ERα and ERß) in regulating the ethanol sensitivity of VTA neurons in female mice and found that ERα promotes the enhanced ethanol response of VTA neurons. We also demonstrated that enhancement of ethanol excitation requires the activity of the metabotropic glutamate receptor, mGluR1, which is known to couple with ERα at the plasma membrane. To investigate the behavioral relevance of these findings, we administered lentivirus-expressing short hairpin RNAs targeting either ERα or ERß into the VTA and found that knockdown of each receptor in the VTA reduced binge-like ethanol drinking in female, but not male, mice. Reducing ERα in the VTA had a more dramatic effect on binge-like drinking than reducing ERß, consistent with the ability of ERα to alter ethanol sensitivity of VTA neurons. These results provide important insight into sex-specific mechanisms that drive excessive alcohol drinking.SIGNIFICANCE STATEMENT Estrogen has potent effects on the dopamine system and increases the vulnerability of females to develop addiction to substances, such as alcohol. We investigated the mechanisms by which estrogen increases the response of neurons in the VTA to ethanol. We found that activation of the ERα increased the ethanol-induced excitation of VTA neurons. 17ß-Estradiol-mediated enhancement of ethanol-induced excitation required the metabotropic glutamate receptor mGluR1. We also demonstrated that ERs in the VTA regulate binge-like alcohol drinking by female, but not male, mice. The influence of ERs on binge drinking in female mice suggests that treatments for alcohol use disorder in women may need to account for this sex difference.
Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Receptor alfa de Estrogênio/metabolismo , Etanol/farmacologia , Neurônios/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Consumo Excessivo de Bebidas Alcoólicas/psicologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Receptores de AMPA/metabolismo , Área Tegmentar Ventral/citologiaRESUMO
Exposure to steroid sex hormones such as 17ß-estradiol (estradiol) during early life potentially permanently masculinize neuron electrophysiological phenotype. In rodents, one crucial component of this developmental process occurs in males, with estradiol aromatized in the brain from testes-sourced testosterone. However, it is unknown whether most neuron electrophysiological phenotypes are altered by this early masculinization process, including medium spiny neurons (MSNs) of the rat caudate-putamen. MSNs are the predominant and primary output neurons of the caudate-putamen and exhibit increased intrinsic excitability in females compared to males. Here, we hypothesize that since perinatal estradiol exposure occurs in males, then a comparable exposure in females to estradiol or its receptor agonists would be sufficient to induce masculinization. To test this hypothesis, we injected perinatal female rats with estradiol or its receptor agonists and then later assessed MSN electrophysiology. Female and male rats on postnatal day 0 and 1 were systemically injected with either vehicle, estradiol, the estrogen receptor (ER)α agonist PPT, the ERß agonist DPN, or the G-protein-coupled receptor 1 (GPER-1) agonist G1. On postnatal days 19 ± 2, MSN electrophysiological properties were assessed using whole cell patch clamp recordings. Estradiol exposure abolished increased intrinsic excitability in female compared to male MSNs. Exposure to either an ERα or ERß agonist masculinized female MSN evoked action potential firing rate properties, whereas exposure to an ERß agonist masculinized female MSN inward rectification properties. Exposure to ER agonists minimally impacted male MSN electrophysiological properties. These findings indicate that perinatal estradiol exposure masculinizes MSN electrophysiological phenotype via activation of ERα and ERß.NEW & NOTEWORTHY This study is the first to demonstrate that estradiol and estrogen receptor α and ß stimulation during early development sexually differentiates the electrophysiological properties of caudate-putamen medium spiny neurons, the primary output neuron of the striatal regions. Overall, this evidence provides new insight into the neuroendocrine mechanism by which caudate-putamen neuron electrophysiology is sexually differentiated and demonstrates the powerful action of early hormone exposure upon individual neuron electrophysiology.
Assuntos
Núcleo Caudado/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Estrogênios/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Putamen/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Estrogênios/administração & dosagem , Feminino , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Caracteres SexuaisRESUMO
Identification of chemicals that affect hormone-regulated systems will help to predict endocrine disruption. In our previous study, a 46 gene biomarker was found to be an accurate predictor of estrogen receptor (ER) α modulation in chemically treated MCF-7 cells. Here, potential ERα modulators were identified using the biomarker by screening a microarray compendium consisting of â¼1600 gene expression comparisons representing exposure to â¼1200 chemicals. A total of â¼170 chemicals were identified as potential ERα modulators. In the Connectivity Map 2.0 collection, 75 and 39 chemicals were predicted to activate or suppress ERα, and they included 12 and six known ERα agonists and antagonists/selective ERα modulators, respectively. Nineteen and eight of the total number were also identified as active in an ERα transactivation assay carried out in an MCF-7-derived cell line used to screen the Tox21 10K chemical library in agonist or antagonist modes, respectively. Chemicals predicted to modulate ERα in MCF-7 cells were examined further using global and targeted gene expression in wild-type and ERα-null cells, transactivation assays, and cell-free ERα coregulator interaction assays. Environmental chemicals classified as weak and very weak agonists were confirmed to activate ERα including apigenin, kaempferol, and oxybenzone. Novel activators included digoxin, nabumetone, ivermectin, and six progestins. Novel suppressors included emetine, mifepristone, niclosamide, and proscillaridin. Our strategy will be useful to identify environmentally relevant ERα modulators in future high-throughput transcriptomic screens.
Assuntos
Biomarcadores Tumorais/genética , Moduladores de Receptor Estrogênico/análise , Receptor alfa de Estrogênio/genética , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Humanos , Células MCF-7 , Células Tumorais CultivadasRESUMO
OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.
Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Terapia de Reposição de Estrogênios , Estrogênios/farmacologia , Fertilidade/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Mutação Puntual , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Ovariectomia , Reepitelização/efeitos dos fármacos , Transdução de Sinais , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacosRESUMO
Estrogen/ERα signaling is critical for breast cancer progression and therapeutic treatments. Thus, identifying new regulators of this pathway will help to develop new therapeutics to overcome chemotherapy resistance of the breast cancer cells. Here, we report Ajuba directly interacts with ERα to potentiate ERα target gene expression, and biologically Ajuba promotes breast cancer cell growth and contributes to tamoxifen resistance of these cells. Ajuba constitutively binds the DBD and AF2 regions of ERα, and these interactions can be markedly enhanced by estrogen treatment. Mechanistically, Ajuba recruits DBC1 and CBP/p300 and forms a ternary complex to co-activate ERα transcriptional activity and concomitantly enhances ERα acetylation. Moreover, components of this complex can be found at endogenous promoters containing functional ERα responsive elements. Taken together, these data demonstrate that Ajuba functions as a novel co-activator of ERα and that Ajuba/DBC1/CBP/p300 ternary complex may be a new target for developing therapeutics to treat breast cancer.
Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas com Domínio LIM/genética , Proteínas do Tecido Nervoso , Ligação Proteica/efeitos dos fármacos , Tamoxifeno/antagonistas & inibidores , Tamoxifeno/farmacologia , Transcrição Gênica/efeitos dos fármacosRESUMO
Menopause, caused by decreases in estrogen production, results in symptoms such as facial flushing, vaginal atrophy, and osteoporosis. Although hormone replacement therapy is utilized to treat menopausal symptoms, it is associated with a risk of breast cancer development. We aimed to evaluate the estrogenic activities of Spartina anglica (SA) and its compounds and identify potential candidates for the treatment of estrogen reduction without the risk of breast cancer. We evaluated the estrogenic and anti-proliferative effects of extracts of SA and its compounds in MCF-7 breast cancer cells. We performed an uterotrophic assay using an immature female rat model. Among extracts of SA, belowground part (SA-bg-E50) had potent estrogenic activity. In the immature female rat model, the administration of SA-bg-E50 increased uterine weight compared with that in the normal group. Among the compounds isolated from SA, 1,3-di-O-trans-feruloyl-(-)-quinic acid (1) had significant estrogenic activity and induced phosphorylation at serine residues of estrogen receptor (ER)α. All extracts and compounds from SA did not increase MCF-7 cell proliferation. Compound 1 is expected to act as an ERα ligand and have estrogenic effects, without side effects, such as breast cancer development.
Assuntos
Fitoestrógenos/farmacologia , Extratos Vegetais/farmacologia , Poaceae/metabolismo , Útero/efeitos dos fármacos , Animais , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Ligantes , Células MCF-7 , Estrutura Molecular , Tamanho do Órgão , Fitoestrógenos/isolamento & purificação , Fitoestrógenos/toxicidade , Componentes Aéreos da Planta/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Raízes de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Útero/crescimento & desenvolvimento , Útero/metabolismoRESUMO
Unbiased shRNA library screens revealed that the estrogen receptor-1 (ESR-1) is a key factor regulating HIV-1 latency. In both Jurkat T cells and a Th17 primary cell model for HIV-1 latency, selective estrogen receptor modulators (SERMs, i.e., fulvestrant, raloxifene, and tamoxifen) are weak proviral activators and sensitize cells to latency-reversing agents (LRAs) including low doses of TNF-α (an NF-κB inducer), the histone deacetylase inhibitor vorinostat (soruberoylanilide hydroxamic acid, SAHA), and IL-15. To probe the physiologic relevance of these observations, leukapheresis samples from a cohort of 12 well-matched reproductive-age women and men on fully suppressive antiretroviral therapy were evaluated by an assay measuring the production of spliced envelope (env) mRNA (the EDITS assay) by next-generation sequencing. The cells were activated by T cell receptor (TCR) stimulation, IL-15, or SAHA in the presence of either ß-estradiol or an SERM. ß-Estradiol potently inhibited TCR activation of HIV-1 transcription, while SERMs enhanced the activity of most LRAs. Although both sexes responded to SERMs and ß-estradiol, females showed much higher levels of inhibition in response to the hormone and higher reactivity in response to ESR-1 modulators than males. Importantly, the total inducible RNA reservoir, as measured by the EDITS assay, was significantly smaller in the women than in the men. We conclude that concurrent exposure to estrogen is likely to limit the efficacy of viral emergence from latency and that ESR-1 is a pharmacologically attractive target that can be exploited in the design of therapeutic strategies for latency reversal.
Assuntos
Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/agonistas , HIV-1/fisiologia , Caracteres Sexuais , Transcrição Gênica/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Adulto , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células Jurkat , Masculino , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologiaRESUMO
Early transient developmental exposure to an endocrine active compound, diethylstilbestrol (DES), a synthetic estrogen, causes late-stage effects in the reproductive tract of adult mice. Estrogen receptor alpha (ERα) plays a role in mediating these developmental effects. However, the developmental mechanism is not well known in male tissues. Here, we present genome-wide transcriptome and DNA methylation profiling of the seminal vesicles (SVs) during normal development and after DES exposure. ERα mediates aberrations of the mRNA transcriptome in SVs of adult mice following neonatal DES exposure. This developmental exposure impacts differential diseases between male (SVs) and female (uterus) tissues when mice reach adulthood due to most DES-altered genes that appear to be tissue specific during mouse development. Certain estrogen-responsive gene changes in SVs are cell-type specific. DNA methylation dynamically changes during development in the SVs of wild-type (WT) and ERα-knockout (αERKO) mice, which increases both the loss and gain of differentially methylated regions (DMRs). There are more gains of DMRs in αERKO compared with WT. Interestingly, the methylation changes between the two genotypes are in different genomic loci. Additionally, the expression levels of a subset of DES-altered genes are associated with their DNA methylation status following developmental DES exposure. Taken together, these findings provide an important basis for understanding the molecular and cellular mechanism of endocrine-disrupting chemicals (EDCs), such as DES, during development in the male mouse tissues. This unique evidence contributes to our understanding of developmental actions of EDCs in human health.
Assuntos
Metilação de DNA/efeitos dos fármacos , Dietilestilbestrol/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Estrogênios não Esteroides/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Glândulas Seminais/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Metilação de DNA/genética , Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Estrogênios não Esteroides/farmacologia , Loci Gênicos , Masculino , Camundongos , Camundongos KnockoutRESUMO
A set of isoflavononid and flavonoid analogs was prepared and evaluated for estrogen receptor α (ERα) and ERß transactivation and anti-neuroinflammatory activities. Structure-activity relationship (SAR) study of naturally occurring phytoestrogens, their metabolites, and related isoflavone analogs revealed the importance of the C-ring of isoflavonoids for ER activity and selectivity. Docking study suggested putative binding modes of daidzein 2 and dehydroequol 8 in the active site of ERα and ERß, and provided an understanding of the promising activity and selectivity of dehydroequol 8. Among the tested compounds, equol 7 and dehydroequol 8 were the most potent ERα/ß agonists with ERß selectivity and neuroprotective activity. This study provides knowledge on the SAR of isoflavonoids for further development of potent and selective ER agonists with neuroprotective potential.
Assuntos
Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Fármacos Neuroprotetores/farmacologia , Fitoestrógenos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Fitoestrógenos/síntese química , Fitoestrógenos/química , Relação Estrutura-AtividadeRESUMO
Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear receptor superfamily. Many structures of ERα bound with agonists and antagonists have been determined. However, the dynamic binding patterns of agonists and antagonists in the binding site of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD) simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic binding patterns in ERα. 17ß-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand binding pockets of the agonist and antagonist bound ERα. The best complex conformations from molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was conducted to group the structures in the trajectory from MD simulations. The representative structure from each cluster was selected to calculate the binding interaction energy value for elucidation of the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer, while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug candidates and facilitate risk assessment of chemicals through ER-mediated responses.
Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Tamoxifeno/análogos & derivados , Estradiol/química , Receptor alfa de Estrogênio/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Tamoxifeno/química , Tamoxifeno/metabolismoRESUMO
Distinct from ovarian estradiol, the steroid hormone 17ß-estradiol (E2) is produced in the brain and is involved in numerous functions, particularly acting as a neurosteroid. However, the physiological role of E2 and the mechanism of its effects are not well known. In hippocampal slices, 17ß-estradiol has been found to cause a modest increase in fast glutamatergic transmission; because some of these effects are rapid and acute, they might be mediated by membrane-associated receptors via nongenomic action. Moreover, activation of membrane estrogen receptors can rapidly modulate neuron function in a sex-specific manner. To further investigate the neurological role of E2, we examined the effect of E2, as an estrogen receptor (ER) agonist, on synaptic transmission in slices of the prefrontal cortex (PFC) and hippocampus in both male and female mice. Whole-cell recordings of spontaneous excitatory postsynaptic currents (sEPSC) in the PFC showed that E2 acts as a neuromodulator in glutamatergic transmission in the PFC in both sexes, but often in a cell-specific manner. The sEPSC amplitude and/or frequency responded to E2 in three ways, namely by significantly increasing, decreasing or having no response. Additional experiments using an agonist selective for ERß, diarylpropionitrile (DPN) showed that in males the sEPSC and spontaneous inhibitory postsynaptic currents sIPSC responses were similar to their E2 responses, but in females the estrogen receptor ß (ERß) agonist DPN did not influence excitatory transmission in the PFC. In contrast, in the hippocampus of both sexes E2 potentiated the gluatmatergic synaptic transmission in a subset of hippocampal cells. These data indicate that activation of E2 targeting probably a estrogen subtypes or different downstream signaling affect synaptic transmission in the brain PFC and hippocampus between males versus females mice.
Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/fisiologia , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Transmissão Sináptica/fisiologia , Animais , Receptor alfa de Estrogênio/agonistas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas/farmacologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/efeitos dos fármacos , Propionatos/farmacologia , Caracteres Sexuais , Transmissão Sináptica/efeitos dos fármacosRESUMO
The Organisation for Economic Co-operation and Development (OECD)-validated transactivation assay using the human estrogen receptor alpha (hERα) Hela9903 cell line is used for activity evaluation of hERα agonists and antagonists. Due to many advantages, this assay is broadly used as an initial screening process. However, response significantly higher from that of 17-ß estradiol (E2) was observed with phytoestrogens for concentrations commonly above 1 µM in previous studies. The main aim of this study was thus to ascertain the applicability of OECD protocol 455 for evaluation of estrogenic activity of natural flavonoids, including known phytoestrogens. The estrogenic activities of aglycones as well as of O-methylated and glycosylated flavonoids were evaluated. Supra-maximal luciferase activity was seen for most of the flavonoids tested at concentrations even below 1 µM. hERα-mediated luciferase expression was confirmed with the competition assay specified in OECD protocol 455. However, at concentrations above 1 µM, non-specific interactions were also observed. Instead of EC50 values, which could not be determined for most of the isoflavonoids tested, the concentrations corresponding to 10% (PC10) and 50% (PC50) of the maximum activity of the positive control, E2, were used for quantitative determination of estrogenic activities. Appropriate evaluation of the data obtained with the current OECD protocol 455 validated assay represents a valuable tool for initial screening of natural flavonoids for estrogenic activity.