Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Nat Chem Biol ; 19(7): 805-814, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36782010

RESUMO

A drug's selectivity for target receptors is essential to its therapeutic utility, but achieving selectivity between similar receptors is challenging. The serendipitous discovery of ligands that stimulate target receptors more strongly than closely related receptors, despite binding with similar affinities, suggests a solution. The molecular mechanism of such 'efficacy-driven selectivity' has remained unclear, however, hindering design of such ligands. Here, using atomic-level simulations, we reveal the structural basis for the efficacy-driven selectivity of a long-studied clinical drug candidate, xanomeline, between closely related muscarinic acetylcholine receptors (mAChRs). Xanomeline's binding mode is similar across mAChRs in their inactive states but differs between mAChRs in their active states, with divergent effects on active-state stability. We validate this mechanism experimentally and use it to design ligands with altered efficacy-driven selectivity. Our results suggest strategies for the rational design of ligands that achieve efficacy-driven selectivity for many pharmaceutically important G-protein-coupled receptors.


Assuntos
Receptores Muscarínicos , Tiadiazóis , Ligantes , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Piridinas , Tiadiazóis/química , Receptores Acoplados a Proteínas G/química
2.
Arch Pharm (Weinheim) ; 357(10): e2400337, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39054609

RESUMO

A new series of muscarinic acetylcholine receptor (mAChR) ligands obtained by inserting different substituents in position 2 of the potent 6,6-diphenyl-1,4-dioxane antagonists 4 and 5 was designed and synthesized to investigate the influence of steric bulk on the mAChR affinity. Specifically, the insertion of a 2-methyl group, affording compounds 6 and 9, resulted as the most favorable modification in terms of affinity for all muscarinic subtypes. As supported by computational studies performed on the hM1 receptor, this substituent may contribute to stabilize the ligand within the binding site by favoring the formation of stable interactions between the cationic head of the ligand and the residue D105. The increase of steric bulk, obtained by replacing the methyl group with an ethyl (7 and 10) and especially a phenyl substituent (8 and 11), caused a marked decrease of mAChR affinity, demonstrating the crucial role played by the steric bulk of the 2-substituent in the mAChR interaction. The most intriguing result was obtained with the tertiary amine 9, which, surprisingly, showed two different pKi values for all mAChRs, with preferential subpicomolar affinities for the M1, M3, and M4 subtypes. Interestingly, biphasic curves were also observed with both the eutomer (S)-(-)-9 and the distomer (R)-( + )-9.


Assuntos
Dioxanos , Receptores Muscarínicos , Ligantes , Dioxanos/química , Dioxanos/farmacologia , Dioxanos/síntese química , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/química , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/síntese química , Humanos , Sítios de Ligação , Células CHO , Cricetulus , Relação Dose-Resposta a Droga
3.
Insect Mol Biol ; 31(4): 497-507, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35357052

RESUMO

Muscarinic acetylcholine receptors (mAChRs) which are G protein-coupled receptors play key roles in insect physiology. Whereas vertebrate mAChRs are important targets for pharmaceutical drugs, insect mAChRs are under-exploited by the agro-chemical industry. Moreover, insect mAChRs have been less well studied than their vertebrate counterparts. Their critical functions mean that a better knowledge of the insect mAChRs is crucial for the effort to develop a new molecular-level strategy for insect pest management. Almost all insects possess three mAChRs named A, B and C which differ according to their coupling effector systems and their pharmacological profile. The aim of this study was to characterize the A-type mAChR (mAChR-A) from Anopheles gambiae which is the major vector of malaria in order to develop new strategies in pest management. In this paper, we reported that mAChR-A is more expressed in adult mosquitoes than in larvae. Furthermore, using calcium imaging recordings, we found that the An. gambiae mAChR-A expressed in Sf9 cells is activated by specific muscarinic agonists acetylcholine, muscarine and oxotremorine M and blocked by several mAChR antagonists. Moreover, using inhibitors of phosphoinositide pathway such as Gαq/11 protein blocker, we have shown that an increased intracellular calcium concentration elicited by the acetylcholine application was mediated by PLC/IP3R pathway. As a rise in intracellular calcium concentration could lead to an increase in the insecticide target sensitivity, these results suggest that An. gambiae mAChR-A should not be only considered as a potential target for new molecules but also as a key element to optimize the efficacy of insecticide in vector control.


Assuntos
Anopheles , Inseticidas , Acetilcolina/metabolismo , Animais , Anopheles/genética , Anopheles/metabolismo , Cálcio/metabolismo , Mosquitos Vetores , Receptores Muscarínicos/química
4.
Proc Natl Acad Sci U S A ; 116(9): 3373-3378, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808733

RESUMO

Predicting ligand biological activity is a key challenge in drug discovery. Ligand-based statistical approaches are often hampered by noise due to undersampling: The number of molecules known to be active or inactive is vastly less than the number of possible chemical features that might determine binding. We derive a statistical framework inspired by random matrix theory and combine the framework with high-quality negative data to discover important chemical differences between active and inactive molecules by disentangling undersampling noise. Our model outperforms standard benchmarks when tested against a set of challenging retrospective tests. We prospectively apply our model to the human muscarinic acetylcholine receptor M1, finding four experimentally confirmed agonists that are chemically dissimilar to all known ligands. The hit rate of our model is significantly higher than the state of the art. Our model can be interpreted and visualized to offer chemical insights about the molecular motifs that are synergistic or antagonistic to M1 agonism, which we have prospectively experimentally verified.


Assuntos
Descoberta de Drogas/estatística & dados numéricos , Modelos Estatísticos , Antagonistas Muscarínicos/química , Receptores Muscarínicos/química , Humanos , Ligantes , Antagonistas Muscarínicos/uso terapêutico , Receptores Muscarínicos/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 116(51): 26001-26007, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772027

RESUMO

The human M5 muscarinic acetylcholine receptor (mAChR) has recently emerged as an exciting therapeutic target for treating a range of disorders, including drug addiction. However, a lack of structural information for this receptor subtype has limited further drug development and validation. Here we report a high-resolution crystal structure of the human M5 mAChR bound to the clinically used inverse agonist, tiotropium. This structure allowed for a comparison across all 5 mAChR family members that revealed important differences in both orthosteric and allosteric sites that could inform the rational design of selective ligands. These structural studies, together with chimeric swaps between the extracellular regions of the M2 and M5 mAChRs, provided structural insight into kinetic selectivity, where ligands show differential residency times between related family members. Collectively, our study provides important insights into the nature of orthosteric and allosteric ligand interaction across the mAChR family that could be exploited for the design of selective drugs.


Assuntos
Receptor Muscarínico M5/química , Receptor Muscarínico M5/metabolismo , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Cristalização , Desenho de Fármacos , Humanos , Cinética , Ligantes , Modelos Moleculares , Conformação Proteica , Receptor Muscarínico M5/genética , Receptores Muscarínicos/química , Difração de Raios X
6.
Mol Phylogenet Evol ; 154: 106989, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059072

RESUMO

Histamine receptors belonging to the superfamily of G protein-coupled receptors (GPCRs) mediate the diverse biological effects of biogenic histamine. They are classified into four phylogenetically distinct subtypes H1-H4, each with a different binding affinity for histamine and divergent downstream signaling pathways. Here we present the evolutionary history of the histamine receptors using a phylogenetic approach complemented with comparative genomics analyses of the sequences, gene structures, and synteny of gene neighborhoods. The data indicate the earliest emergence of histamine-mediated GPCR signaling by a H2 in a prebilaterian ancestor. The analyses support a revised classification of the vertebrate H3-H4 receptor subtypes. We demonstrate the presence of the H4 across vertebrates, contradicting the currently held notion that H4 is restricted to mammals. These non-mammalian vertebrate H4 orthologs have been mistaken for H3. We also identify the presence of a new H3 subtype (H3B), distinct from the canonical H3 (H3A), and propose that the H3A, H3B, and H4 likely emerged from a H3 progenitor through the 1R/2R whole genome duplications in an ancestor of the vertebrates. It is apparent that the ability of the H1, H2, and H3-4 to bind histamine was acquired convergently. We identified genomic signatures suggesting that the H1 and H3-H4 shared a last common ancestor with the muscarinic receptor in a bilaterian predecessor whereas, the H2 and the α-adrenoreceptor shared a progenitor in a prebilaterian ancestor. Furthermore, site-specific analysis of the vertebrate subtypes revealed potential residues that may account for the functional divergence between them.


Assuntos
Evolução Molecular , Receptores Histamínicos H3/genética , Receptores Histamínicos H4/genética , Vertebrados/genética , Animais , Humanos , Simulação de Acoplamento Molecular , Filogenia , Receptores Histamínicos H3/química , Receptores Histamínicos H4/química , Receptores Muscarínicos/química , Receptores Muscarínicos/genética , Homologia Estrutural de Proteína , Sintenia/genética
7.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825082

RESUMO

Structure-based virtual screening is a truly productive repurposing approach provided that reliable target structures are available. Recent progresses in the structural resolution of the G-Protein Coupled Receptors (GPCRs) render these targets amenable for structure-based repurposing studies. Hence, the present study describes structure-based virtual screening campaigns with a view to repurposing known drugs as potential allosteric (and/or orthosteric) ligands for the hM2 muscarinic subtype which was indeed resolved in complex with an allosteric modulator thus allowing a precise identification of this binding cavity. First, a docking protocol was developed and optimized based on binding space concept and enrichment factor optimization algorithm (EFO) consensus approach by using a purposely collected database including known allosteric modulators. The so-developed consensus models were then utilized to virtually screen the DrugBank database. Based on the computational results, six promising molecules were selected and experimentally tested and four of them revealed interesting affinity data; in particular, dequalinium showed a very impressive allosteric modulation for hM2. Based on these results, a second campaign was focused on bis-cationic derivatives and allowed the identification of other two relevant hM2 ligands. Overall, the study enhances the understanding of the factors governing the hM2 allosteric modulation emphasizing the key role of ligand flexibility as well as of arrangement and delocalization of the positively charged moieties.


Assuntos
Sítio Alostérico , Anti-Infecciosos Locais/farmacologia , Colinérgicos/farmacologia , Dequalínio/farmacologia , Reposicionamento de Medicamentos , Receptores Muscarínicos/química , Regulação Alostérica , Animais , Anti-Infecciosos Locais/química , Células CHO , Colinérgicos/química , Cricetinae , Cricetulus , Dequalínio/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores Muscarínicos/metabolismo
8.
Bioorg Med Chem Lett ; 29(20): 126643, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492518

RESUMO

To further proceed with our previous work, novel steroid-based histamine H3 receptor antagonists were identified and characterized. Using an 'amine-to-amide' modification strategy at position 17, in vitro and in vivo potent monoamino steroid derivatives were found during the lead optimization. Usage of the non-basic amide moiety resulted in beneficial effects both in activity and selectivity. The 15α-carboxamido derivative 10 was not only highly active at human and rat H3 receptors, but also showed negligible activity at rat muscarinic receptors. Furthermore, it proved to be considerably stable in human and rat microsomes and showed significant in vivo potency in the pharmacodynamic rat dipsogenia test and in the water-labyrinth cognitive model. Based on all of these considerations, compound 10 was appointed to be a preclinical candidate.


Assuntos
Amidas/química , Antagonistas dos Receptores Histamínicos/química , Receptores Histamínicos H3/metabolismo , Amidas/farmacologia , Animais , Antagonistas dos Receptores Histamínicos/metabolismo , Humanos , Masculino , Estrutura Molecular , Contração Muscular/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Muscarínicos/química , Solubilidade , Esteroides/química
9.
Nature ; 504(7478): 101-6, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24256733

RESUMO

Despite recent advances in crystallography and the availability of G-protein-coupled receptor (GPCR) structures, little is known about the mechanism of their activation process, as only the ß2 adrenergic receptor (ß2AR) and rhodopsin have been crystallized in fully active conformations. Here we report the structure of an agonist-bound, active state of the human M2 muscarinic acetylcholine receptor stabilized by a G-protein mimetic camelid antibody fragment isolated by conformational selection using yeast surface display. In addition to the expected changes in the intracellular surface, the structure reveals larger conformational changes in the extracellular region and orthosteric binding site than observed in the active states of the ß2AR and rhodopsin. We also report the structure of the M2 receptor simultaneously bound to the orthosteric agonist iperoxo and the positive allosteric modulator LY2119620. This structure reveals that LY2119620 recognizes a largely pre-formed binding site in the extracellular vestibule of the iperoxo-bound receptor, inducing a slight contraction of this outer binding pocket. These structures offer important insights into the activation mechanism and allosteric modulation of muscarinic receptors.


Assuntos
Modelos Moleculares , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Regulação Alostérica , Sítios de Ligação , Citoplasma/metabolismo , Humanos , Isoxazóis/química , Isoxazóis/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo
10.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653051

RESUMO

The neurotransmitter molecule acetylcholine is capable of activating five muscarinic acetylcholine receptors, M1 through M5, which belong to the superfamily of G-protein-coupled receptors (GPCRs). These five receptors share high sequence and structure homology; however, the M1, M3, and M5 receptor subtypes signal preferentially through the Gαq/11 subset of G proteins, whereas the M2 and M4 receptor subtypes signal through the Gαi/o subset of G proteins, resulting in very different intracellular signaling cascades and physiological effects. The structural basis for this innate ability of the M1/M3/M5 set of receptors and the highly homologous M2/M4 set of receptors to couple to different G proteins is poorly understood. In this study, we used molecular dynamics (MD) simulations coupled with thermodynamic analyses of M1 and M2 receptors coupled to both Gαi and Gαq to understand the structural basis of the M1 receptor's preference for the Gαq protein and the M2 receptor's preference for the Gαi protein. The MD studies showed that the M1 and M2 receptors can couple to both Gα proteins such that the M1 receptor engages with the two Gα proteins in slightly different orientations and the M2 receptor engages with the two Gα proteins in the same orientation. Thermodynamic studies of the free energy of binding of the receptors to the Gα proteins showed that the M1 and M2 receptors bind more strongly to their cognate Gα proteins compared to their non-cognate ones, which is in line with previous experimental studies on the M3 receptor. A detailed analysis of receptor-G protein interactions showed some cognate-complex-specific interactions for the M2:Gαi complex; however, G protein selectivity determinants are spread over a large overlapping subset of residues. Conserved interaction between transmembrane helices 5 and 6 far away from the G-protein-binding receptor interface was found only in the two cognate complexes and not in the non-cognate complexes. An analysis of residues implicated previously in G protein selectivity, in light of the cognate and non-cognate structures, shaded a more nuanced role of those residues in affecting G protein selectivity. The simulation of both cognate and non-cognate receptor-G protein complexes fills a structural gap due to difficulties in determining non-cognate complex structures and provides an enhanced framework to probe the mechanisms of G protein selectivity exhibited by most GPCRs.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Simulação de Dinâmica Molecular , Receptores Muscarínicos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores Muscarínicos/química , Termodinâmica
11.
Mol Pain ; 14: 1744806918815005, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30392459

RESUMO

Complex regional pain syndrome is an extremely painful condition that develops after trauma to a limb. Complex regional pain syndrome exhibits autoimmune features in part mediated by autoantibodies against muscarinic-2 acetylcholine (M2) receptor. The mechanisms underlying the M2 receptor involvement in complex regional pain syndrome remain obscure. Based on our recent work demonstrating that limb nerve trauma releases a potent proalgesic, immunodominant myelin basic protein fragment, our present sequence database analyses reveal an unexpected and previously undescribed structural homology of the proalgesic myelin basic protein fragment with the M2 receptor. As both complex regional pain syndrome and the proalgesic myelin basic protein activity are prevalent in females, this myelin basic protein/M2 homology presents an inviting hypothesis explaining the mechanisms of autoimmune pathogenesis and sexual dimorphism that underlies vulnerability toward developing complex regional pain syndrome and other pain states with neuropathic features. This hypothesis may aid in the development of novel diagnostic and therapeutic strategies to chronic pain.


Assuntos
Síndromes da Dor Regional Complexa/etiologia , Proteína Básica da Mielina/química , Receptores Muscarínicos/química , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Autoanticorpos/metabolismo , Feminino , Humanos , Masculino , Proteína Básica da Mielina/metabolismo , Receptores Muscarínicos/metabolismo , Caracteres Sexuais
12.
Cell Physiol Biochem ; 48(2): 433-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016789

RESUMO

BACKGROUND/AIMS: Vagus nerve stimulation (VNS) suppresses arrhythmic activity and minimizes cardiomyocyte injury. However, how VNS affects angiogenesis/arteriogenesis in infarcted hearts, is poorly understood. METHODS: Myocardial infarction (MI) was achieved by ligation of the left anterior descending coronary artery (LAD) in rats. 7 days after LAD, stainless-steel wires were looped around the left and right vagal nerve in the neck for vagus nerve stimulation (VNS). The vagal nerve was stimulated with regular pulses of 0.2ms duration at 20 Hz for 10 seconds every minute for 4 hours, and then ACh levels by ELISA in cardiac tissue and serum were evaluated for its release after VNS. Three and 14 days after VNS, Real-time PCR, immunostaining and western blot were respectively used to determine VEGF-A/B expressions and α-SMA- and CD31-postive vessels in VNS-hearts with pretreatment of α7-nAChR blocker mecamylamine (10 mg/kg, ip) or mACh-R blocker atropine (10 mg/kg, ip) for 1 hour. The coronary function and left ventricular performance were analyzed by Langendorff system and hemodynamic parameters in VNS-hearts with pretreatment of VEGF-A/B-knockdown or VEGFR blocker AMG706. Coronary arterial endothelial cells proliferation, migration and tube formation were evaluated for angiogenesis following the stimulation of VNS in coronary arterial smooth muscle cells (VSMCs). RESULTS: VNS has been shown to stimulate VEGF-A and VEGF-B expressions in coronary arterial smooth muscle cells (VSMCs) and endothelial cells (ECs) with an increase of α-SMA- and CD31-postive vessel number in infarcted hearts. The VNS-induced VEGF-A/B expressions and angiogenesis were abolished by m-AChR inhibitor atropine and α7-nAChR blocker mecamylamine in vivo. Interestingly, knockdown of VEGF-A by shRNA mainly reduced VNS-mediated formation of CD31+ microvessels. In contrast, knockdown of VEGF-B powerfully abrogated VNS-induced formation of α-SMA+ vessels. Consistently, VNS-induced VEGF-A showed a greater effect on EC tube formation as compared to VNS-induced VEGF-B. Moreover, VEGF-A promoted EC proliferation and VSMC migration while VEGF-B induced VSMC proliferation and EC migration in vitro. Mechanistically, vagal neurotransmitter acetylcholine stimulated VEGF-A/B expressions through m/nACh-R/PI3K/Akt/Sp1 pathway in EC. Functionally, VNS improved the coronary function and left ventricular performance. However, blockade of VEGF receptor by antagonist AMG706 or knockdown of VEGF-A or VEGF-B by shRNA significantly diminished the beneficial effects of VNS on ventricular performance. CONCLUSION: VNS promoted angiogenesis/arteriogenesis to repair the infracted heart through the synergistic effects of VEGF-A and VEGF-B.


Assuntos
Infarto do Miocárdio/terapia , Estimulação do Nervo Vago , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Acetilcolina/análise , Acetilcolina/sangue , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Masculino , Microvasos/citologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator B de Crescimento do Endotélio Vascular/genética , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
13.
J Comput Chem ; 38(15): 1209-1228, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28130813

RESUMO

Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A1 R, A2A R, A3 R) and muscarinic acetylcholine (M1 R, M5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M1 R PAMs were predicted to bind in the analogous M2 R PAM LY2119620 binding site. The M5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Agonistas do Receptor Purinérgico P1/farmacologia , Receptores Muscarínicos/metabolismo , Receptores Purinérgicos P1/metabolismo , Sítio Alostérico/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Agonistas Muscarínicos/química , Agonistas do Receptor Purinérgico P1/química , Receptores Muscarínicos/química , Receptores Purinérgicos P1/química
14.
Phys Biol ; 14(3): 036002, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28535146

RESUMO

G protein-coupled receptor (GPCR) association is an emerging paradigm with far reaching implications in the regulation of signalling pathways and therapeutic interventions. Recent super resolution microscopy studies have revealed that receptor dimer steady state exhibits sub-second dynamics. In particular the GPCRs, muscarinic acetylcholine receptor M1 (M1MR) and formyl peptide receptor (FPR), have been demonstrated to exhibit a fast association/dissociation kinetics, independent of ligand binding. In this work, we have developed a spatial kinetic Monte Carlo model to investigate receptor homo-dimerisation at a single receptor resolution. Experimentally measured association/dissociation kinetic parameters and diffusion coefficients were used as inputs to the model. To test the effect of membrane spatial heterogeneity on the simulated steady state, simulations were compared to experimental statistics of dimerisation. In the simplest case the receptors are assumed to be diffusing in a spatially homogeneous environment, while spatial heterogeneity is modelled to result from crowding, membrane micro-domains and cytoskeletal compartmentalisation or 'corrals'. We show that a simple association-diffusion model is sufficient to reproduce M1MR association statistics, but fails to reproduce FPR statistics despite comparable kinetic constants. A parameter sensitivity analysis is required to reproduce the association statistics of FPR. The model reveals the complex interplay between cytoskeletal components and their influence on receptor association kinetics within the features of the membrane landscape. These results constitute an important step towards understanding the factors modulating GPCR organisation.


Assuntos
Modelos Genéticos , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Simulação por Computador , Difusão , Método de Monte Carlo , Receptores de Formil Peptídeo/química , Receptores Muscarínicos/química
15.
Bioorg Med Chem Lett ; 27(11): 2479-2483, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28427812

RESUMO

This letter describes the synthesis and structure activity relationship (SAR) studies of structurally novel M4 antagonists, based on a 4,6-disubstituted core, identified from a high-throughput screening campaign. A multi-dimensional optimization effort enhanced potency at both human and rat M4 (IC50s<300nM), with no substantial species differences noted. Moreover, CNS penetration proved attractive for this series (brain:plasma Kp,uu=0.87), while other DMPK attributes were addressed in the course of the optimization effort, providing low in vivo clearance in rat (CLp=5.37mL/min/kg). Surprisingly, this series displayed pan-muscarinic antagonist activity across M1-5, despite the absence of the prototypical basic or quaternary amine moiety, thus offering a new chemotype from which to develop a next generation of pan-muscarinic antagonist agents.


Assuntos
Antagonistas Muscarínicos/síntese química , Pirimidinas/química , Receptor Muscarínico M4/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Humanos , Concentração Inibidora 50 , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/farmacocinética , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Ratos , Receptor Muscarínico M4/metabolismo , Receptores Muscarínicos/química , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Relação Estrutura-Atividade
16.
Molecules ; 22(6)2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28556808

RESUMO

Medicinal plants have been widely used in the treatment of chronic pain. In this study, we describe the antinociceptive effect of the essential oil from Croton conduplicatus (the EO 25, 50, and 100 mg/kg, i.p.), a medicinal plant native to Brazil. Antinociceptive activity was investigated by measuring the nociception induced by acetic acid, formalin, hot plate and carrageenan. A docking study was performed with the major constituents of the EO (E-caryophyllene, caryophyllene oxide, and camphor). The EO reduced nociceptive behavior at all doses tested in the acetic acid-induced nociception test (p < 0.05). The same was observed in both phases (neurogenic and inflammatory) of the formalin test. When the hot-plate test was conducted, the EO (50 mg/kg) extended the latency time after 60 min of treatment. The EO also reduced leukocyte migration at all doses, suggesting that its antinociceptive effect involves both central and peripheral mechanisms. Pretreatment with glibenclamide and atropine reversed the antinociceptive effect of the EO on the formalin test, suggesting the involvement of KATP channels and muscarinic receptors. The docking study revealed a satisfactory interaction profile between the major components of the EO and the different muscarinic receptor subtypes (M2, M3, and M4). These results corroborate the medicinal use of C. conduplicatus in folk medicine.


Assuntos
Analgésicos/farmacologia , Croton/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Analgésicos/química , Animais , Movimento Celular/efeitos dos fármacos , Canais KATP/química , Canais KATP/metabolismo , Leucócitos/efeitos dos fármacos , Camundongos , Modelos Moleculares , Conformação Molecular , Nociceptividade/efeitos dos fármacos , Óleos Voláteis/química , Extratos Vegetais/química , Ligação Proteica , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Relação Estrutura-Atividade
17.
J Cell Biochem ; 117(12): 2854-2863, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27167250

RESUMO

Muscarinic acetylcholine receptors (mAChRs) regulate diverse cellular functions, including cell growth and proliferation, via multiple signaling pathways. Previously, we showed that mAChRs stimulate the MEK1/2-ERK1/2-RSK pathway in SNU-407 colon cancer cells and subsequently promote cell proliferation. In this study, we provide evidence that the PI3K-Akt-mTORC1-S6K1 pathway is activated by mAChRs in SNU-407 cells and that this pathway is associated with protein biosynthesis and cell proliferation. When the cells were treated with the cholinergic agonist carbachol, Akt was activated in a dose- and time-dependent fashion. This carbachol effect was almost completely blocked by the PI3K inhibitor LY294002, implying that PI3K is responsible for the Akt activation. S6K1, a major downstream target of mTORC1, was also activated by carbachol in a temporal profile similar to that of the Akt activation. This carbachol-stimulated S6K1 activation was abrogated by LY294002 or the mTORC1 inhibitor rapamycin, supporting the notion that mAChRs mediate S6K1 activation via the PI3K-Akt-mTORC1 pathway. We observed that global protein biosynthesis, monitored by puromycin incorporation, was strongly increased by carbachol in an atropine-sensitive manner. Inhibition experiments indicated that the ERK1/2 and mTORC1 signaling pathways may be involved in carbachol-stimulated global protein biosynthesis. We also found that treating SNU-407 cells with LY294002 or rapamycin significantly suppressed carbachol-stimulated cell proliferation. In the presence of the MEK1/2 inhibitor U0126, cell proliferation was further reduced by rapamycin treatment. Our data thus suggest that both the MEK1/2-ERK1/2 and mTORC1 pathways play important roles in mAChR-mediated cell proliferation in SNU-407 colon cancer cells. J. Cell. Biochem. 117: 2854-2863, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Carbacol/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Receptores Muscarínicos/química , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Agonistas Colinérgicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores Muscarínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
18.
Insect Mol Biol ; 25(4): 362-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27003873

RESUMO

Most currently used insecticides are neurotoxic chemicals that target a limited number of sites and insect cholinergic neurotransmission is the major target. A potential target for insecticide development is the muscarinic acetylcholine receptor (mAChR), which is a metabotropic G-protein-coupled receptor. Insects have A- and B-type mAChRs and the five mammalian mAChRs are close to the A-type. We isolated a cDNA (CG12796) from the fruit fly, Drosophila melanogaster. After heterologous expression in Chinese hamster ovary K1 cells, CG12796 could be activated by acetylcholine [EC50 (half maximal effective concentration), 73 nM] and the mAChR agonist oxotremorine M (EC50 , 48.2 nM) to increase intracellular Ca(2+) levels. Thus, the new mAChR is coupled to Gq/11 but not Gs and Gi/o . The classical mAChR antagonists atropine and scopolamine N-butylbromide at 100 µM completely blocked the acetylcholine-induced responses. The orthologues of CG12796 can also be found in the genomes of other insects, but not in the genomes of the honeybee or parasitoid wasps. Knockdown of CG12796 in the central nervous system had no effect on male courtship behaviours. We suggest that CG12796 represents the first recognized member of a novel mAChR class.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Receptores Muscarínicos/genética , Sequência de Aminoácidos , Animais , Células CHO , Clonagem Molecular , Cricetulus , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Alinhamento de Sequência
19.
Biochem Biophys Res Commun ; 462(4): 358-64, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25964087

RESUMO

Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) that are activated by the agonists acetylcholine and muscarine and blocked by several antagonists, among them atropine. In mammals five mAChRs (m1-m5) exist of which m1, m3, and m5 are coupled to members of the Gq/11 family and m2 and m4 to members of the Gi/0 family. We have recently shown that Drosophila melanogaster and other arthropods have two mAChRs, named A and B, where the A-type has the same pharmacology as the mammalian mAChRs, while the B-type has a very low affinity to muscarine and no affinity to classical antagonists such as atropine. Here, we find that the D. melanogaster A-type mAChR is coupled to Gq/11 and D. melanogaster B-type mAChR to Gi/0. Furthermore, by comparing the second and third intracellular loops of all animal mAChRs for which the G protein coupling has been established, we could identify several amino acid residues likely to be specific for either Gq/11 or Gi/0 coupling. Using these hallmarks for specific mAChR G protein interaction we found that all protostomes with a sequenced genome have one mAChR coupled to Gq/11 and one to four mAChRs coupled to Gi/0. Furthermore, in protostomes, probably all A-type mAChRs are coupled to Gq/11 and all B-type mAChRs to G0/i.


Assuntos
Isoformas de Proteínas/metabolismo , Receptores Muscarínicos/metabolismo , Sistemas do Segundo Mensageiro , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Drosophila melanogaster , Dados de Sequência Molecular , Isoformas de Proteínas/química , Receptores Muscarínicos/química , Homologia de Sequência de Aminoácidos
20.
J Mol Recognit ; 28(4): 239-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683330

RESUMO

Muscarinic acetylcholine receptors (mAChRs) have five subtypes and play crucial roles in various physiological functions and pathophysiological processes. Poor subtype specificity of mAChR modulators has been an obstacle to discover new therapeutic agents. Muscarinic toxin 7 (MT7) is a natural peptide toxin with high selectivity for the M1 receptor. With three to five residues substituted, M3, M4, and M5 receptor mutants could bind to MT7 at nanomolar concentration as the M1 receptor. However, the structural mechanisms explaining MT7-mAChRs binding are still largely unknown. In this study, we constructed 10 complex models of MT7 and each mAChR subtype or its mutant, performed molecular dynamics simulations, and calculated the binding energies to investigate the mechanisms. Our results suggested that the structural determinants for the interactions on mAChRs were composed of some critical residues located separately in the extracellular loops of mAChRs, such as Glu4.56, Leu4.60, Glu/Gln4.63, Tyr4.65, Glu/Asp6.67, and Trp7.35. The subtype specificity of MT7 was attributed to the non-conserved residues at positions 4.56 and 6.67. These structural mechanisms could facilitate the discovery of novel mAChR modulators with high subtype specificity and enhance the understanding of the interactions between ligands and G-protein-coupled receptors.


Assuntos
Venenos Elapídicos/química , Receptores Muscarínicos/química , Sequência de Aminoácidos , Animais , Venenos Elapídicos/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ratos , Receptores Muscarínicos/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA