Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
1.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775595

RESUMO

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Assuntos
Encéfalo/metabolismo , Neurocinina B/metabolismo , Precursores de Proteínas/metabolismo , Isolamento Social , Estresse Psicológico , Taquicininas/metabolismo , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurocinina B/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Regulação para Cima/efeitos dos fármacos
2.
Cell ; 156(1-2): 221-35, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439378

RESUMO

Males of most species are more aggressive than females, but the neural mechanisms underlying this dimorphism are not clear. Here, we identify a neuron and a gene that control the higher level of aggression characteristic of Drosophila melanogaster males. Males, but not females, contain a small cluster of FruM(+) neurons that express the neuropeptide tachykinin (Tk). Activation and silencing of these neurons increased and decreased, respectively, intermale aggression without affecting male-female courtship behavior. Mutations in both Tk and a candidate receptor, Takr86C, suppressed the effect of neuronal activation, whereas overexpression of Tk potentiated it. Tk neuron activation overcame reduced aggressiveness caused by eliminating a variety of sensory or contextual cues, suggesting that it promotes aggressive arousal or motivation. Tachykinin/Substance P has been implicated in aggression in mammals, including humans. Thus, the higher aggressiveness of Drosophila males reflects the sexually dimorphic expression of a neuropeptide that controls agonistic behaviors across phylogeny.


Assuntos
Drosophila melanogaster/fisiologia , Neurônios/metabolismo , Taquicininas/metabolismo , Agressão , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Mutação , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Caracteres Sexuais
3.
Mol Psychiatry ; 29(3): 686-703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135756

RESUMO

Tachykinin receptor 3 (TACR3) is a member of the tachykinin receptor family and falls within the rhodopsin subfamily. As a G protein-coupled receptor, it responds to neurokinin B (NKB), its high-affinity ligand. Dysfunctional TACR3 has been associated with pubertal failure and anxiety, yet the mechanisms underlying this remain unclear. Hence, we have investigated the relationship between TACR3 expression, anxiety, sex hormones, and synaptic plasticity in a rat model, which indicated that severe anxiety is linked to dampened TACR3 expression in the ventral hippocampus. TACR3 expression in female rats fluctuates during the estrous cycle, reflecting sensitivity to sex hormones. Indeed, in males, sexual development is associated with a substantial increase in hippocampal TACR3 expression, coinciding with elevated serum testosterone and a significant reduction in anxiety. TACR3 is predominantly expressed in the cell membrane, including the presynaptic compartment, and its modulation significantly influences synaptic activity. Inhibition of TACR3 activity provokes hyperactivation of CaMKII and enhanced AMPA receptor phosphorylation, associated with an increase in spine density. Using a multielectrode array, stronger cross-correlation of firing was evident among neurons following TACR3 inhibition, indicating enhanced connectivity. Deficient TACR3 activity in rats led to lower serum testosterone levels, as well as increased spine density and impaired long-term potentiation (LTP) in the dentate gyrus. Remarkably, aberrant expression of functional TACR3 in spines results in spine shrinkage and pruning, while expression of defective TACR3 increases spine density, size, and the magnitude of cross-correlation. The firing pattern in response to LTP induction was inadequate in neurons expressing defective TACR3, which could be rectified by treatment with testosterone. In conclusion, our study provides valuable insights into the intricate interplay between TACR3, sex hormones, anxiety, and synaptic plasticity. These findings highlight potential targets for therapeutic interventions to alleviate anxiety in individuals with TACR3 dysfunction and the implications of TACR3 in anxiety-related neural changes provide an avenue for future research in the field.


Assuntos
Ansiedade , Hipocampo , Plasticidade Neuronal , Testosterona , Animais , Testosterona/metabolismo , Plasticidade Neuronal/fisiologia , Masculino , Ratos , Feminino , Ansiedade/metabolismo , Hipocampo/metabolismo , Receptores da Neurocinina-3/metabolismo , Neurônios/metabolismo , Potenciação de Longa Duração/fisiologia , Receptores de Taquicininas/metabolismo , Ratos Sprague-Dawley
4.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768456

RESUMO

Radiopharmaceutical development hinges on the affinity and selectivity of the biological component for the intended target. An analogue of the neuropeptide Substance P (SP), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[Thi8,Met(O2)11]-SP (DOTA-[Thi8,Met(O2)11]SP), in the theranostic pair [68Ga]Ga-/ [213Bi]Bi-DOTA-[Thi8,Met(O2)11]SP has shown promising clinical results in the treatment of inoperable glioblastoma. As the theranostic targeting component, modifications to SP that affect the selectivity of the resulting analogue for the intended target (neurokinin-1 receptor [NK1R]) could be detrimental to its therapeutic potential. In addition to other closely related tachykinin receptors (neurokinin-2 receptor [NK2R] and neurokinin-3 receptor [NK3R]), SP can activate a mast cell expressed receptor Mas-related G protein-coupled receptor subtype 2 (MRGPRX2), which has been implicated in allergic-type reactions. Therefore, activation of these receptors by SP analogues has severe implications for their therapeutic potential. Here, the receptor selectivity of DOTA-[Thi8,Met(O2)11]SP was examined using inositol phosphate accumulation assay in HEK293-T cells expressing NK1R, NK2R, NK3R or MRGPRX2. DOTA-[Thi8,Met(O2)11]SP had similar efficacy and potency as native SP at NK1R, but displayed greater NK1R selectivity. DOTA-[Thi8,Met(O2)11]SP was unable to elicit significant activation of the other tachykinin receptors nor MRGPRX2 at high concentrations nor did it display antagonistic behaviour at these receptors. DOTA-[Thi8,Met(O2)11]SP, therefore has high potency and selectivity for NK1R, supporting its potential for targeted theranostic use in glioblastoma multiforme and other conditions characterised by NK1R overexpression.


Assuntos
Glioblastoma , Substância P , Humanos , Receptores de Taquicininas , Células HEK293 , Receptores da Neurocinina-1 , Receptores da Neurocinina-2 , Proteínas do Tecido Nervoso , Receptores de Neuropeptídeos , Receptores Acoplados a Proteínas G
5.
J Neurosci ; 41(5): 901-910, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472824

RESUMO

Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.


Assuntos
Ansiedade/metabolismo , Emoções/fisiologia , Sistema Límbico/metabolismo , Neuropeptídeos/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Emoções/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Humanos , Sistema Límbico/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Neuropeptídeos/farmacologia , Neuropeptídeos/uso terapêutico , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Taquicininas/antagonistas & inibidores , Taquicininas/metabolismo
6.
Gen Comp Endocrinol ; 320: 114010, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231487

RESUMO

Neuropeptides and their receptors are fundamentally important in regulating many physiological and behavioural processes in insects. In this work, we have identified, cloned, and sequenced the tachykinin receptor (Rhopr-TKR) from Rhodnius prolixus, a vector of Chagas disease. The receptor is a G protein-coupled receptor belonging to the Rhodopsin Family A. The total length of the open reading frame of the Rhopr-TKR transcript is 1110 bp, which translates into a receptor of 338 amino acids. Fluorescent in-situ RNA-hybridization (FISH) for the Rhopr-TKR transcript shows a signal in a group of six bilaterally paired neurons in the protocerebrum of the brain, localized in a similar region as the insulin producing cells. To examine the role of tachykinin signaling in lipid and carbohydrate homeostasis we used RNA interference. Downregulation of the Rhopr-TKR transcript led to a decrease in the size of blood meal consumed and a significant increase in circulating carbohydrate and lipid levels. Further investigation revealed a close relationship between tachykinin and insulin signaling since the downregulation of the Rhopr-TKR transcript negatively affected the transcript expression for insulin-like peptide 1 (Rhopr-ILP1), insulin-like growth factor (Rhopr-IGF) and insulin receptor 1 (Rhopr-InR1) in both the central nervous system and fat body. Taken together, these findings suggest that tachykinin signaling regulates lipid and carbohydrate homeostasis via the insulin signaling pathway.


Assuntos
Doença de Chagas , Rhodnius , Animais , Carboidratos , Vetores de Doenças , Homeostase , Lipídeos , Receptores de Taquicininas/metabolismo , Rhodnius/metabolismo , Taquicininas/metabolismo
7.
Physiol Rev ; 94(1): 265-301, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24382888

RESUMO

The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.


Assuntos
Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Animais , Humanos , Mucosa Intestinal/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Receptores de Taquicininas/genética , Taquicininas/genética , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia
8.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884698

RESUMO

Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides (namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1 (UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to its weak agonistic actions on NKRs and pituitary genes regulation.


Assuntos
Encéfalo/metabolismo , Proteínas de Peixes/metabolismo , Hipófise/metabolismo , Hormônios Hipofisários/metabolismo , Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Animais , Carpas , Proteínas de Peixes/genética , Receptores de Taquicininas/genética , Taquicininas/genética
9.
J Cell Biochem ; 121(5-6): 3031-3041, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32115751

RESUMO

Tachykinins (TKs) are a family of neuropeptides mainly expressed by neuronal and non-neuronal cell types, especially immune cells. Expression of TKs receptors on immune cell surfaces, their involvement in immune-related disorders, and therefore, understanding their immunomodulatory roles have become of particular interest to researchers. In fact, the precise understanding of TKs intervention in the immune system would help to design novel therapeutic approaches for patients suffering from immune disorders. The present review summarizes studies on TKs function as modulators of the immune system by reviewing their roles in generation, activation, development, and migration of immune cells. Also, it discusses TKs involvement in three main cellular mechanisms including inflammation, apoptosis, and proliferation.


Assuntos
Regulação da Expressão Gênica , Sistema Imunitário/metabolismo , Neuropeptídeos/metabolismo , Receptores de Taquicininas , Taquicininas/metabolismo , Animais , Apoptose , Movimento Celular , Proliferação de Células , Homeostase , Humanos , Inflamação , Leucócitos/citologia , Neuropeptídeos/química , Receptores de Taquicininas/metabolismo , Transdução de Sinais
10.
J Surg Res ; 255: 510-516, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32629333

RESUMO

BACKGROUND: Supraceliac aortic clamping and unclamping produces ischemia-reperfusion (I/R) injury of the splanchnic organs. The protective effects of tachykinin receptor antagonists, SR140333 (NK1 receptor), SR48968 (NK2 receptor), and SB222200 (NK3 receptor), against I/R-induced inhibition of intestinal motility were tested in rats. MATERIAL AND METHODS: The intestinal transit of Evans blue was measured in untreated rats and animals subjected to skin incision, I/R (1 h superior mesenteric artery occlusion followed by 24 h reperfusion) or sham operation. Surgical procedures were conducted under diethyl ether anesthesia. RESULTS: The gastrointestinal transit has not been markedly affected in rats, which were anesthetized or subjected to skin incision in comparison with untreated animals. In contrast, a sham operation and I/R have significantly reduced the intestinal motility. Pretreatment with NK1-3 blockers (SR140333 [3-30 µg/kg]; SR48968 [3-100 µg/kg]; and SB222200 [10-100 µg/kg]) reversed dose dependently the effects of I/R to the level observed after sham operation only. A combination of NK1+NK2+NK3 inhibitors exerted an additive effect compared with NK1 and NK2 antagonists used as single agents. Similarly, combined NK1+NK2 were more effective than NK2 alone. Sham operation and I/R have shifted the in vitro carbachol concentration-response curves to the right in comparison with untreated animals, a phenomenon partially reversed by NK1-NK3 pretreatment. CONCLUSIONS: Single-agent and combined treatment with NK1-3 antagonists markedly attenuated the gastrointestinal dysmotility evoked by I/R injury. The pretreatment with NK3 blocker proved to be the most active in this experimental setting.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Motilidade Gastrointestinal/efeitos dos fármacos , Receptores de Taquicininas/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Circulação Esplâncnica/efeitos dos fármacos , Animais , Benzamidas/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Masculino , Piperidinas/administração & dosagem , Quinolinas/administração & dosagem , Quinuclidinas/administração & dosagem , Ratos , Receptores de Taquicininas/metabolismo , Traumatismo por Reperfusão/etiologia , Taquicininas/metabolismo
11.
Gen Comp Endocrinol ; 266: 110-118, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746853

RESUMO

Although tachykinin-like neuropeptides have been identified in molluscs more than two decades ago, knowledge on their function and signalling has so far remained largely elusive. We developed a cell-based assay to address the functionality of the tachykinin G-protein coupled receptor (Cragi-TKR) in the oyster Crassostrea gigas. The oyster tachykinin neuropeptides that are derived from the tachykinin precursor gene Cragi-TK activate the Cragi-TKR in nanomolar concentrations. Receptor activation is sensitive to Ala-substitution of critical Cragi-TK amino acid residues. The Cragi-TKR gene is expressed in a variety of tissues, albeit at higher levels in the visceral ganglia (VG) of the nervous system. Fluctuations of Cragi-TKR expression is in line with a role for TK signalling in C. gigas reproduction. The expression level of the Cragi-TK gene in the VG depends on the nutritional status of the oyster, suggesting a role for TK signalling in the complex regulation of feeding in C. gigas.


Assuntos
Crassostrea/metabolismo , Transdução de Sinais , Taquicininas/metabolismo , Sequência de Aminoácidos , Animais , Crassostrea/genética , Regulação da Expressão Gênica , Filogenia , Receptores de Taquicininas/química , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Reprodução , Taquicininas/química , Taquicininas/genética
12.
Bull Exp Biol Med ; 163(3): 313-316, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28744630

RESUMO

Pial arteries of different diameter were studied in intact rats and after 6-month modeling of chronic tobacco smoking in rats. Expression of tachykinin NK1 receptors in pial arteries was studied by biomicroscopy and immunohistochemical methods. Chronic tobacco smoking induced considerable reorganizations of the arterial bed. The intensity of changes depended on the diameter of vessels. In small pial vessels that directly participate in the blood supply to the brain, pronounced vasodilatation and enhanced expression of NK1 receptors in the endothelium mediating the effects of substance P were observed; the number of these vessels also increased. The intensity of the response to tobacco smoke components decreased with increasing vessel diameter.


Assuntos
Artérias Cerebrais/efeitos dos fármacos , Nicotiana/toxicidade , Receptores de Taquicininas/genética , Substância P/genética , Remodelação Vascular/efeitos dos fármacos , Animais , Artérias Cerebrais/metabolismo , Artérias Cerebrais/patologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Modelos Animais , Ratos Wistar , Receptores de Taquicininas/metabolismo , Substância P/biossíntese , Fumar Tabaco/fisiopatologia , Vasodilatação/efeitos dos fármacos
13.
Biol Reprod ; 94(6): 124, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27146034

RESUMO

The neurokinin B/NK3 receptor (NK3R) and kisspeptin/kisspeptin receptor (KISS1R), two systems which are essential for reproduction, are coexpressed in human mural granulosa (MGC) and cumulus cells (CCs). However, little is known about the presence of other members of the tachykinin family in the human ovary. In the present study, we analyzed the expression of substance P (SP), hemokinin-1 (HK-1), NK1 receptor (NK1R), and NK2 receptor (NK2R) in MGCs and CCs collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. RT-PCR, quantitative RT-PCR, immunocytochemistry, and Western blotting were used to investigate the patterns of expression of tachykinin and tachykinin receptor mRNAs and proteins and the possible interaction between the tachykinin family and kisspeptin. Intracellular free Ca(2+) levels ([Ca(2+)]i) in MGCs after exposure to SP or kisspeptin in the presence of SP were also measured. We found that SP, HK-1, the truncated NK1R isoform NK1R-Tr, and NK2R were all expressed in MGCs and CCs. NK1R-Tr mRNA and NK2R mRNA and protein levels were higher in MGCs than in CCs from the same patients. Treatment of cells with kisspeptin modulated the expression of HK-1, NK3R, and KISS1R mRNAs, whereas treatment with SP regulated kisspeptin mRNA levels and reduced the [Ca(2+)]i response produced by kisspeptin. These data demonstrate that the whole tachykinin system is expressed and acts in coordination with kisspeptin to regulate granulosa cell function in the human ovary.


Assuntos
Células do Cúmulo/metabolismo , Células da Granulosa/metabolismo , Kisspeptinas/metabolismo , Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Cálcio/metabolismo , Células Cultivadas , Feminino , Humanos
14.
Proc Natl Acad Sci U S A ; 110(37): E3526-34, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980168

RESUMO

An arthropod-specific peptidergic system, the neuropeptide designated here as natalisin and its receptor, was identified and investigated in three holometabolous insect species: Drosophila melanogaster, Tribolium castaneum, and Bombyx mori. In all three species, natalisin expression was observed in 3-4 pairs of the brain neurons: the anterior dorso-lateral interneurons, inferior contralateral interneurons, and small pars intercerebralis neurons. In B. mori, natalisin also was expressed in two additional pairs of contralateral interneurons in the subesophageal ganglion. Natalisin-RNAi and the activation or silencing of the neural activities in the natalisin-specific cells in D. melanogaster induced significant defects in the mating behaviors of both males and females. Knockdown of natalisin expression in T. castaneum resulted in significant reduction in the fecundity. The similarity of the natalisin C-terminal motifs to those of vertebrate tachykinins and of tachykinin-related peptides in arthropods led us to identify the natalisin receptor. A G protein-coupled receptor, previously known as tachykinin receptor 86C (also known as the neurokinin K receptor of D. melanogaster), now has been recognized as a bona fide natalisin receptor. Taken together, the taxonomic distribution pattern of the natalisin gene and the phylogeny of the receptor suggest that natalisin is an ancestral sibling of tachykinin that evolved only in the arthropod lineage.


Assuntos
Proteínas de Drosophila/fisiologia , Fertilidade/fisiologia , Proteínas de Insetos/fisiologia , Insetos/fisiologia , Neuropeptídeos/fisiologia , Comportamento Sexual Animal/fisiologia , Taquicininas/fisiologia , Sequência de Aminoácidos , Animais , Bombyx/genética , Bombyx/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Sequência Conservada , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Fertilidade/genética , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Insetos/genética , Interneurônios/metabolismo , Masculino , Dados de Sequência Molecular , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/genética , Filogenia , Interferência de RNA , Receptores de Taquicininas/genética , Receptores de Taquicininas/fisiologia , Transdução de Sinais , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Tribolium/genética , Tribolium/fisiologia
15.
Hum Mol Genet ; 22(17): 3485-97, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23697793

RESUMO

Psychiatric symptoms such as depression and anxiety are important clinical features of Huntington's disease (HD). However, the underlying neurobiological substrate for the psychiatric features is not fully understood. In order to explore the biological origin of depression and anxiety in HD, we used a mouse model that expresses the human full-length mutant huntingtin, the BACHD mouse. We found that the BACHD mice displayed depressive- and anxiety-like features as early as at 2 months of age as assessed using the Porsolt forced swim test (FST), the sucrose preference test and the elevated plus maze (EPM). BACHD mice subjected to chronic treatment with the anti-depressant sertraline were not different to vehicle-treated BACHD mice in the FST and EPM. The behavioral manifestations occurred in the absence of reduced hippocampal cell proliferation/neurogenesis or upregulation of the hypothalamic-pituitary-adrenal axis. However, alterations in anxiety- and depression-regulating genes were present in the hypothalamus of BACHD mice including reduced mRNA expression of neuropeptide Y, tachykinin receptor 3 and vesicular monoamine transporter type 2 as well as increased expression of cocaine and amphetamine regulated transcript. Interestingly, the orexin neuronal population in the hypothalamus was increased and showed cellular atrophy in old BACHD mice. Furthermore, inactivation of mutant huntingtin in a subset of the hypothalamic neurons prevented the development of the depressive features. Taken together, our data demonstrate that the BACHD mouse recapitulates clinical HD with early psychiatric aspects and point to the role of hypothalamic dysfunction in the development of depression and anxiety in the disease.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/genética , Ansiedade/fisiopatologia , Comportamento Animal , Depressão/tratamento farmacológico , Depressão/genética , Depressão/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/fisiopatologia , Hipotálamo/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/genética , Receptores de Taquicininas/genética , Sertralina/uso terapêutico , Proteínas Vesiculares de Transporte de Monoamina/genética
16.
Biol Reprod ; 93(2): 51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26157068

RESUMO

The peptides of the tachykinin family participate in the regulation of reproductive function acting at both central and peripheral levels. Our previous data showed that treatment of rats with a tachykinin NK3R antagonist caused a reduction of litter size. In the present study, we analyzed the expression of tachykinins and tachykinin receptors in the rat uterus during early pregnancy. Uterine samples were obtained from early pregnant rats (Days 1-9 of pregnancy) and from nonpregnant rats during the proestrus stage of the ovarian cycle, and real-time quantitative RT-PCR, immunohistochemistry, and Western blot studies were used to investigate the pattern of expression of tachykinins and tachykinin receptors. We found that all tachykinins and tachykinin receptors were locally synthesized in the uterus of early pregnant rats. The expression of substance P, neurokinin B, and the tachykinin receptors NK1R and NK3R mRNAs and proteins underwent major changes during the days around implantation and they were widely distributed in implantation sites, being particularly abundant in decidual cells. These findings support the involvement of the tachykinin system in the series of uterine events that occur around embryo implantation in the rat.


Assuntos
Receptores de Taquicininas/biossíntese , Taquicininas/biossíntese , Útero/metabolismo , Animais , Decídua/citologia , Decídua/metabolismo , Implantação do Embrião/efeitos dos fármacos , Feminino , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Neurocinina B/biossíntese , Gravidez , Proestro , Ratos , Ratos Wistar , Receptores da Neurocinina-1/biossíntese , Receptores da Neurocinina-2/antagonistas & inibidores , Receptores da Neurocinina-2/biossíntese , Receptores de Taquicininas/antagonistas & inibidores , Substância P/biossíntese
17.
Cell Biol Int ; 39(3): 310-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25339500

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) and hepatocyte growth factor (HGF) play important roles in postnatal neovascularization. However, the interaction of these two pathways is not fully understood. The present study utilized CoCl(2) treated-endothelial progenitor cells (EPCs) (EPCs exposure to CoCl(2) are under mimic hypoxia) to examine the expressions of HIF-1α and HGF and futher to assess whether or not the inhibitor (2-methoxyestradiol [2ME2]) of HIF-1α decrease the HGF expression. In addition, to investigate the effects of HGF on the proliferation and tube formation of EPCs under mimic hypoxia, EPCs were transfected with NK4 (HGF antagonist) plasmid and exposed to CoCl(2), then the proliferation of these EPCs was assayed by MTS and the tube formation capacity of these EPCs on Matrigel was detected. The analysis indicated that CoCl(2) treatment induced HIF-1α expression of EPCs, and futher promoted HGF expression. While after 2ME2 was used in CoCl(2) treated-EPCs, HGF expression was markedly inhibited compared with non-pretreated EPCs with 2ME2, which also showed that HGF expression in EPCs was mediated by HIF-1α. Further, the results showed that after EPCs were transfected with NK4 in spite of being exposed to CoCl(2), their proliferation activity and tube formation capacity were weakened, which in turn indicated that HGF could promote the proliferation and the tube formation of EPCs, and this process might be regulated by HIF-1α.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , 2-Metoxiestradiol , Animais , Técnicas de Cultura de Células , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cobalto/farmacologia , Colágeno/química , Combinação de Medicamentos , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Laminina/química , Neovascularização Patológica/etiologia , Proteoglicanas/química , Ratos , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo
18.
Int Urogynecol J ; 26(5): 629-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25377296

RESUMO

INTRODUCTION AND HYPOTHESIS: The impressive prevalence of overactive bladder (OAB) and the relevant limitations of current treatments urge the need for novel therapeutic approaches. METHODS: A systematic literature and web search was performed to identify investigational drugs that entered the early and late phases of clinical development for women with OAB symptoms. RESULTS: Approved pharmacological therapies for OAB (antimuscarinics, beta-3 agonists, and botulinum toxin) are evolving with the development of alternative administration methods, combination strategies, and novel compounds, expected to improve effectiveness, bladder selectivity, and dose flexibility. A wealth of investigational compounds, developed with both public and companies' indoor nonclinical disease-oriented studies, entered the early and late stages of clinical development in the last decade. Most non-anticholinergic compounds in ongoing clinical trials target central and peripheral neurotransmitter receptors involved in neurological modulation of micturition, nonadrenergic-noncholinergic mechanisms, cyclic nucleotide metabolism, different subtypes of ion channels or peripheral receptors of prostaglandins, vanilloids, vitamin D3, and opioids. Fascinating advances are ongoing also in the field of genetic therapy. CONCLUSIONS: New pharmaceutical formulations and drug combinations are expected to be available in the next decade in order to overcome the limitations of current drugs for OAB. Although proof-of-concept, patient-oriented studies yielded disappointing results for several tentative drugs, a lot of clinical research is ongoing that is expected to provide clinicians with novel therapeutic agents in the near future.


Assuntos
Drogas em Investigação/uso terapêutico , Bexiga Urinária Hiperativa/tratamento farmacológico , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Toxinas Botulínicas Tipo A/uso terapêutico , Canais de Cálcio/efeitos dos fármacos , Descoberta de Drogas , Drogas em Investigação/administração & dosagem , Feminino , Terapia Genética , Humanos , Antagonistas Muscarínicos/uso terapêutico , Canais de Potássio/efeitos dos fármacos , Receptores de Calcitriol/agonistas , Receptores Opioides/agonistas , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Taquicininas/antagonistas & inibidores , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Canais de Cátion TRPV/antagonistas & inibidores
19.
Biochemistry ; 53(42): 6667-78, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25275886

RESUMO

Tachykinins constitute one of the largest peptide families in the animal kingdom and exert their diverse actions via G protein-coupled receptors (GPCRs). In this study, the Bombyx tachykinin-related peptides (TKRPs) were identified as specific endogenous ligands for the Bombyx neuropeptide GPCR A24 (BNGR-A24) and thus designated BNGR-A24 as BmTKRPR. Using both mammalian cell line HEK293 and insect cell line Sf21, further characterization demonstrated that BmTKRPR was activated, thus resulting in intracellular accumulation of cAMP, Ca(2+) mobilization, and ERK1/2 phosphorylation in a Gs and Gq inhibitor-sensitive manner. Moreover, quantitative reverse transcriptase polymerase chain reaction analysis and dsRNA-mediated knockdown experiments suggested a possible role for BmTKRPR in the regulation of feeding and growth. Our findings enhance the understanding of the Bombyx TKRP system in the regulation of fundamental physiological processes.


Assuntos
Bombyx/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Animais , Cálcio/metabolismo , Clonagem Molecular , AMP Cíclico/biossíntese , Células HEK293 , Humanos , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores de Taquicininas/genética , Células Sf9 , Transdução de Sinais
20.
Hum Reprod ; 29(12): 2736-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25316443

RESUMO

STUDY QUESTION: Are neurokinin B (NKB), NK3 receptor (NK3R), kisspeptin (KISS1) and kisspeptin receptor (KISS1R) expressed in human ovarian granulosa cells? SUMMARY ANSWER: The NKB/NK3R and kisspeptin/KISS1R systems are co-expressed and functionally active in ovarian granulosa cells. WHAT IS KNOWN ALREADY: The NKB/NK3R and KISS1/KISS1R systems are essential for reproduction. In addition to their well-recognized role in hypothalamic neurons, these peptide systems may contribute to the control of fertility by acting directly on the gonads, but such a direct gonadal role remains largely unknown. STUDY DESIGN, SIZE, DURATION: This study analyzed matched mural granulosa cells (MGCs) and cumulus cells (CCs) collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. PARTICIPANTS/MATERIALS, SETTING, METHODS: The samples were provided by 56 oocyte donor women undergoing ovarian stimulation treatment. Follicular fluid samples containing MGCs and cumulus-oocyte complexes were collected after transvaginal ultrasound-guided oocyte retrieval. RT-PCR, quantitative real-time PCR, immunocytochemistry and western blot were used to investigate the pattern of expression of the NKB/NK3R and KISS/KISS1R systems in MGCs and CCs. Intracellular free Ca(2+) levels, [Ca(2+)]i, in MGCs after exposure to NKB or KISS1, in the presence or not of tachykinin receptor antagonists, were also measured. MAIN OUTCOME AND THE ROLE OF CHANCE: NKB/NK3R and KISS1/KISS1R systems were expressed, at the mRNA and protein levels, in MGCs and CCs, with significantly higher expression in CCs. Kisspeptin increased the [Ca(2+)]i in the cytosol of human MGCs while exposure to NKB failed to induce any change in [Ca(2+)]i. However, the [Ca(2+)]i response to kisspeptin was reduced in the presence of NKB. The inhibitory effect of NKB was only partially mimicked by the NK3R agonist, senktide and marginally suppressed by the NK3R-selective antagonist SB 222200. Yet, a cocktail of antagonists selective for the NK1, NK2 and NK3 receptors blocked the effect of NKB. LIMITATIONS, REASONS FOR CAUTION: The granulosa and cumulus cells were obtained from oocyte donors undergoing ovarian stimulation, which in comparison with natural cycles, may have affected gene and protein expression in granulosa cells. WIDER IMPLICATIONS OF THE FINDINGS: Our data demonstrate that, in addition to their indispensable effects at the central nervous system, the NKB/NK3R and kisspeptin/KISS1R systems are co-expressed and are functionally active in non-neuronal reproductive cells of the female gonads, the ovarian granulosa cells. STUDY FUNDING/ COMPETING INTERESTS: This work was supported by grants from Ministerio de Economía y Competitividad (CTQ2011-25564 and BFI2011-25021) and Junta de Andalucía (P08-CVI-04185), Spain. J.G.-O., F.M.P., M.F.-S., N.P., A.C.-R., T.A.A., M.H., M.R., M.T.-S. and L.C. have nothing to declare.


Assuntos
Células da Granulosa/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Receptores de Taquicininas/metabolismo , Células Cultivadas , Feminino , Humanos , Kisspeptinas/genética , Neurocinina B/genética , RNA Mensageiro/metabolismo , Receptores de Taquicininas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA