RESUMO
Learning has been associated with modifications of synaptic and circuit properties, but the precise changes storing information in mammals have remained largely unclear. We combined genetically targeted voltage imaging with targeted optogenetic activation and silencing of pre- and post-synaptic neurons to study the mechanisms underlying hippocampal behavioral timescale plasticity. In mice navigating a virtual-reality environment, targeted optogenetic activation of individual CA1 cells at specific places induced stable representations of these places in the targeted cells. Optical elicitation, recording, and modulation of synaptic transmission in behaving mice revealed that activity in presynaptic CA2/3 cells was required for the induction of plasticity in CA1 and, furthermore, that during induction of these place fields in single CA1 cells, synaptic input from CA2/3 onto these same cells was potentiated. These results reveal synaptic implementation of hippocampal behavioral timescale plasticity and define a methodology to resolve synaptic plasticity during learning and memory in behaving mammals.
Assuntos
Região CA1 Hipocampal , Hipocampo , Camundongos , Animais , Região CA1 Hipocampal/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Aprendizagem/fisiologia , Neurônios , Transmissão Sináptica/fisiologia , MamíferosRESUMO
Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.
Assuntos
Potenciais de Ação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Potenciais Pós-Sinápticos Excitadores , Neurônios/metabolismo , Ativação Transcricional , Regiões 3' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Retrieving and acting on memories of food-predicting environments are fundamental processes for animal survival. Hippocampal pyramidal cells (PYRs) of the mammalian brain provide mnemonic representations of space. Yet the substrates by which these hippocampal representations support memory-guided behavior remain unknown. Here, we uncover a direct connection from dorsal CA1 (dCA1) hippocampus to nucleus accumbens (NAc) that enables the behavioral manifestation of place-reward memories. By monitoring neuronal ensembles in mouse dCA1âNAc pathway, combined with cell-type selective optogenetic manipulations of input-defined postsynaptic neurons, we show that dCA1 PYRs drive NAc medium spiny neurons and orchestrate their spiking activity using feedforward inhibition mediated by dCA1-connected parvalbumin-expressing fast-spiking interneurons. This tripartite cross-circuit motif supports spatial appetitive memory and associated NAc assemblies, being independent of dorsal subiculum and dispensable for both spatial novelty detection and reward seeking. Our findings demonstrate that the dCA1âNAc pathway instantiates a limbic-motor interface for neuronal representations of space to promote effective appetitive behavior.
Assuntos
Comportamento Apetitivo/fisiologia , Memória/fisiologia , Núcleo Accumbens/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Células HEK293 , Hipocampo/fisiologia , Humanos , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Células Piramidais/fisiologia , Recompensa , Lobo Temporal/fisiologiaRESUMO
Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events.
Assuntos
Hipocampo , Privação do Sono , Sono de Ondas Lentas , Animais , Feminino , Masculino , Ratos , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Células Piramidais/fisiologia , Ratos Long-Evans , Privação do Sono/fisiopatologia , Sono de Ondas Lentas/fisiologia , Vigília/fisiologia , Fatores de Tempo , Hipocampo/citologia , Hipocampo/fisiologia , Hipocampo/fisiopatologiaRESUMO
As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.
Assuntos
Região CA1 Hipocampal , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inflamação , Memória , Receptor Toll-Like 9 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Região CA1 Hipocampal/fisiologia , Centrossomo/metabolismo , Disfunção Cognitiva/genética , Condicionamento Clássico , Matriz Extracelular/metabolismo , Medo , Instabilidade Genômica/genética , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Memória/fisiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismoRESUMO
The hippocampal cognitive map supports navigation towards, or away from, salient locations in familiar environments1. Although much is known about how the hippocampus encodes location in world-centred coordinates, how it supports flexible navigation is less well understood. We recorded CA1 place cells while rats navigated to a goal on the honeycomb maze2. The maze tests navigation via direct and indirect paths to the goal and allows the directionality of place cells to be assessed at each choice point. Place fields showed strong directional polarization characterized by vector fields that converged to sinks distributed throughout the environment. The distribution of these 'convergence sinks' (ConSinks) was centred near the goal location and the population vector field converged on the goal, providing a strong navigational signal. Changing the goal location led to movement of ConSinks and vector fields towards the new goal. The honeycomb maze allows independent assessment of spatial representation and spatial action in place cell activity and shows how the latter relates to the former. The results suggest that the hippocampus creates a vector-based model to support flexible navigation, allowing animals to select optimal paths to destinations from any location in the environment.
Assuntos
Região CA1 Hipocampal , Células de Lugar , Navegação Espacial , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Objetivos , Aprendizagem em Labirinto , Células de Lugar/fisiologia , Ratos , Navegação Espacial/fisiologiaRESUMO
Astrocytic calcium dynamics has been implicated in the encoding of sensory information1-5, and modulation of calcium in astrocytes has been shown to affect behaviour6-10. However, longitudinal investigation of the real-time calcium activity of astrocytes in the hippocampus of awake mice is lacking. Here we used two-photon microscopy to chronically image CA1 astrocytes as mice ran in familiar or new virtual environments to obtain water rewards. We found that astrocytes exhibit persistent ramping activity towards the reward location in a familiar environment, but not in a new one. Shifting the reward location within a familiar environment also resulted in diminished ramping. After additional training, as the mice became familiar with the new context or new reward location, the ramping was re-established. Using linear decoders, we could predict the location of the mouse in a familiar environment from astrocyte activity alone. We could not do the same in a new environment, suggesting that the spatial modulation of astrocytic activity is experience dependent. Our results indicate that astrocytes can encode the expected reward location in spatial contexts, thereby extending their known computational abilities and their role in cognitive functions.
Assuntos
Astrócitos , Região CA1 Hipocampal , Recompensa , Animais , Astrócitos/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Cálcio/metabolismo , Ingestão de Líquidos , Camundongos , ÁguaRESUMO
Learning-related changes in brain activity are thought to underlie adaptive behaviours1,2. For instance, the learning of a reward site by rodents requires the development of an over-representation of that location in the hippocampus3-6. How this learning-related change occurs remains unknown. Here we recorded hippocampal CA1 population activity as mice learned a reward location on a linear treadmill. Physiological and pharmacological evidence suggests that the adaptive over-representation required behavioural timescale synaptic plasticity (BTSP)7. BTSP is known to be driven by dendritic voltage signals that we proposed were initiated by input from entorhinal cortex layer 3 (EC3). Accordingly, the CA1 over-representation was largely removed by optogenetic inhibition of EC3 activity. Recordings from EC3 neurons revealed an activity pattern that could provide an instructive signal directing BTSP to generate the over-representation. Consistent with this function, our observations show that exposure to a second environment possessing a prominent reward-predictive cue resulted in both EC3 activity and CA1 place field density that were more elevated at the cue than at the reward. These data indicate that learning-related changes in the hippocampus are produced by synaptic plasticity directed by an instructive signal from the EC3 that seems to be specifically adapted to the behaviourally relevant features of the environment.
Assuntos
Região CA1 Hipocampal , Córtex Entorrinal , Aprendizagem , Neurônios , Animais , Camundongos , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Córtex Entorrinal/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Recompensa , Dendritos/fisiologia , Plasticidade Neuronal , Optogenética , Sinais (Psicologia) , Modelos NeurológicosRESUMO
Neural activity in the hippocampus is known to reflect how animals move through an environment1,2. Although navigational behaviour may show considerable stability3-6, the tuning stability of individual hippocampal neurons remains unclear7-12. Here we used wireless calcium imaging to longitudinally monitor the activity of dorsal CA1 hippocampal neurons in freely flying bats performing highly reproducible flights in a familiar environment. We find that both the participation and the spatial selectivity of most neurons remain stable over days and weeks. We also find that apparent changes in tuning can be largely attributed to variations in the flight behaviour of the bats. Finally, we show that bats navigating in the same environment under different room lighting conditions (lights on versus lights off) exhibit substantial changes in flight behaviour that can give the illusion of neuronal instability. However, when similar flight paths are compared across conditions, the stability of the hippocampal code persists. Taken together, we show that the underlying hippocampal code is highly stable over days and across contexts if behaviour is taken into account.
Assuntos
Região CA1 Hipocampal , Quirópteros , Neurônios , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Cálcio , Quirópteros/fisiologia , Voo Animal/fisiologia , Iluminação , Neurônios/fisiologia , Navegação Espacial/fisiologiaRESUMO
Real-world memories are formed in a particular context and are often not acquired or recalled in isolation1-5. Time is a key variable in the organization of memories, as events that are experienced close in time are more likely to be meaningfully associated, whereas those that are experienced with a longer interval are not1-4. How the brain segregates events that are temporally distinct is unclear. Here we show that a delayed (12-24 h) increase in the expression of C-C chemokine receptor type 5 (CCR5)-an immune receptor that is well known as a co-receptor for HIV infection6,7-after the formation of a contextual memory determines the duration of the temporal window for associating or linking that memory with subsequent memories. This delayed expression of CCR5 in mouse dorsal CA1 neurons results in a decrease in neuronal excitability, which in turn negatively regulates neuronal memory allocation, thus reducing the overlap between dorsal CA1 memory ensembles. Lowering this overlap affects the ability of one memory to trigger the recall of the other, and therefore closes the temporal window for memory linking. Our findings also show that an age-related increase in the neuronal expression of CCR5 and its ligand CCL5 leads to impairments in memory linking in aged mice, which could be reversed with a Ccr5 knockout and a drug approved by the US Food and Drug Administration (FDA) that inhibits this receptor, a result with clinical implications. Altogether, the findings reported here provide insights into the molecular and cellular mechanisms that shape the temporal window for memory linking.
Assuntos
Região CA1 Hipocampal , Memória , Neurônios , Receptores CCR5 , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Camundongos , Neurônios/metabolismo , Receptores CCR5/deficiência , Receptores CCR5/genética , Receptores CCR5/metabolismo , Fatores de TempoRESUMO
Visual cortical neurons encode the position and motion direction of specific stimuli retrospectively, without any locomotion or task demand1. The hippocampus, which is a part of the visual system, is hypothesized to require self-motion or a cognitive task to generate allocentric spatial selectivity that is scalar, abstract2,3 and prospective4-7. Here we measured rodent hippocampal selectivity to a moving bar of light in a body-fixed rat to bridge these seeming disparities. About 70% of dorsal CA1 neurons showed stable activity modulation as a function of the angular position of the bar, independent of behaviour and rewards. One-third of tuned cells also encoded the direction of revolution. In other experiments, neurons encoded the distance of the bar, with preference for approaching motion. Collectively, these demonstrate visually evoked vectorial selectivity (VEVS). Unlike place cells, VEVS was retrospective. Changes in the visual stimulus or its predictability did not cause remapping but only caused gradual changes. Most VEVS-tuned neurons behaved like place cells during spatial exploration and the two selectivities were correlated. Thus, VEVS could form the basic building block of hippocampal activity. When combined with self-motion, reward or multisensory stimuli8, it can generate the complexity of prospective representations including allocentric space9, time10,11 and episodes12.
Assuntos
Hipocampo , Luz , Percepção Espacial , Processamento Espacial , Córtex Visual , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/efeitos da radiação , Hipocampo/citologia , Hipocampo/fisiologia , Hipocampo/efeitos da radiação , Neurônios/fisiologia , Neurônios/efeitos da radiação , Ratos , Córtex Visual/citologia , Córtex Visual/fisiologiaRESUMO
Local circuit architecture facilitates the emergence of feature selectivity in the cerebral cortex1. In the hippocampus, it remains unknown whether local computations supported by specific connectivity motifs2 regulate the spatial receptive fields of pyramidal cells3. Here we developed an in vivo electroporation method for monosynaptic retrograde tracing4 and optogenetics manipulation at single-cell resolution to interrogate the dynamic interaction of place cells with their microcircuitry during navigation. We found a local circuit mechanism in CA1 whereby the spatial tuning of an individual place cell can propagate to a functionally recurrent subnetwork5 to which it belongs. The emergence of place fields in individual neurons led to the development of inverse selectivity in a subset of their presynaptic interneurons, and recruited functionally coupled place cells at that location. Thus, the spatial selectivity of single CA1 neurons is amplified through local circuit plasticity to enable effective multi-neuronal representations that can flexibly scale environmental features locally without degrading the feedforward input structure.
Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Vias Neurais , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Linhagem da Célula , Eletroporação , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Inibição Neural , Optogenética , Células de Lugar/fisiologia , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/fisiologia , Análise de Célula ÚnicaRESUMO
Throughout their daily lives, animals and humans often switch between different behaviours. However, neuroscience research typically studies the brain while the animal is performing one behavioural task at a time, and little is known about how brain circuits represent switches between different behaviours. Here we tested this question using an ethological setting: two bats flew together in a long 135 m tunnel, and switched between navigation when flying alone (solo) and collision avoidance as they flew past each other (cross-over). Bats increased their echolocation click rate before each cross-over, indicating attention to the other bat1-9. Hippocampal CA1 neurons represented the bat's own position when flying alone (place coding10-14). Notably, during cross-overs, neurons switched rapidly to jointly represent the interbat distance by self-position. This neuronal switch was very fast-as fast as 100 ms-which could be revealed owing to the very rapid natural behavioural switch. The neuronal switch correlated with the attention signal, as indexed by echolocation. Interestingly, the different place fields of the same neuron often exhibited very different tuning to interbat distance, creating a complex non-separable coding of position by distance. Theoretical analysis showed that this complex representation yields more efficient coding. Overall, our results suggest that during dynamic natural behaviour, hippocampal neurons can rapidly switch their core computation to represent the relevant behavioural variables, supporting behavioural flexibility.
Assuntos
Quirópteros , Ecolocação , Voo Animal , Hipocampo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Voo Animal/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/fisiologia , Orientação Espacial , Navegação Espacial , Processamento EspacialRESUMO
In the hippocampus, spatial maps are formed by place cells while contextual memories are thought to be encoded as engrams1-6. Engrams are typically identified by expression of the immediate early gene Fos, but little is known about the neural activity patterns that drive, and are shaped by, Fos expression in behaving animals7-10. Thus, it is unclear whether Fos-expressing hippocampal neurons also encode spatial maps and whether Fos expression correlates with and affects specific features of the place code11. Here we measured the activity of CA1 neurons with calcium imaging while monitoring Fos induction in mice performing a hippocampus-dependent spatial learning task in virtual reality. We find that neurons with high Fos induction form ensembles of cells with highly correlated activity, exhibit reliable place fields that evenly tile the environment and have more stable tuning across days than nearby non-Fos-induced cells. Comparing neighbouring cells with and without Fos function using a sparse genetic loss-of-function approach, we find that neurons with disrupted Fos function have less reliable activity, decreased spatial selectivity and lower across-day stability. Our results demonstrate that Fos-induced cells contribute to hippocampal place codes by encoding accurate, stable and spatially uniform maps and that Fos itself has a causal role in shaping these place codes. Fos ensembles may therefore link two key aspects of hippocampal function: engrams for contextual memories and place codes that underlie cognitive maps.
Assuntos
Hipocampo , Proteínas Proto-Oncogênicas c-fos , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Cálcio/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos , Neurônios/fisiologia , Células de Lugar/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismoRESUMO
Inhibitory interneurons are pivotal components of cortical circuits. Beyond providing inhibition, they have been proposed to coordinate the firing of excitatory neurons within cell assemblies. While the roles of specific interneuron subtypes have been extensively studied, their influence on pyramidal cell synchrony in vivo remains elusive. Employing an all-optical approach in mice, we simultaneously recorded hippocampal interneurons and pyramidal cells and probed the network influence of individual interneurons using optogenetics. We demonstrate that CA1 interneurons form a functionally interconnected network that promotes synchrony through disinhibition during awake immobility, while preserving endogenous cell assemblies. Our network model underscores the importance of both cell assemblies and dense, unspecific interneuron connectivity in explaining our experimental findings, suggesting that interneurons may operate not only via division of labor but also through concerted activity.
Assuntos
Hipocampo , Interneurônios , Optogenética , Células Piramidais , Animais , Interneurônios/fisiologia , Células Piramidais/fisiologia , Camundongos , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Potenciais de Ação/fisiologia , Masculino , Camundongos Endogâmicos C57BLRESUMO
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Assuntos
Astrócitos , Disfunção Cognitiva , Hipocampo , Lipocalina-2 , Potenciação de Longa Duração , Doenças Neuroinflamatórias , Neurônios , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Lipocalina-2/metabolismo , Lipocalina-2/genética , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Optogenética , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/metabolismo , Modelos Animais de DoençasRESUMO
Hippocampal neurons encode physical variables1-7 such as space1 or auditory frequency6 in cognitive maps8. In addition, functional magnetic resonance imaging studies in humans have shown that the hippocampus can also encode more abstract, learned variables9-11. However, their integration into existing neural representations of physical variables12,13 is unknown. Here, using two-photon calcium imaging, we show that individual neurons in the dorsal hippocampus jointly encode accumulated evidence with spatial position in mice performing a decision-making task in virtual reality14-16. Nonlinear dimensionality reduction13 showed that population activity was well-described by approximately four to six latent variables, which suggests that neural activity is constrained to a low-dimensional manifold. Within this low-dimensional space, both physical and abstract variables were jointly mapped in an orderly manner, creating a geometric representation that we show is similar across mice. The existence of conjoined cognitive maps suggests that the hippocampus performs a general computation-the creation of task-specific low-dimensional manifolds that contain a geometric representation of learned knowledge.
Assuntos
Hipocampo/fisiologia , Conhecimento , Aprendizagem/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Cálcio/metabolismo , Tomada de Decisões , Feminino , Hipocampo/citologia , Masculino , Camundongos , Modelos Neurológicos , Neurônios/metabolismoRESUMO
Three major pillars of hippocampal function are spatial navigation1, Hebbian synaptic plasticity2 and spatial selectivity3. The hippocampus is also implicated in episodic memory4, but the precise link between these four functions is missing. Here we report the multiplexed selectivity of dorsal CA1 neurons while rats performed a virtual navigation task using only distal visual cues5, similar to the standard water maze test of spatial memory1. Neural responses primarily encoded path distance from the start point and the head angle of rats, with a weak allocentric spatial component similar to that in primates but substantially weaker than in rodents in the real world. Often, the same cells multiplexed and encoded path distance, angle and allocentric position in a sequence, thus encoding a journey-specific episode. The strength of neural activity and tuning strongly correlated with performance, with a temporal relationship indicating neural responses influencing behaviour and vice versa. Consistent with computational models of associative and causal Hebbian learning6,7, neural responses showed increasing clustering8 and became better predictors of behaviourally relevant variables, with the average neurometric curves exceeding and converging to psychometric curves. Thus, hippocampal neurons multiplex and exhibit highly plastic, task- and experience-dependent tuning to path-centric and allocentric variables to form episodic sequences supporting navigation.
Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Navegação Espacial/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Sinais (Psicologia) , Masculino , Aprendizagem em Labirinto , Neurônios/fisiologia , Psicometria , Ratos , Ratos Long-Evans , Memória Espacial/fisiologiaRESUMO
Could learning that uses cognitive control to judiciously use relevant information while ignoring distractions generally improve brain function, beyond forming explicit memories? According to a neuroplasticity hypothesis for how some cognitive behavioural therapies are effective, cognitive control training (CCT) changes neural circuit information processing1-3. Here we investigated whether CCT persistently alters hippocampal neural circuit function. We show that mice learned and remembered a conditioned place avoidance during CCT that required ignoring irrelevant locations of shock. CCT facilitated learning new tasks in novel environments for several weeks, relative to unconditioned controls and control mice that avoided the same place during reduced distraction. CCT rapidly changes entorhinal cortex-to-dentate gyrus synaptic circuit function, resulting in an excitatory-inhibitory subcircuit change that persists for months. CCT increases inhibition that attenuates the dentate response to medial entorhinal cortical input, and through disinhibition, potentiates the response to strong inputs, pointing to overall signal-to-noise enhancement. These neurobiological findings support the neuroplasticity hypothesis that, as well as storing item-event associations, CCT persistently optimizes neural circuit information processing.
Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Terapia Cognitivo-Comportamental , Condicionamento Operante/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Feminino , Neurônios GABAérgicos , Hipocampo/citologia , Potenciação de Longa Duração , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Processamento Espacial , Sinapses/fisiologiaRESUMO
In the adult hippocampus, synapses are constantly formed and eliminated1,2. However, the exact function of synapse elimination in the adult brain, and how it is regulated, are largely unknown. Here we show that astrocytic phagocytosis3 is important for maintaining proper hippocampal synaptic connectivity and plasticity. By using fluorescent phagocytosis reporters, we find that excitatory and inhibitory synapses are eliminated by glial phagocytosis in the CA1 region of the adult mouse hippocampus. Unexpectedly, we found that astrocytes have a major role in the neuronal activity-dependent elimination of excitatory synapses. Furthermore, mice in which astrocytes lack the phagocytic receptor MEGF10 show a reduction in the elimination of excitatory synapses; as a result, excessive but functionally impaired synapses accumulate. Finally, Megf10-knockout mice show defective long-term synaptic plasticity and impaired formation of hippocampal memories. Together, our data provide strong evidence that astrocytes eliminate unnecessary excitatory synaptic connections in the adult hippocampus through MEGF10, and that this astrocytic function is crucial for maintaining circuit connectivity and thereby supporting cognitive function.