Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Biol Chem ; 294(36): 13396-13410, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324722

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding CF transmembrane conductance regulator (CFTR), a chloride channel normally expressed at the surface of epithelial cells. The most frequent mutation, resulting in Phe-508 deletion, causes CFTR misfolding and its premature degradation. Low temperature or pharmacological correctors can partly rescue the Phe508del-CFTR processing defect and enhance trafficking of this channel variant to the plasma membrane (PM). Nevertheless, the rescued channels have an increased endocytosis rate, being quickly removed from the PM by the peripheral protein quality-control pathway. We previously reported that rescued Phe508del-CFTR (rPhe508del) can be retained at the cell surface by stimulating signaling pathways that coax the adaptor molecule ezrin (EZR) to tether rPhe508del-Na+/H+-exchange regulatory factor-1 complexes to the actin cytoskeleton, thereby averting the rapid internalization of this channel variant. However, the molecular basis for why rPhe508del fails to recruit active EZR to the PM remains elusive. Here, using a proteomics approach, we characterized and compared the core components of wt-CFTR- or rPhe508del-containing macromolecular complexes at the surface of human bronchial epithelial cells. We identified calpain 1 (CAPN1) as an exclusive rPhe508del interactor that prevents active EZR recruitment, impairs rPhe508del anchoring to actin, and reduces its stability in the PM. We show that either CAPN1 down-regulation or its chemical inhibition dramatically improves the functional rescue of Phe508del-CFTR in airway cells. These observations suggest that CAPN1 constitutes an appealing target for pharmacological intervention, as part of CF combination therapies restoring Phe508del-CFTR function.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Calpaína/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Calpaína/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Biologia Computacional , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Variação Genética/efeitos dos fármacos , Humanos , Proteômica , Temperatura
2.
Biochem Biophys Res Commun ; 523(3): 816-821, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31954520

RESUMO

Parathyroid hormone (PTH) enhances cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion secretion by the human intestinal epithelial cell line Caco-2. With the patch-clamp and Ussing chamber techniques, we investigated how PTH stimulates CFTR activity in Caco-2 cells. Cell-attached recordings revealed that PTH stimulated the opening of CFTR-like channels, while impedance analysis demonstrated that PTH increased apical membrane capacitance, a measure of membrane surface area. Using ion substitution experiments, the PTH-stimulated increase in short-circuit current (Isc), a measure of transepithelial ion transport, was demonstrated to be Cl-- and HCO3--dependent. However, the PTH-stimulated increase in Isc was unaffected by the carbonic anhydrase inhibitor acetazolamide, but partially blocked by the intermediate-conductance Ca2+-activated K+ channel (IKCa) inhibitor clotrimazole. TRAM-34, a related IKCa inhibitor, failed to directly inhibit CFTR Cl- channels in cell-free membrane patches, excluding its action on CFTR. In conclusion, PTH enhances CFTR-mediated anion secretion by Caco-2 monolayers by increasing the expression and function of CFTR in the apical membrane and IKCa activity in the basolateral membrane.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mucosa Intestinal/metabolismo , Hormônio Paratireóideo/metabolismo , Ânions/metabolismo , Células CACO-2 , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mucosa Intestinal/citologia , Transporte de Íons , Regulação para Cima
3.
Lab Invest ; 98(6): 825-838, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467455

RESUMO

Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing the lungs to chronic infection and inflammation. In young infants with CF, structural airway defects are increasingly recognized before the onset of significant lung disease, which suggests a developmental origin and a possible role in lung disease pathogenesis. The role(s) of CFTR in lung development is unclear and developmental studies in humans with CF are not feasible. Young CF pigs have structural airway changes and develop spontaneous postnatal lung disease similar to humans; therefore, we studied lung development in the pig model (non-CF and CF). CF trachea and proximal airways had structural lesions detectable as early as pseudoglandular development. At this early developmental stage, budding CF airways had smaller, hypo-distended lumens compared to non-CF airways. Non-CF lung explants exhibited airway lumen distension in response to forskolin/IBMX as well as to fibroblast growth factor (FGF)-10, consistent with CFTR-dependent anion transport/secretion, but this was lacking in CF airways. We studied primary pig airway epithelial cell cultures and found that FGF10 increased cellular proliferation (non-CF and CF) and CFTR expression/function (in non-CF only). In pseudoglandular stage lung tissue, CFTR protein was exclusively localized to the leading edges of budding airways in non-CF (but not CF) lungs. This discreet microanatomic localization of CFTR is consistent with the site, during branching morphogenesis, where airway epithelia are responsive to FGF10 regulation. In summary, our results suggest that the CF proximal airway defects originate during branching morphogenesis and that the lack of CFTR-dependent anion transport/liquid secretion likely contributes to these hypo-distended airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Pulmão/embriologia , Animais , Células Cultivadas , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Feminino , Fator 10 de Crescimento de Fibroblastos/fisiologia , Humanos , Morfogênese , Suínos , Traqueia/anormalidades
4.
Cell Physiol Biochem ; 51(3): 1489-1499, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485852

RESUMO

BACKGROUND/AIMS: Cystic fibrosis (CF) is a lethal recessive disorder caused by mutations in the CF transmembrane conductance regulator (CFTR). ΔF508, the most common mutation, is a misfolded protein that is retained in the endoplasmic reticulum and degraded, precluding delivery to the cell surface [1]. METHODS: Here we use a combination of western blotting, immunoprecipitation, and short circuit current techniques combined with confocal microscopy to address whether the SNARE attachment protein, STX8 plays a role in ΔF508's processing and movement out of the ER. RESULTS: Although the SNARE protein STX8 is thought to be functionally related and primarily localized to early endosomes, we show that silencing of STX8, particularly in the presence of the Vertex corrector molecule C18, rescues ΔF508-CFTR, allowing it to reach the cell surface and increasing CFTR-dependent chloride currents by approximately 2.5-fold over control values. STX8 silencing reduced the binding of quality control protein, Hsp 27, a protein that targets ΔF508-CFTR for sumoylation and subsequent degradation, to ΔF508-CFTR. STX8 silencing increased the levels of Hsp 60 a protein involving in early events in protein folding. CONCLUSION: STX8 knockdown creates an environment favorable for mature ΔF508 to reach the cell surface. The data also suggest that when present at normal levels, STX8 functions as part of the cell's quality control mechanism.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Qa-SNARE/metabolismo , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Inativação Gênica , Humanos , Transporte Proteico , Proteólise , Proteínas Qa-SNARE/análise , Proteínas Qa-SNARE/genética
5.
Cell Mol Life Sci ; 74(1): 129-140, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27709245

RESUMO

Cystic fibrosis (CF), a monogenic disease caused by mutations in the CFTR gene on chromosome 7, is complex and greatly variable in clinical expression. Airways, pancreas, male genital system, intestine, liver, bone, and kidney are involved. The lack of CFTR or its impaired function causes fat malabsorption and chronic pulmonary infections leading to bronchiectasis and progressive lung damage. Previously considered lethal in infancy and childhood, CF has now attained median survivals of 50 years of age, mainly thanks to the early diagnosis through neonatal screening, recognition of mild forms, and an aggressive therapeutic attitude. Classical treatment includes pancreatic enzyme replacement, respiratory physiotherapy, mucolitics, and aggressive antibiotic therapy. A significant proportion of patients with severe symptoms still requires lung or, less frequently, liver transplantation. The great number of mutations and their diverse effects on the CFTR protein account only partially for CF clinical variability, and modifier genes have a role in modulating the clinical expression of the disease. Despite the increasing understanding of CFTR functioning, several aspects of CF need still to be clarified, e.g., the worse outcome in females, the risk of malignancies, the pathophysiology, and best treatment of comorbidities, such as CF-related diabetes or CF-related bone disorder. Research is focusing on new drugs restoring CFTR function, some already available and with good clinical impact, others showing promising preliminary results that need to be confirmed in phase III clinical trials.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Fibrose Cística/terapia , Medicina de Precisão/métodos , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diagnóstico Precoce , Terapia Genética/métodos , Genótipo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Mutação , Pâncreas/metabolismo , Pâncreas/patologia , Diagnóstico Pré-Natal
6.
Cell Mol Life Sci ; 74(1): 39-55, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699454

RESUMO

CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.


Assuntos
Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Dobramento de Proteína , Animais , Membrana Celular/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Endocitose , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Deleção de Sequência
7.
Cell Mol Life Sci ; 74(1): 57-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27722768

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Deleção de Sequência , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Descoberta de Drogas , Humanos , Fosforilação/efeitos dos fármacos , Mutação Puntual/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Deleção de Sequência/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Andrologia ; 50(2)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28762521

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is relevant to sperm quality, sperm capacitation and male fertility. However, it is still unknown whether CFTR can be a potential parameter for fecundity prediction in healthy couples. In this study, 135 healthy couples were divided into groups according to their fertility. We demonstrated that the sperm CFTR expression level of healthy males who never impregnated their partners (49 cases, 38.68 ± 2.71%) was significantly lower than that of fertile men (86 cases, 46.35 ± 2.32%). Sperm CFTR expression level accurately corresponded with fertility through the logistic regression model. Receiver operating characteristic (ROC) curve analysis showed that the cut-off value of sperm CFTR expression level for fecundity prediction was 43.75%. Furthermore, cumulative pregnancy rates (CPRs) of CFTR > 43.75% group and CFTR ≤ 43.75% group during the follow-up periods were 80.6% and 49.3% respectively. Meanwhile, the mean time to pregnancy (TTP) of CFTR ≤ 43.75% group (26.79 ± 2.35) was significantly longer than that of CFTR > 43.75% group (16.46 ± 2.42). Therefore, sperm CFTR expression level is relevant to fecundity of healthy couples and shows potential predictive capacity of fecundity.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fertilidade/fisiologia , Taxa de Gravidez , Espermatozoides/metabolismo , Adulto , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Feminino , Seguimentos , Voluntários Saudáveis , Humanos , Masculino , Gravidez , Capacitação Espermática , Adulto Jovem
9.
Int J Mol Sci ; 18(8)2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28805732

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel belongs to the ATP-binding cassette (ABC) transporter superfamily and regulates Cl- secretion in epithelial cells for water secretion. Loss-of-function mutations to the CFTR gene cause dehydrated mucus on the apical side of epithelial cells and increase the susceptibility of bacterial infection, especially in the airway and pulmonary tissues. Therefore, research on the molecular properties of CFTR, such as its gating mechanism and subcellular trafficking, have been intensively pursued. Dysregulated CFTR trafficking is one of the major pathological hallmarks in cystic fibrosis (CF) patients bearing missense mutations in the CFTR gene. Hormones that activate cAMP signaling, such as catecholamine, have been found to regulate the intracellular trafficking of CFTR. Insulin is one of the hormones that regulate cAMP production and promote trafficking of transmembrane proteins to the plasma membrane. The functional interactions between insulin and CFTR have not yet been clearly defined. In this review article, I review the roles of CFTR in epithelial cells, its regulatory role in insulin secretion, and a mechanism of CFTR regulation by insulin.


Assuntos
Cloro/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Insulina/metabolismo , Animais , AMP Cíclico/metabolismo , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Insulina/análise , Resistência à Insulina , Transporte de Íons , Mutação de Sentido Incorreto
10.
Gastroenterology ; 148(2): 427-39.e16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447846

RESUMO

BACKGROUND & AIMS: Excessive consumption of ethanol is one of the most common causes of acute and chronic pancreatitis. Alterations to the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) also cause pancreatitis. However, little is known about the role of CFTR in the pathogenesis of alcohol-induced pancreatitis. METHODS: We measured CFTR activity based on chloride concentrations in sweat from patients with cystic fibrosis, patients admitted to the emergency department because of excessive alcohol consumption, and healthy volunteers. We measured CFTR levels and localization in pancreatic tissues and in patients with acute or chronic pancreatitis induced by alcohol. We studied the effects of ethanol, fatty acids, and fatty acid ethyl esters on secretion of pancreatic fluid and HCO3(-), levels and function of CFTR, and exchange of Cl(-) for HCO3(-) in pancreatic cell lines as well as in tissues from guinea pigs and CFTR knockout mice after administration of alcohol. RESULTS: Chloride concentrations increased in sweat samples from patients who acutely abused alcohol but not in samples from healthy volunteers, indicating that alcohol affects CFTR function. Pancreatic tissues from patients with acute or chronic pancreatitis had lower levels of CFTR than tissues from healthy volunteers. Alcohol and fatty acids inhibited secretion of fluid and HCO3(-), as well as CFTR activity, in pancreatic ductal epithelial cells. These effects were mediated by sustained increases in concentrations of intracellular calcium and adenosine 3',5'-cyclic monophosphate, depletion of adenosine triphosphate, and depolarization of mitochondrial membranes. In pancreatic cell lines and pancreatic tissues of mice and guinea pigs, administration of ethanol reduced expression of CFTR messenger RNA, reduced the stability of CFTR at the cell surface, and disrupted folding of CFTR at the endoplasmic reticulum. CFTR knockout mice given ethanol or fatty acids developed more severe pancreatitis than mice not given ethanol or fatty acids. CONCLUSIONS: Based on studies of human, mouse, and guinea pig pancreata, alcohol disrupts expression and localization of the CFTR. This appears to contribute to development of pancreatitis. Strategies to increase CFTR levels or function might be used to treat alcohol-associated pancreatitis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Etanol/toxicidade , Pancreatite/induzido quimicamente , Trifosfato de Adenosina/análise , Animais , Bicarbonatos/metabolismo , Cálcio/metabolismo , Canais de Cloreto/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cobaias , Humanos , Camundongos , Mutação , Dobramento de Proteína/efeitos dos fármacos
11.
Am J Respir Crit Care Med ; 192(11): 1314-24, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26266556

RESUMO

RATIONALE: Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune and inflammatory processes. OBJECTIVES: To investigate the capacity of anaerobes to contribute to cystic fibrosis (CF) airway pathogenesis via SCFAs. METHODS: Samples of 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFA levels in anaerobic supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of two SCFA receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings and 16HBE14o(-) and CFBE41o(-) cells were evaluated using reverse transcription polymerase chain reaction, Western blot analysis, laser scanning cytometry, and confocal microscopy. SCFA-induced IL-8 secretion was monitored by ELISA. MEASUREMENTS AND MAIN RESULTS: Fifty-seven (52.3%) of 109 PWCF were anaerobe positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF younger (n = 24) and older (n = 85) than 6 years of age. All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic, and butyric acids. SCFA levels were higher in BAL samples of adults than in those of children. GPR41 levels were elevated in CFBE41o(-) versus 16HBE14o(-) cells; CF versus non-CF bronchial brushings; and 16HBE14o(-) cells after treatment with cystic fibrosis transmembrane conductance regulator inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin-sensitive IL-8 response in bronchial epithelial cells, with a higher production of IL-8 in CFBE41o(-) than in 16HBE14o(-) cells. CONCLUSIONS: This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via up-regulated GPR41.


Assuntos
Bactérias Anaeróbias , Fibrose Cística/microbiologia , Ácidos Graxos/biossíntese , Adolescente , Adulto , Fatores Etários , Western Blotting , Líquido da Lavagem Broncoalveolar/microbiologia , Criança , Pré-Escolar , Cromatografia Gasosa , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/microbiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Mucosa Respiratória/microbiologia , Regulação para Cima , Adulto Jovem
12.
Eur J Oral Sci ; 123(3): 140-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25903037

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-dependent protein kinase (PKA)-regulated Cl(-) channel, crucial for epithelial cell regulation of salt and water transport. Previous studies showed that ezrin, an actin binding and A-kinase anchoring protein (AKAP), facilitates association of PKA with CFTR. We used immunohistochemistry and immunogold transmission electron microscopy to localize CFTR, ezrin, and PKA type II regulatory (RII) and catalytic (C) subunits in striated duct cells of human parotid and submandibular glands. Immunohistochemistry localized the four proteins mainly to the apical membrane and the apical cytoplasm of striated duct cells. In acinar cells, ezrin localized to the luminal membrane, and PKA RII subunits were present in secretory granules, as previously described. Immunogold labeling showed that CFTR and PKA RII and C subunits were localized to the luminal membrane and associated with apical granules and vesicles of striated duct cells. Ezrin was present along the luminal membrane, on microvilli and along the junctional complexes between cells. Double labeling showed specific protein associations with apical granules and vesicles and along the luminal membrane. Ezrin, CFTR, and PKA RII and C subunits are co-localized in striated duct cells, suggesting the presence of signaling complexes that serve to regulate CFTR activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/análise , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Proteínas do Citoesqueleto/análise , Glândula Parótida/química , Ductos Salivares/química , Glândula Submandibular/química , Proteínas de Ancoragem à Quinase A/análise , Membrana Celular/química , Membrana Celular/ultraestrutura , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/análise , Proteína Quinase Tipo II Dependente de AMP Cíclico/análise , Citoplasma/química , Citoplasma/ultraestrutura , Humanos , Imuno-Histoquímica , Junções Intercelulares/química , Junções Intercelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Microvilosidades/química , Microvilosidades/ultraestrutura , Glândula Parótida/citologia , Ductos Salivares/citologia , Vesículas Secretórias/química , Vesículas Secretórias/ultraestrutura , Glândula Submandibular/citologia , Vacúolos/química , Vacúolos/ultraestrutura
13.
Pathol Biol (Paris) ; 63(3): 126-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26002249

RESUMO

PURPOSE: We present in this study our 10years experience in prenatal diagnosis of cystic fibrosis performed in the Tunisian population. PATIENTS AND METHODS: Based on family history, 40 Tunisian couples were selected for prenatal diagnosis. Fetal DNA was isolated from amniotic fluid collected by transabdominal amniocentesis or from chronic villi by transcervical chorionic villus sampling. The genetic analysis for cystic fibrosis mutations was performed by denaturant gradient gel electrophoresis and denaturing high-pressure liquid phase chromatography. We performed microsatellites analysis by capillary electrophoresis in order to verify the absence of maternal cell contamination. RESULTS: Thirteen fetuses were affected, 21 were heterozygous carriers and 15 were healthy with two normal alleles of CFTR gene. Ten couples opted for therapeutic abortion. The microsatellites genotyping showed the absence of contamination of the fetal DNA by maternal DNA in 93.75%. CONCLUSION: Our diagnostic strategy provides rapid and reliable prenatal diagnosis at risk families of cystic fibrosis.


Assuntos
Amniocentese , Amostra da Vilosidade Coriônica , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Aborto Eugênico , Alelos , Árabes/genética , Amostra da Vilosidade Coriônica/efeitos adversos , Cromatografia Líquida de Alta Pressão , Fibrose Cística/embriologia , Fibrose Cística/epidemiologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Doenças em Gêmeos/diagnóstico , Doenças em Gêmeos/genética , Eletroforese em Gel de Poliacrilamida , Feminino , Morte Fetal/etiologia , Aconselhamento Genético , Genótipo , Humanos , Masculino , Repetições de Microssatélites , Gravidez , Gravidez de Gêmeos , Estudos Retrospectivos , Tunísia/epidemiologia
14.
Biochem Biophys Res Commun ; 446(4): 1017-21, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24657265

RESUMO

Sertoli cells (SCs) form the blood-testis barrier (BTB) that controls the microenvironment where the germ cells develop. The cystic fibrosis transmembrane conductance regulator (CFTR) plays an essential role to male fertility and it was recently suggested that it may promote water transport. Interestingly, Aquaporin-4 (AQP4) is widely expressed in blood barriers, but was never identified in SCs. Herein we hypothesized that SCs express CFTR and AQP4 and that they can physically interact. Primary SCs cultures from 20-day-old rats were maintained and CFTR and AQP4 mRNA and protein expression was assessed by RT-PCR and Western blot, respectively. The possible physical interaction between CFTR and AQP4 was studied by co-immunoprecipitation. We were able to confirm the presence of CFTR at mRNA and protein level in cultured rat SCs. AQP4 mRNA analysis showed that cultured rat SCs express the transcript variant c of AQP4, which was followed by immunodetection of the correspondent protein. The co-immunoprecipitation experiments showed a direct interaction between AQP4 and CFTR in cultured rat SCs. Our results suggest that CFTR physically interacts with AQP4 in rat SCs evidencing a possible mechanism by which CFTR can control water transport through BTB. The full enlightenment of this particular relation between CFTR and AQP4 may point towards possible therapeutic targets to counteract male subfertility/infertility in men with Cystic Fibrosis and mutations in CFTR gene, which are known to impair spermatogenesis due to defective water transport.


Assuntos
Aquaporina 4/análise , Aquaporina 4/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células de Sertoli/metabolismo , Animais , Aquaporina 4/genética , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Masculino , Mapeamento de Interação de Proteínas , RNA Mensageiro/genética , Ratos , Ratos Wistar
16.
Mol Cell Probes ; 28(4): 175-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24561544

RESUMO

Aberrant protein subcellular localization caused by mutation is a prominent feature of many human diseases. In Cystic Fibrosis (CF), a recessive lethal disorder that results from dysfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the most common mutation is a deletion of phenylalanine-508 (pF508del). Such mutation produces a misfolded protein that fails to reach the cell surface. To date, over 1900 mutations have been identified in CFTR gene, but only a minority has been analyzed at the protein level. To establish if a particular CFTR variant alters its subcellular distribution, it is necessary to quantitatively determine protein localization in the appropriate cellular context. To date, most quantitative studies on CFTR localization have been based on immunoprecipitation and western blot. In this work, we developed and validated a confocal microscopy-image analysis method to quantitatively examine CFTR at the apical membrane of epithelial cells. Polarized MDCK cells transiently transfected with EGFP-CFTR constructs and stained for an apical marker were used. EGFP-CFTR fluorescence intensity in a region defined by the apical marker was normalized to EGFP-CFTR whole cell fluorescence intensity, rendering "apical CFTR ratio". We obtained an apical CFTR ratio of 0.67 ± 0.05 for wtCFTR and 0.11 ± 0.02 for pF508del. In addition, this image analysis method was able to discriminate intermediate phenotypes: partial rescue of the pF508del by incubation at 27 °C rendered an apical CFTR ratio value of 0.23 ± 0.01. We concluded the method has a good sensitivity and accurately detects milder phenotypes. Improving axial resolution through deconvolution further increased the sensitivity of the system as rendered an apical CFTR ratio of 0.76 ± 0.03 for wild type and 0.05 ± 0.02 for pF508del. The presented procedure is faster and simpler when compared with other available methods and it is therefore suitable as a screening method to identify mutations that completely or mildly affect CFTR processing. Moreover, it could be extended to other studies on the biology underlying protein subcellular localization in health and disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/análise , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Animais , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cães , Células Epiteliais/ultraestrutura , Humanos , Células Madin Darby de Rim Canino , Mutação , Transporte Proteico , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes
17.
Am J Physiol Gastrointest Liver Physiol ; 305(3): G258-75, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23744739

RESUMO

The Brunner's glands of the proximal duodenum exert barrier functions through secretion of glycoproteins and antimicrobial peptides. However, ion transporter localization, function, and regulation in the glands are less clear. Mapping the subcellular distribution of transporters is an important step toward elucidating trafficking mechanisms of fluid transport in the gland. The present study examined 1) changes in the distribution of intestinal anion transporters and the aquaporin 5 (AQP5) water channel in rat Brunner's glands following second messenger activation and 2) anion transporter distribution in Brunner's glands from healthy and disease-affected human tissues. Cystic fibrosis transmembrane conductance regulator (CFTR), AQP5, sodium-potassium-coupled chloride cotransporter 1 (NKCC1), sodium-bicarbonate cotransporter (NBCe1), and the proton pump vacuolar ATPase (V-ATPase) were localized to distinct membrane domains and in endosomes at steady state. Carbachol and cAMP redistributed CFTR to the apical membrane. cAMP-dependent recruitment of CFTR to the apical membrane was accompanied by recruitment of AQP5 that was reversed by a PKA inhibitor. cAMP also induced apical trafficking of V-ATPase and redistribution of NKCC1 and NBCe1 to the basolateral membranes. The steady-state distribution of AQP5, CFTR, NBCe1, NKCC1, and V-ATPase in human Brunner's glands from healthy controls, cystic fibrosis, and celiac disease resembled that of rat; however, the distribution profiles were markedly attenuated in the disease-affected duodenum. These data support functional transport of chloride, bicarbonate, water, and protons by second messenger-regulated traffic in mammalian Brunner's glands under physiological and pathophysiological conditions.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Glândulas Duodenais/metabolismo , Água/metabolismo , Animais , Proteínas de Transporte de Ânions/análise , Aquaporina 5/análise , Aquaporina 5/metabolismo , Bicarbonatos/metabolismo , Transporte Biológico/efeitos dos fármacos , Glândulas Duodenais/química , Glândulas Duodenais/patologia , Carbacol/farmacologia , Doença Celíaca/metabolismo , Cloretos/metabolismo , AMP Cíclico/farmacologia , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Duodeno/química , Duodeno/patologia , Humanos , Masculino , Prótons , Ratos , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro/fisiologia , ATPases Vacuolares Próton-Translocadoras/análise
18.
Eur Respir J ; 41(1): 203-16, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22878883

RESUMO

In patients with cystic fibrosis, cystic fibrosis transmembrane conductance regulator (CFTR) biomarkers, such as sweat chloride concentration and/or nasal potential difference, are used as end-points of efficacy in phase-III clinical trials with the disease modifying drugs ivacaftor (VX-770), VX809 and ataluren. The aim of this project was to review the literature on reliability, validity and responsiveness of nasal potential difference, sweat chloride and intestinal current measurement in patients with cystic fibrosis. Data on clinimetric properties were collected for each biomarker and reviewed by an international team of experts. Data on reliability, validity and responsiveness were tabulated. In addition, narrative answers to four key questions were discussed and agreed by the team of experts. The data collected demonstrated the reliability, validity and responsiveness of nasal potential difference. Fewer data were found on reliability of sweat chloride concentration; however, validity and responsiveness were demonstrated. Validity was demonstrated for intestinal current measurement, but further information is required on reliability and responsiveness. For all three end-points, normal values were collected and further research requirements were proposed. This body of work adds useful information to support the promotion of CFTR biomarkers to surrogate end-points and to guide further research in the area.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/análise , Fibrose Cística/diagnóstico , Biomarcadores/análise , Fibrose Cística/tratamento farmacológico , Humanos , Reprodutibilidade dos Testes
19.
BMC Gastroenterol ; 13: 91, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23688510

RESUMO

BACKGROUND: Measurements of CFTR function in rectal biopsies ex vivo have been used for diagnosis and prognosis of Cystic Fibrosis (CF) disease. Here, we aimed to evaluate this procedure regarding: i) viability of the rectal specimens obtained by biopsy forceps for ex vivo bioelectrical and biochemical laboratory analyses; and ii) overall assessment (comfort, invasiveness, pain, sedation requirement, etc.) of the rectal forceps biopsy procedure from the patients perspective to assess its feasibility as an outcome measure in clinical trials. METHODS: We compared three bowel preparation solutions (NaCl 0.9%, glycerol 12%, mannitol), and two biopsy forceps (standard and jumbo) in 580 rectal specimens from 132 individuals (CF and non-CF). Assessment of the overall rectal biopsy procedure (obtained by biopsy forceps) by patients was carried out by telephone surveys to 75 individuals who underwent the sigmoidoscopy procedure. RESULTS: Integrity and friability of the tissue specimens correlate with their transepithelial resistance (r = -0.438 and -0.305, respectively) and are influenced by the bowel preparation solution and biopsy forceps used, being NaCl and jumbo forceps the most compatible methods with the electrophysiological analysis. The great majority of the individuals (76%) did not report major discomfort due to the short procedure time (max 15 min) and considered it relatively painless (79%). Importantly, most (88%) accept repeating it at least for one more time and 53% for more than 4 times. CONCLUSIONS: Obtaining rectal biopsies with a flexible endoscope and jumbo forceps after bowel preparation with NaCl solution is a safe procedure that can be adopted for both adults and children of any age, yielding viable specimens for CFTR bioelectrical/biochemical analyses. The procedure is well tolerated by patients, demonstrating its feasibility as an outcome measure in clinical trials.


Assuntos
Biópsia/instrumentação , Biópsia/métodos , Fibrose Cística/patologia , Satisfação do Paciente , Reto/patologia , Adulto , Anestésicos Intravenosos/administração & dosagem , Biópsia/efeitos adversos , Western Blotting , Catárticos , Criança , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Imunofluorescência , Glicerol , Humanos , Manitol , Mutação , Dor/etiologia , Prognóstico , Cloreto de Sódio , Instrumentos Cirúrgicos , Inquéritos e Questionários
20.
Int J Mol Sci ; 14(5): 9628-42, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23644890

RESUMO

Intracellular protein traffic plays an important role in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channels. Microtubule and actin-based motor proteins direct CFTR movement along trafficking pathways. As shown for other regulatory proteins such as adaptors, the involvement of protein motors in CFTR traffic is cell-type specific. Understanding motor specificity provides insight into the biology of the channel and opens opportunity for discovery of organ-specific drug targets for treating CFTR-mediated diseases.


Assuntos
Actinas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epitélio/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Humanos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA