Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.773
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(2): 211, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302562

RESUMO

Tazemetostat is the first epigenetic therapy to gain FDA approval in a solid tumor. This lysine methyltransferase inhibitor targets EZH2, the enzymatic subunit of the PRC2 transcriptional silencing complex. Tumors with mutations in subunits of the SWI/SNF chromatin remodeling complex, inclusive of most epithelioid sarcomas, are sensitive to EZH2 inhibition.


Assuntos
Benzamidas/uso terapêutico , Epigênese Genética/genética , Piridonas/uso terapêutico , Sarcoma/tratamento farmacológico , Compostos de Bifenilo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Inibidores Enzimáticos/farmacologia , Epigenômica , Terapia Genética/métodos , Humanos , Morfolinas , Proteínas Nucleares/metabolismo , Sarcoma/genética , Fatores de Transcrição/metabolismo
2.
Cell ; 171(4): 950-965.e28, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100075

RESUMO

Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types.


Assuntos
Sarcoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Variações do Número de Cópias de DNA , Epigenômica , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Mutação , Sarcoma/diagnóstico , Sarcoma/patologia , Adulto Jovem
3.
Genes Dev ; 36(11-12): 664-683, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710139

RESUMO

Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.


Assuntos
Neoplasias do Endométrio , Sarcoma do Estroma Endometrial , Sarcoma , Cromatina , Proteínas de Ligação a DNA/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Histonas/metabolismo , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Sarcoma/genética , Sarcoma do Estroma Endometrial/genética , Sarcoma do Estroma Endometrial/metabolismo , Sarcoma do Estroma Endometrial/patologia , Translocação Genética/genética
4.
Am J Hum Genet ; 109(6): 1026-1037, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35512711

RESUMO

More knowledge is needed regarding germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. Here, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out European-focused and pan-ancestry case-control analyses to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1,147 individuals with pediatric sarcoma diagnoses (226 Ewing sarcoma, 438 osteosarcoma, 180 rhabdomyosarcoma, and 303 other sarcoma) relative to identically processed cancer-free control individuals. Findings in Ewing sarcoma were validated with an additional cohort of 430 individuals, and a subset of 301 Ewing sarcoma parent-proband trios was analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the European Ewing sarcoma discovery cohort (three individuals, OR 12.6, 95% CI 3.0-43.2, p = 0.003, FDR = 0.40). This enrichment in FANCC heterozygous pathogenic variants was again observed in the European Ewing sarcoma validation cohort (three individuals, OR 7.0, 95% CI 1.7-23.6, p = 0.014), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in individuals with Ewing sarcoma. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.


Assuntos
Sarcoma de Ewing , Sarcoma , Criança , Dano ao DNA/genética , Predisposição Genética para Doença , Células Germinativas , Mutação em Linhagem Germinativa/genética , Humanos , Sarcoma/genética , Sarcoma de Ewing/genética
5.
J Pathol ; 264(3): 293-304, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39258383

RESUMO

Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) are two common and aggressive subtypes of soft tissue sarcoma. The aim of this study was to assess potential transcriptomic differences between MFS and UPS tumours and to evaluate the extent to which differences in gene expression profiles were associated with genomic and clinical features. The study included 162 patients with tumours diagnosed as MFS (N = 62) or UPS (N = 100). The patients had been diagnosed and treated at two Swedish sarcoma centres during a 30-year period. For gene expression profiling and gene fusion detection all tumours were analysed using RNA-sequencing and could be compared with data on clinical outcome (N = 155), global copy number profiles (N = 145), and gene mutations (N = 128). Gene expression profiling revealed three transcriptomic clusters (TCs) without any clear separation of MFS and UPS. One TC was associated with longer metastasis-free survival. These tumours had lower tumour mutation burden (TMB), were enriched for a copy number signature representative of focal LOH and chromosomal instability on a diploid background, and were relatively immune-depleted. MFS and UPS showed extensive genomic overlap, with whole genome doubling occurring more frequently among the latter. The results support the idea that MFS and UPS tumours have largely overlapping genomic and transcriptomic features, with UPS tumours showing more aggressive behaviour and more complex genomes. Independently of the tumour type, clinically relevant subgroups were revealed by gene expression analysis, and the finding of multiple genomic subgroups strongly suggest the existence of subgroups of relevance to treatment stratification. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Fibrossarcoma , Perfilação da Expressão Gênica , Mutação , Sarcoma , Transcriptoma , Humanos , Masculino , Fibrossarcoma/genética , Fibrossarcoma/patologia , Feminino , Pessoa de Meia-Idade , Idoso , Perfilação da Expressão Gênica/métodos , Sarcoma/genética , Sarcoma/patologia , Adulto , Idoso de 80 Anos ou mais , Variações do Número de Cópias de DNA , Biomarcadores Tumorais/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Regulação Neoplásica da Expressão Gênica , Genômica , Suécia
6.
J Pathol ; 264(2): 129-131, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39072755

RESUMO

In a recent issue of The Journal of Pathology, Chen and colleagues established novel patient-derived ex vivo models of NTRK fusion-positive soft tissue sarcoma to characterize resistance mechanisms against targeted therapy with tyrosine kinase inhibitors. Prolonged exposure to escalating concentrations of the tyrosine kinase inhibitor, entrectinib, ultimately led to the occurrence of resistant clones that harbored an inactivating mutation in the NF2 gene, not previously described in this context, accompanied by increased PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling. Finally, an inhibitor screen identified, among others, MEK and mTOR inhibitors as potential combination agents. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Neurofibromina 2/genética , Proteínas de Fusão Oncogênica/genética , Benzamidas/uso terapêutico , Benzamidas/farmacologia , Receptor trkA/genética , Receptor trkA/metabolismo , Transdução de Sinais/genética , Indazóis/uso terapêutico , Indazóis/farmacologia , Mutação , Sarcoma/genética , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
J Pathol ; 263(2): 257-269, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38613194

RESUMO

Genomic rearrangements of the neurotrophic receptor tyrosine kinase genes (NTRK1, NTRK2, and NTRK3) are the most common mechanism of oncogenic activation for this family of receptors, resulting in sustained cancer cell proliferation. Several targeted therapies have been approved for tumours harbouring NTRK fusions and a new generation of TRK inhibitors has already been developed due to acquired resistance. We established a patient-derived LMNA::NTRK1-rearranged soft-tissue sarcoma cell model ex vivo with an acquired resistance to targeted TRK inhibition. Molecular profiling of the resistant clones revealed an acquired NF2 loss of function mutation that was absent in the parental cell model. Parental cells showed continuous sensitivity to TRK-targeted treatment, whereas the resistant clones were insensitive. Furthermore, resistant clones showed upregulation of the MAPK and mTOR/AKT pathways in the gene expression based on RNA sequencing data and increased sensitivity to MEK and mTOR inhibitor therapy. Drug synergy was seen using trametinib and rapamycin in combination with entrectinib. Medium-throughput drug screening further identified small compounds as potential drug candidates to overcome resistance as monotherapy or in combination with entrectinib. In summary, we developed a comprehensive model of drug resistance in an LMNA::NTRK1-rearranged soft-tissue sarcoma and have broadened the understanding of acquired drug resistance to targeted TRK therapy. Furthermore, we identified drug combinations and small compounds to overcome acquired drug resistance and potentially guide patient care in a functional precision oncology setting. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Rearranjo Gênico , Lamina Tipo A , Mutação , Neurofibromina 2 , Inibidores de Proteínas Quinases , Receptor trkA , Sarcoma , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor trkA/genética , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Sarcoma/genética , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Sarcoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Piridonas/farmacologia , Benzamidas/farmacologia , Pirimidinonas/farmacologia , Sirolimo/farmacologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/tratamento farmacológico , Neoplasias de Tecidos Moles/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinergismo Farmacológico , Indazóis
8.
Nature ; 572(7769): 397-401, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367041

RESUMO

Nutrition exerts considerable effects on health, and dietary interventions are commonly used to treat diseases of metabolic aetiology. Although cancer has a substantial metabolic component1, the principles that define whether nutrition may be used to influence outcomes of cancer are unclear2. Nevertheless, it is established that targeting metabolic pathways with pharmacological agents or radiation can sometimes lead to controlled therapeutic outcomes. By contrast, whether specific dietary interventions can influence the metabolic pathways that are targeted in standard cancer therapies is not known. Here we show that dietary restriction of the essential amino acid methionine-the reduction of which has anti-ageing and anti-obesogenic properties-influences cancer outcome, through controlled and reproducible changes to one-carbon metabolism. This pathway metabolizes methionine and is the target of a variety of cancer interventions that involve chemotherapy and radiation. Methionine restriction produced therapeutic responses in two patient-derived xenograft models of chemotherapy-resistant RAS-driven colorectal cancer, and in a mouse model of autochthonous soft-tissue sarcoma driven by a G12D mutation in KRAS and knockout of p53 (KrasG12D/+;Trp53-/-) that is resistant to radiation. Metabolomics revealed that the therapeutic mechanisms operate via tumour-cell-autonomous effects on flux through one-carbon metabolism that affects redox and nucleotide metabolism-and thus interact with the antimetabolite or radiation intervention. In a controlled and tolerated feeding study in humans, methionine restriction resulted in effects on systemic metabolism that were similar to those obtained in mice. These findings provide evidence that a targeted dietary manipulation can specifically affect tumour-cell metabolism to mediate broad aspects of cancer outcome.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Metabolômica , Metionina/administração & dosagem , Metionina/farmacologia , Sarcoma/tratamento farmacológico , Neoplasias de Tecidos Moles/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Dieta , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Genes p53 , Genes ras , Voluntários Saudáveis , Humanos , Masculino , Metionina/metabolismo , Camundongos , Pessoa de Meia-Idade , Mutação , Estudo de Prova de Conceito , Sarcoma/genética , Sarcoma/metabolismo , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/metabolismo , Enxofre/metabolismo , Resultado do Tratamento
9.
Cell Mol Life Sci ; 81(1): 219, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758230

RESUMO

HMGA1 is a structural epigenetic chromatin factor that has been associated with tumor progression and drug resistance. Here, we reported the prognostic/predictive value of HMGA1 for trabectedin in advanced soft-tissue sarcoma (STS) and the effect of inhibiting HMGA1 or the mTOR downstream pathway in trabectedin activity. The prognostic/predictive value of HMGA1 expression was assessed in a cohort of 301 STS patients at mRNA (n = 133) and protein level (n = 272), by HTG EdgeSeq transcriptomics and immunohistochemistry, respectively. The effect of HMGA1 silencing on trabectedin activity and gene expression profiling was measured in leiomyosarcoma cells. The effect of combining mTOR inhibitors with trabectedin was assessed on cell viability in vitro studies, whereas in vivo studies tested the activity of this combination. HMGA1 mRNA and protein expression were significantly associated with worse progression-free survival of trabectedin and worse overall survival in STS. HMGA1 silencing sensitized leiomyosarcoma cells for trabectedin treatment, reducing the spheroid area and increasing cell death. The downregulation of HGMA1 significantly decreased the enrichment of some specific gene sets, including the PI3K/AKT/mTOR pathway. The inhibition of mTOR, sensitized leiomyosarcoma cultures for trabectedin treatment, increasing cell death. In in vivo studies, the combination of rapamycin with trabectedin downregulated HMGA1 expression and stabilized tumor growth of 3-methylcholantrene-induced sarcoma-like models. HMGA1 is an adverse prognostic factor for trabectedin treatment in advanced STS. HMGA1 silencing increases trabectedin efficacy, in part by modulating the mTOR signaling pathway. Trabectedin plus mTOR inhibitors are active in preclinical models of sarcoma, downregulating HMGA1 expression levels and stabilizing tumor growth.


Assuntos
Proteína HMGA1a , Sarcoma , Trabectedina , Trabectedina/farmacologia , Humanos , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Sarcoma/genética , Sarcoma/metabolismo , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Animais , Linhagem Celular Tumoral , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Prognóstico , Feminino , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/patologia , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Genes Chromosomes Cancer ; 63(1): e23214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050922

RESUMO

Gene amplification is a crucial process in cancer development, leading to the overexpression of oncogenes. It manifests cytogenetically as extrachromosomal double minutes (dmin), homogeneously staining regions (hsr), or ring chromosomes (r). This study investigates the prevalence and distribution of these amplification markers in a survey of 80 131 neoplasms spanning hematologic disorders, and benign and malignant solid tumors. The study reveals distinct variations in the frequency of dmin, hsr, and r among different tumor types. Rings were the most common (3.4%) sign of amplification, followed by dmin (1.3%), and hsr (0.8%). Rings were particularly frequent in malignant mesenchymal tumors, especially liposarcomas (47.5%) and osteosarcomas (23.4%), dmin were prevalent in neuroblastoma (30.9%) and pancreatic carcinoma (21.9%), and hsr frequencies were highest in head and neck carcinoma (14.0%) and neuroblastoma (9.0%). Combining all three amplification markers (dmin/hsr/r), malignant solid tumors consistently exhibited higher frequencies than hematologic disorders and benign solid tumors. The structural characteristics of these amplification markers and their potential role in tumorigenesis and tumor progression highlight the complex interplay between cancer-initiating gene-level alterations, for example, fusion genes, and subsequent amplification dynamics. Further research integrating cytogenetic and molecular approaches is warranted to better understand the underlying mechanisms of these amplifications, in particular, the enigmatic question of why certain malignancies display certain types of amplification. Comparing the present results with molecular genetic data proved challenging because of the diversity in definitions of amplification across studies. This study underscores the need for standardized definitions in future work.


Assuntos
Neoplasias Ósseas , Neuroblastoma , Sarcoma , Humanos , Amplificação de Genes , Sarcoma/genética , Aberrações Cromossômicas , Neuroblastoma/genética , Neoplasias Ósseas/genética , Análise Citogenética
11.
Genes Chromosomes Cancer ; 63(8): e23255, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149945

RESUMO

Near-haploidization, that is, loss of one copy of most chromosomes, is a relatively rare phenomenon in most tumors, but is enriched among certain soft tissue sarcomas, including undifferentiated pleomorphic sarcoma (UPS). Presumably, near-haploidization can arise through many mechanisms. This study aimed to identify gene rearrangements that could cause near-haploidization. We here present two UPS in which near-haploidization was an early event, identified through single nucleotide polymorphism (SNP) array analysis. One of the cases was studied further using whole genome and transcriptome sequencing, as well as cytogenetic and molecular cytogenetic methods. Both tumors had chromosomal rearrangements in the form of copy number shifts/structural variants affecting the SMC1A gene. These findings suggest that cohesin defects could contribute to mitotic errors resulting in massive loss of chromosomes. SMC1A encodes one of the components of the cohesin multiprotein complex, which is critical for proper alignment of the sister chromatids during S-phase and separation to opposite spindle poles. Further studies should explore the role of cohesin defects in near-haploidization in other sarcomas and to clarify its role in tumor development.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Sarcoma , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas de Ciclo Celular/genética , Sarcoma/genética , Sarcoma/patologia , Haploidia , Polimorfismo de Nucleotídeo Único , Masculino , Feminino , Coesinas , Adulto , Pessoa de Meia-Idade
12.
Genes Chromosomes Cancer ; 63(6): e23251, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38884198

RESUMO

Erythroid sarcoma (ES) is exceedingly rare in the pediatric population with only a handful of reports of de novo cases, mostly occurring in the central nervous system (CNS) or orbit. It is clinically and pathologically challenging and can masquerade as a nonhematopoietic small round blue cell tumor. Clinical presentation of ES without bone marrow involvement makes diagnosis particularly difficult. We describe a 22-month-old female with ES who presented with a 2-cm mass involving the left parotid region and CNS. The presence of crush/fixation artifact from the initial biopsy made definitive classification of this highly proliferative and malignant neoplasm challenging despite an extensive immunohistochemical workup. Molecular studies including RNA-sequencing revealed a NFIA::CBFA2T3 fusion. This fusion has been identified in several cases of de novo acute erythroid leukemia (AEL) and gene expression analysis comparing this case to other AELs revealed a similar transcriptional profile. Given the diagnostically challenging nature of this tumor, clinical RNA-sequencing was essential for establishing a diagnosis.


Assuntos
Fatores de Transcrição NFI , Proteínas de Fusão Oncogênica , Proteínas Repressoras , Sarcoma , Feminino , Humanos , Lactente , Fatores de Transcrição NFI/genética , Proteínas de Fusão Oncogênica/genética , Sarcoma/genética , Sarcoma/patologia , Sarcoma/diagnóstico
13.
Genes Chromosomes Cancer ; 63(1): e23196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702439

RESUMO

The classification of many soft tissue tumors remains subjective due their rarity, significant overlap in microscopic features and often a non-specific immunohistochemical (IHC) profile. The application of molecular genetic tools, which leverage the underlying molecular pathogenesis of these neoplasms, have considerably improved the diagnostic abilities of pathologists and refined classification based on objective molecular markers. In this study, we describe the results of an international collaboration conducted over a 3-year period, assessing the added diagnostic value of applying molecular genetics to sarcoma expert pathologic review in a selected series of 84 uncommon, mostly unclassifiable mesenchymal tumors, 74 of which originated in soft tissues and 10 in bone. The case mix (71% historical, 29% contemporary) included mostly unusual and challenging soft tissue tumors, which remained unclassified even with the benefit of expert review and routine ancillary methods, including broad IHC panels and a limited number of commercially available fluorescence in situ hybridization (FISH) probes. All cases were further tested by FISH using a wide range of custom bacterial artificial chromosome probes covering most of known fusions in sarcomas, whereas targeted RNA sequencing was performed in 13 cases negative by FISH, for potential discovery of novel fusion genes. Tumor-defining molecular alterations were found in 48/84 tumors (57%). In 27 (32%) cases the tumor diagnosis was refined or revised by the additional molecular work-up, including five cases (6%), in which the updated diagnosis had clinical implications. Sarcoma classification is rapidly evolving due to an increased molecular characterization of these neoplasms, so unsurprisingly 17% of the tumors in this series harbored abnormalities only very recently described as defining novel molecularly defined soft tissue tumor subsets.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Hibridização in Situ Fluorescente/métodos , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Biomarcadores Tumorais/genética , Análise de Sequência de RNA
14.
Genes Chromosomes Cancer ; 63(1): e23215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050902

RESUMO

Undifferentiated sarcomas characterized by a primitive monomorphic round to spindle cell phenotype and often non-specific immunoprofile remain difficult to subclassify outside molecular analysis. The increased application of RNA sequencing in clinical practice led to significant advances and discoveries of novel gene fusions that furthered our understanding and refined classification of otherwise undifferentiated neoplasms. In this study, we report an undifferentiated round to spindle cell sarcoma arising in the femur of a 34-year-old female. The round to spindle tumor cells were arranged in short fascicles, with focal rosette formation, within a hyalinized stroma. The tumor immunoprofile included diffuse reactivity for CD99, SATB2, and TLE1 and patchy positivity for Cyclin D1, Keratin AE1/AE3, synaptophysin, and chromogranin. Other markers, such as EMA, SMA, desmin, S100, ERG, and WT1, were negative. Fluorescence in situ hybridization analysis for EWSR1 gene alterations showed a break-apart signal and targeted RNA sequencing revealed an EWSR1::SSX3 gene fusion. The patient received neoadjuvant chemotherapy followed by surgery and subsequently relapsed in less than a year with lung metastasis. Larger series are needed to determine if this fusion defines a novel subset of undifferentiated tumors or represents a genomic variant of already existing primitive round cell sarcoma categories, such as Ewing sarcoma or synovial sarcoma.


Assuntos
Sarcoma de Ewing , Sarcoma , Neoplasias de Tecidos Moles , Feminino , Humanos , Adulto , Hibridização in Situ Fluorescente , Sarcoma/genética , Sarcoma/patologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Fatores de Transcrição/genética , Neoplasias de Tecidos Moles/genética , Fusão Gênica , Biomarcadores Tumorais/genética , Proteínas de Fusão Oncogênica/genética , Proteína EWS de Ligação a RNA/genética
15.
Genes Chromosomes Cancer ; 63(6): e23249, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38884173

RESUMO

The widespread use of advanced molecular techniques has led to the identification of several tumor types with PLAG1 gene fusions some of which also affect the skin and soft tissues. Herein, we present a 38-year-old female with a subcutaneous tumor affecting her forearm, which does not seem to fit into any currently recognized entity. It was a well-circumscribed tumor measuring 6 × 4,5 × 4 cm. It had a thick capsule composed of bland spindle cells forming palisades and Verocay body-like structures within a myxocollagenous background. Scattered calcifications were dispersed throughout the lesion. No cytological atypia, mitotic activity, or necrosis were present. Targeted NGS revealed a SOX10::PLAG1 fusion and fluorescent in situ hybridization confirmed the presence of PLAG1 gene rearrangement. The neoplastic cells showed a diffuse immunohistochemical expression of S100, SOX10, and PLAG1, as well as patchy desmin and CD34 positivity. The methylation profile of this tumor did not match any other entity covered by the DKFZ sarcoma classifier and apart from the gain of chromosome 12, the copy number profile was normal. The tumor was completely excised, and the patient has been free of disease for 4 years since the excision. While more cases are needed to confirm this tumor as a distinct entity, we propose a provisional name "SOX10::PLAG1-rearranged calcifying spindle cell tumor."


Assuntos
Proteínas de Ligação a DNA , Proteínas de Fusão Oncogênica , Fatores de Transcrição SOXE , Neoplasias de Tecidos Moles , Adulto , Feminino , Humanos , Calcinose/genética , Calcinose/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Sarcoma/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
16.
Am J Physiol Cell Physiol ; 327(1): C34-C47, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646787

RESUMO

The dystrophin gene (Dmd) is recognized for its significance in Duchenne muscular dystrophy (DMD), a lethal and progressive skeletal muscle disease. Some patients with DMD and model mice with muscular dystrophy (mdx) spontaneously develop various types of tumors, among which rhabdomyosarcoma (RMS) is the most prominent. By contrast, spindle cell sarcoma (SCS) has rarely been reported in patients or mdx mice. In this study, we aimed to use metabolomics to better understand the rarity of SCS development in mdx mice. Gas chromatography-mass spectrometry was used to compare the metabolic profiles of spontaneously developed SCS and RMS tumors from mdx mice, and metabolite supplementation assays and silencing experiments were used to assess the effects of metabolic differences in SCS tumor-derived cells. The levels of 75 metabolites exhibited differences between RMS and SCS, 25 of which were significantly altered. Further characterization revealed downregulation of nonessential amino acids, including alanine, in SCS tumors. Alanine supplementation enhanced the growth, epithelial mesenchymal transition, and invasion of SCS cells. Reduction of intracellular alanine via knockdown of the alanine transporter Slc1a5 reduced the growth of SCS cells. Lower metabolite secretion and reduced proliferation of SCS tumors may explain the lower detection rate of SCS in mdx mice. Targeting of alanine depletion pathways may have potential as a novel treatment strategy.NEW & NOTEWORTHY To the best of our knowledge, SCS has rarely been identified in patients with DMD or mdx mice. We observed that RMS and SCS tumors that spontaneously developed from mdx mice with the same Dmd genetic background exhibited differences in metabolic secretion. We proposed that, in addition to dystrophin deficiency, the levels of secreted metabolites may play a role in the determination of tumor-type development in a Dmd-deficient background.


Assuntos
Camundongos Endogâmicos mdx , Rabdomiossarcoma , Sarcoma , Animais , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Rabdomiossarcoma/genética , Camundongos , Sarcoma/metabolismo , Sarcoma/patologia , Sarcoma/genética , Metabolômica/métodos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proliferação de Células , Masculino , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Transição Epitelial-Mesenquimal , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética
17.
Lab Invest ; 104(8): 102093, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857782

RESUMO

Epithelioid sarcoma (ES) is a rare aggressive sarcoma that, unlike most soft-tissue sarcomas, shows a tendency toward local recurrence and lymph node metastasis. Novel antitumor agents are needed for ES patients. Forkhead box transcription factor 1 (FOXM1) is a member of the Forkhead transcription factor family and is associated with multiple oncogenic functions; FOXM1 is known to be overexpressed and correlated with pathogenesis in various malignancies. In this study, we immunohistochemically analyzed FOXM1 expression levels and their clinical, clinicopathologic, and prognostic significance in 38 ES specimens. In addition, to investigate potential correlations between FOXM1 downregulation and oncologic characteristics, we treated ES cell lines with thiostrepton, a naturally occurring antibiotic that inhibits both small interfering RNA (siRNA) and FOXM1. In the analyses using ES samples, all 38 specimens were diagnosed as positive for FOXM1 by immunohistochemistry. We separated specimens into high (n = 19) and low (n = 19) FOXM1-protein expression groups by staining index score, and into large (n = 12), small (n = 25), and unknown (n = 1) tumor-size groups using a cutoff of 5 cm maximum diameter. Although there were significantly more samples with high FOXM1 expression in the large tumor group (P = .013), there were no significant differences with respect to age (P = 1.00), sex (P = .51), primary site of origin (P = .74), histologic subtypes (P = 1.00), depth (P = .74), or survival rate (P = .288) between the high and low FOXM1-protein expression groups. In the in vitro experiments using ES cell lines, FOXM1 siRNA and thiostrepton successfully downregulated FOXM1 mRNA and protein expression. Furthermore, downregulation of FOXM1 inhibited cell proliferation, drug resistance against chemotherapeutic agents, migration, and invasion and caused cell cycle arrest in the ES cell lines. Finally, cDNA microarray analysis data showed that FOXM1 regulated cIAP2, which is one of the apoptosis inhibitors activated by the TNFα-mediated NF-κB pathway. In conclusion, the FOXM1 gene may be a promising therapeutic target for ES.


Assuntos
Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead , Sarcoma , Tioestreptona , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Sarcoma/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Tioestreptona/farmacologia , Feminino , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Idoso , RNA Interferente Pequeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Imuno-Histoquímica , Criança
18.
Mol Cancer ; 23(1): 172, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174949

RESUMO

Exosomes mediate cell-to-cell crosstalk involving a variety of biomolecules through an intricate signaling network. In recent years, the pivotal role of exosomes and their non-coding RNAs cargo in the development and progression of several cancer types clearly emerged. In particular, tumor bulk and its microenvironment co-evolve through cellular communications where these nanosized extracellular vesicles are among the most relevant actors. Knowledge about the cellular, and molecular mechanisms involved in these communications will pave the way for novel exosome-based delivery of therapeutic RNAs as well as innovative prognostic/diagnostic tools. Despite the valuable therapeutic potential and clinical relevance of exosomes, their role on sarcoma has been vaguely reported because the rarity and high heterogeneity of this type of cancer. Here, we dissected the scientific literature to unravel the multifaceted role of exosomal non-coding RNAs as mediator of cell-to-cell communications in the sarcoma subtypes.


Assuntos
Comunicação Celular , Exossomos , RNA não Traduzido , Sarcoma , Humanos , Exossomos/metabolismo , Exossomos/genética , Sarcoma/genética , Sarcoma/patologia , Sarcoma/terapia , Sarcoma/metabolismo , RNA não Traduzido/genética , Animais , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Biomarcadores Tumorais/genética , Pesquisa Translacional Biomédica
19.
Cancer Sci ; 115(2): 575-588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115234

RESUMO

Of the drugs used in second-line chemotherapy for soft tissue sarcoma (STS), trabectedin is effective for liposarcoma and leiomyosarcoma (L-sarcoma), eribulin for liposarcoma, and pazopanib for non-liposarcoma. The indications for these drugs in STS other than L-sarcoma have not been established. Here we explored the prognosis, mutation profiles, and drug-response factors in STS using real-world big data. Clinicogenomic data on 1761 patients with sarcoma who underwent FoundationOne CDx were obtained from a national database in Japan. Patients with TP53 and KDM2D mutations had a significantly shorter survival period of 253 (95% CI, 99-404) and 330 (95% CI, 20-552) days, respectively, than those without mutations. Non-supervised clustering based on mutation profiles generated 13 tumor clusters. The response rate (RR) to trabectedin was highest in an MDM2-amplification cluster (odds ratio [OR]: 2.2; p = 0.2). The RR was lowest for eribulin in an MDM2-amplification cluster (OR: 0.4; p = 0.03) and highest in a TERT-mutation cluster (OR: 3.0; p = 0.03). The RR was highest for pazopanib in a PIK3CA/PTEN-wild type cluster (OR: 2.1; p = 0.03). In particular, patients harboring mutations in genes regulating the PI3K/Akt/mTOR pathway had a lower RR than patients without mutations (OR: 0.3; p = 0.04). In STS, mutation profiles were more useful in predicting the drug response than histology. The present study demonstrated the potential of tailored therapy guided by mutation profiles established by comprehensive genomic profiling testing in optimizing second-line chemotherapy for STS. The findings of this study will hopefully contribute some valuable insights into enhancing STS treatment strategies and outcomes.


Assuntos
Furanos , Indazóis , Cetonas , Lipossarcoma , Policetídeos de Poliéter , Pirimidinas , Sarcoma , Sulfonamidas , Humanos , Trabectedina/uso terapêutico , Fosfatidilinositol 3-Quinases , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Genômica
20.
Br J Cancer ; 131(5): 860-869, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997407

RESUMO

BACKGROUND: Sarcomas are diverse neoplasms with highly variable histological appearances in which diagnosis is often challenging and management options for metastatic/unresectable disease limited. Many sarcomas have distinctive molecular alterations, but the range of alterations is large, variable in type and rapidly increasing, meaning that testing by limited panels is unable to capture the broad spectrum of clinically pertinent genomic drivers required. Paired whole genome sequencing (WGS) in contrast allows comprehensive assessment of small variants, copy number and structural variants along with mutational signature analysis and germline testing. METHODS: Introduction of WGS as a diagnostic standard for all eligible patients with known or suspected soft tissue sarcoma over a 2-year period at a soft tissue sarcoma treatment centre. RESULTS: WGS resulted in a refinement in the diagnosis in 37% of cases, identification of a target for personalised therapy in 33% of cases, and a germline alteration in 4% of cases. CONCLUSION: Introduction of WGS poses logistical and training challenges, but offers significant benefits to this group of patients.


Assuntos
Sarcoma , Sequenciamento Completo do Genoma , Humanos , Sarcoma/genética , Sarcoma/terapia , Sarcoma/diagnóstico , Sarcoma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Adulto Jovem , Adolescente , Mutação em Linhagem Germinativa , Idoso de 80 Anos ou mais , Variações do Número de Cópias de DNA , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA