Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569936

RESUMO

Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP , Modelos Moleculares , Proteínas de Plantas , Proteínas RGS , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Oryza/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Proteínas RGS/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Relação Estrutura-Atividade , Selaginellaceae/genética , Selaginellaceae/metabolismo , Estrutura Quaternária de Proteína
2.
Plant Cell ; 33(6): 1945-1960, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33751121

RESUMO

Angiosperms have evolved the phloem for the long-distance transport of metabolites. The complex process of phloem development involves genes that only occur in vascular plant lineages. For example, in Arabidopsis thaliana, the BREVIS RADIX (BRX) gene is required for continuous root protophloem differentiation, together with PROTEIN KINASE ASSOCIATED WITH BRX (PAX). BRX and its BRX-LIKE (BRXL) homologs are composed of four highly conserved domains including the signature tandem BRX domains that are separated by variable spacers. Nevertheless, BRX family proteins have functionally diverged. For instance, BRXL2 can only partially replace BRX in the root protophloem. This divergence is reflected in physiologically relevant differences in protein behavior, such as auxin-induced plasma membrane dissociation of BRX, which is not observed for BRXL2. Here we dissected the differential functions of BRX family proteins using a set of amino acid substitutions and domain swaps. Our data suggest that the plasma membrane-associated tandem BRX domains are both necessary and sufficient to convey the biological outputs of BRX function and therefore constitute an important regulatory entity. Moreover, PAX target phosphosites in the linker between the two BRX domains mediate the auxin-induced plasma membrane dissociation. Engineering these sites into BRXL2 renders this modified protein auxin-responsive and thereby increases its biological activity in the root protophloem context.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oócitos/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selaginellaceae/química , Xenopus laevis
3.
Ecotoxicol Environ Saf ; 277: 116375, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677071

RESUMO

Eco-friendly reagents derived from plants represent a promising strategy to mitigate the occurrence of toxic cyanobacterial blooms. The use of an amentoflavone-containing Selaginella tamariscina extract (STE) markedly decreased the number of Microcystis aeruginosa cells, thus demonstrating significant anti-cyanobacterial activity. In particular, the Microcystis-killing fraction obtained from pulverized S. tamariscina using hot-water-based extraction at temperatures of 40 °C induced cell disruption in both axenic and xenic M. aeruginosa. Liquid chromatographic analysis was also conducted to measure the concentration of amentoflavone in the STE, thus supporting the potential M. aeruginosa-specific killing effects of STE. Bacterial community analysis revealed that STE treatment led to a reduction in the relative abundance of Microcystis species while also increasing the 16S rRNA gene copy number in both xenic M. aeruginosa NIBR18 and cyanobacterial bloom samples isolated from a freshwater environment. Subsequent testing on bacteria, cyanobacteria, and algae isolated from freshwater revealed that STE was not toxic for other taxa. Furthermore, ecotoxicology assessment involving Aliivibrio fischeri, Daphnia magna, and Danio rerio found that high STE doses immobilized D. magna but did not impact the other organisms, while there was no change in the water quality. Overall, due to its effective Microcystis-killing capability and low ecotoxicity, aqueous STE represents a promising practical alternative for the management of Microcystis blooms.


Assuntos
Microcystis , Extratos Vegetais , Selaginellaceae , Microcystis/efeitos dos fármacos , Selaginellaceae/química , Animais , Extratos Vegetais/farmacologia , Daphnia/efeitos dos fármacos , Proliferação Nociva de Algas , RNA Ribossômico 16S , Água Doce/microbiologia
4.
Plant J ; 111(3): 768-784, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35648423

RESUMO

Two factors are proposed to account for the unusual features of organellar genomes: the disruptions of organelle-targeted DNA replication, repair, and recombination (DNA-RRR) systems in the nuclear genome and repetitive elements in organellar genomes. Little is known about how these factors affect organellar genome evolution. The deep-branching vascular plant family Selaginellaceae is known to have a deficient DNA-RRR system and convergently evolved organellar genomes. However, we found that the plastid genome (plastome) of Selaginella sinensis has extremely accelerated substitution rates, a low GC content, pervasive repeat elements, a dynamic network structure, and it lacks direct or inverted repeats. Unexpectedly, its organelle DNA-RRR system is short of a plastid-targeted Recombinase A1 (RecA1) and a mitochondrion-targeted RecA3, in line with other explored Selaginella species. The plastome contains a large collection of short- and medium-sized repeats. Given the absence of RecA1 surveillance, we propose that these repeats trigger illegitimate recombination, accelerated mutation rates, and structural instability. The correlations between repeat quantity and architectural complexity in the Selaginella plastomes support these conclusions. We, therefore, hypothesize that the interplay of the deficient DNA-RRR system and the high repeat content has led to the extraordinary divergence of the S. sinensis plastome. Our study not only sheds new light on the mechanism of plastome divergence by emphasizing the power of cytonuclear integration, but it also reconciles the longstanding contradiction on the effects of DNA-RRR system disruption on genome structure evolution.


Assuntos
Genomas de Plastídeos , Selaginellaceae , DNA , Evolução Molecular , Genomas de Plastídeos/genética , Filogenia , Selaginellaceae/genética
5.
Expert Rev Mol Med ; 25: e27, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534437

RESUMO

BACKGROUND: Metallic nanoparticles from different natural sources exhibit superior therapeutic options as compared to the conventional methods. Selaginella species have attracted special attention of researchers worldwide due to the presence of bioactive molecules such as flavonoids, biflavonoids, triterpenes, steroids, saponins, tannins and other secondary metabolites that exhibit antimicrobial, antiplasmodial, anticancer and anti-inflammatory activities. Environment friendly green synthesised silver nanoparticles from Selaginella species provide viable, safe and efficient treatment against different fungal pathogens. OBJECTIVE: This systematic review aims to summarise the literature pertaining to superior antifungal ability of green synthesised silver nanoparticles using plant extracts of Selaginella spp. in comparison to both aqueous and ethanolic raw plant extracts by electronically collecting articles from databases. METHODS: The recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis were taken into consideration while preparing this review. The titles and abstracts of the collected data were stored in Endnote20 based on the inclusion and exclusion criteria. The search strategy included literature from established sources like PubMed, Google Scholar and Retrieval System Online using subject descriptors. RESULTS: The search yielded 60 articles with unique hits. After removal of duplications, 46 articles were identified, 40 were assessed and only seven articles were chosen and included in this review based on our eligibility criteria. CONCLUSION: The physicochemical and preliminary phytochemical investigations of Selaginella suggest higher drug potency of nanoparticles synthesised from plant extract against different diseases as compared to aqueous and ethanolic plant extracts. The study holds great promise as the synthesis of nanoparticles involves low energy consumption, minimal technology and least toxic effects.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Selaginellaceae , Humanos , Nanopartículas Metálicas/química , Selaginellaceae/química , Prata/farmacologia , Prata/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Plant Physiol ; 190(4): 2398-2416, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36029252

RESUMO

The roots of lycophytes branch through dichotomy or bifurcation, during which the root apex splits into two daughter roots. This is morphologically distinct from lateral root (LR) branching in the extant euphyllophytes, with LRs developing along the root axis at different distances from the apex. Although the process of root bifurcation is poorly understood, such knowledge can be important, because it may represent an evolutionarily ancient strategy that roots recruited to form new stem cells or meristems. In this study, we examined root bifurcation in the lycophyte Selaginella moellendorffii. We characterized an in vitro developmental time frame based on repetitive apex bifurcations, allowing us to sample different stages of dichotomous root branching and analyze the root meristem and root branching in S. moellendorffii at the microscopic and transcriptomic level. Our results showed that, in contrast to previous assumptions, initial cells (ICs) in the root meristem are mostly not tetrahedral but rather show an irregular shape. Tracking down the early stages of root branching argues for the occurrence of a symmetric division of the single IC, resulting in two apical stem cells that initiate root meristem bifurcation. Moreover, we generated a S. moellendorffii root branching transcriptome that resulted in the delineation of a subset of core meristem genes. The occurrence of multiple putative orthologs of meristem genes in this dataset suggests the presence of conserved pathways in the control of meristem and root stem cell establishment or maintenance.


Assuntos
Selaginellaceae , Selaginellaceae/genética , Meristema/metabolismo , Transcriptoma/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Mol Phylogenet Evol ; 179: 107673, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528332

RESUMO

Spikemoss (Selaginellaceae) is one of the basal lineages of vascular plants. This family has a single genus Selaginella which consists of about 750 extant species. The phylogeny of Selaginellaceae has been extensively studied mainly based on plastid DNA and a few nuclear sequences. However, the placement of the enigmatic sinensis group is a long-term controversy because of the long branch in the plastid DNA phylogeny. The sanguinolenta group is also a phylogenetically problematic clade owing to two alternative positions resulted from different datasets. Here, we newly sequenced 34 mitochondrial genomes (mitogenomes) of individuals representing all seven subgenera and major clades in Selaginellaceae. We assembled the draft mitogenomes and annotated the genes and performed phylogenetic analyses based on the shared 17 mitochondrial genes. Our major results include: (1) all the assembled mitogenomes have complicated structures, unparalleled high GC content and a small gene content set, and the positive correlations among GC content, substitution rates and the number of RNA editing sites hold; (2) the sinensis group was well supported as a member of subg. Stachygynandrum; (3) the sanguinolenta group was strongly resolved as sister to all other Selaginella species except for subg. Selaginella. This study demonstrates the potential of mitogenome data in providing novel insights into phylogenetically recalcitrant problems.


Assuntos
Genoma Mitocondrial , Selaginellaceae , Humanos , Filogenia , Selaginellaceae/genética , Sequência de Bases , Plastídeos/genética
8.
J Exp Bot ; 74(3): 889-908, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36433902

RESUMO

Methyl jasmonate (MeJA) induces various defence responses in seed plants, but for early plant lineages, information on the potential of jasmonates to elicit stress signalling and trigger physiological modifications is limited. The spikemoss Selaginella martensii was exposed to a range of MeJA concentrations (0, 10, 25, and 50 mM), and biogenic volatile organic compound (BVOC) emissions, photosynthetic rate (A), and stomatal conductance (gs) were continuously measured. In addition, changes in phytohormone concentrations and gene expression were studied. Enhancement of methanol, lipoxygenase pathway volatiles and linalool emissions, and reductions in A and gs, were MeJA dose-dependent. Before MeJA treatment, the concentration of 12-oxo-phytodienoic acid (OPDA) was 7-fold higher than jasmonic acid (JA). MeJA treatment rapidly increased OPDA and JA concentrations (within 30 min), with the latter more responsive. Some genes involved in BVOC biosynthesis and OPDA-specific response were up-regulated at 30 min after MeJA spraying, whereas those in the JA signalling pathway were not affected. Although JA was synthesized in S. martensii, OPDA was prioritized as a signalling molecule upon MeJA application. MeJA inhibited primary and enhanced secondary metabolism; we propose that fast-emitted linalool could serve as a marker of elicitation of stress-induced metabolism in lycophytes.


Assuntos
Reguladores de Crescimento de Plantas , Selaginellaceae , Reguladores de Crescimento de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
9.
Plant Cell ; 32(4): 853-870, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988262

RESUMO

Selaginella moellendorffii is a representative of the lycophyte lineage that is studied to understand the evolution of land plant traits such as the vasculature, leaves, stems, roots, and secondary metabolism. However, only a few studies have investigated the expression and transcriptional coordination of Selaginella genes, precluding us from understanding the evolution of the transcriptional programs behind these traits. We present a gene expression atlas comprising all major organs, tissue types, and the diurnal gene expression profiles for S. moellendorffii We show that the transcriptional gene module responsible for the biosynthesis of lignocellulose evolved in the ancestor of vascular plants and pinpoint the duplication and subfunctionalization events that generated multiple gene modules involved in the biosynthesis of various cell wall types. We demonstrate how secondary metabolism is transcriptionally coordinated and integrated with other cellular pathways. Finally, we identify root-specific genes and show that the evolution of roots did not coincide with an increased appearance of gene families, suggesting that the development of new organs does not coincide with increased fixation of new gene functions. Our updated database at conekt.plant.tools represents a valuable resource for studying the evolution of genes, gene families, transcriptomes, and functional gene modules in the Archaeplastida kingdom.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Feixe Vascular de Plantas/genética , Metabolismo Secundário/genética , Selaginellaceae/genética , Vias Biossintéticas , Parede Celular/metabolismo , Celulose/biossíntese , Duplicação Gênica , Redes Reguladoras de Genes , Lignina/biossíntese , Especificidade de Órgãos , Filogenia , Transcriptoma/genética
10.
Biomed Chromatogr ; 37(5): e5611, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840461

RESUMO

Biflavonoids are naturally occurring compounds consisting of two flavonoid moieties that have received substantial attention from researchers. Although many kinds of biflavonoids are typically distributed in Selaginella uncinata with hypoglycemic effect, their anti-α-glucosidase activities are not yet clear. In this study, a ligand fishing strategy for fast screening of α-glucosidase inhibitors from S. uncinata was proposed. α-Glucosidase was first immobilized on Fe3 O4 magnetic nanoparticles (MNPs) and then the α-glucosidase-functionalized MNPs were incubated with crude extracts of S. uncinata to fish out the ligands. Furthermore, considering the similarity and easy confusion of the structures of biflavonoids, the fragmentation patterns of different types of biflavonoids were studied. Based on this, 11 biflavonoids ligands with α-glucosidase inhibitory activities were accurately and quickly identified from S. uncinata with ultra-high-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry. Furthermore, these ligands were confirmed to be potential inhibitors through the in vitro inhibitory assay and molecular docking.


Assuntos
Biflavonoides , Selaginellaceae , Animais , alfa-Glucosidases , Biflavonoides/farmacologia , Biflavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Ligantes , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Selaginellaceae/química , Espectrometria de Massas em Tandem/métodos
11.
Chem Biodivers ; 20(4): e202300109, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36786210

RESUMO

Three new selaginellin derivatives, selaginpulvilins V-X (1-3), together with seven known analogs (4-10) were isolated from whole plants of Selaginella pulvinata. Their structures were determined by extensive spectroscopic methods including 1D and 2D NMR, HR-ESI-MS and chemical derivatization method. Compound 1 represents a rare example of naturally occurring selaginellin with an alkynylphenol-trimmed skeleton. Biological evaluation showed that compounds 2, 6 and 8 displayed moderate inhibition against α-glucosidase with IC50 values of 3.71, 2.04 and 4.00 µM, respectively.


Assuntos
Selaginellaceae , Estrutura Molecular , Selaginellaceae/química , alfa-Glucosidases , Espectroscopia de Ressonância Magnética
12.
Drug Chem Toxicol ; 46(4): 625-633, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35635134

RESUMO

AIM: The aim of the study was to assess the toxicity profile of Selaginella bryopteris extract and evaluate its wound healing activity. METHODS: In vitro wound healing activity of S. bryopteris extract (5% and 10%) was performed using Clonogenic and Scratch assays. The toxicity profile of S. bryopteris extract ointment was evaluated on animals using acute toxicity and dermal toxicity tests. In vivo wound healing activity of S. bryopteris extract ointment (5% and 10%) was used to determine tensile strength in the incision wound healing model. RESULTS: Results exhibited that the extract was safe up to 2000 mg/kg per oral dose and non-reactive while applied topically. In vitro results showed that S. bryopteris extract closed the wound gap created by 97.13% in 48 h. The clonogenic assay revealed that the surviving factor for HaCaT cells and MEF cells was 0.78 and 0.85 after treated with 10% concentrations of S. bryopteris. The tensile strength exhibited by S. bryopteris 5% and 10% groups was 395.4 g and 558.5 g in comparison to the control group. CONCLUSION: Thus, S. bryopteris extract can be used as an alternative safe drug therapy against topical wounds.


Assuntos
Selaginellaceae , Ratos , Animais , Ratos Wistar , Extratos Vegetais/toxicidade , Pomadas , Cicatrização
13.
Chem Biodivers ; 20(7): e202300387, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37336788

RESUMO

Three new compounds (1-2, 14), as well as 22 known compounds (3-13, 15-25), were extracted for the first time from the Selaginella effusa Alston (S. effusa). For the unknown compounds, the planar configurations were determined via NMR and by high-resolution mass spectrometry, while their absolute configurations were determined by calculated electronic circular dichroism (ECD), and the configuration of the stereogenic center of biflavones 4-5 were established for the first time. The pure compounds (1-25) were tested in vitro to determine the inhibitory activity of the enzyme-catalyzed reactions. Compounds 1-9 inhibited α-glucosidase with IC50 values ranging from 0.30±0.02 to 4.65±0.04 µM and kinetic analysis of enzyme inhibition indicated that biflavones 1-3 were mixed-type α-glucosidase inhibitors. Compounds 12-13 showed excellent inhibitory activity against urease, with compound 12 (IC50 =4.38±0.31 µM) showing better inhibitory activity than the positive control drug AHA (IC50 13.52±0.61 µM). In addition, molecular docking techniques were used to simulate inhibitor-enzyme binding and to estimate the binding posture of the α-glucosidase and urease catalytic sites.


Assuntos
Selaginellaceae , alfa-Glucosidases , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Selaginellaceae/metabolismo , Urease/metabolismo , Cinética , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Estrutura Molecular
14.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175435

RESUMO

Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.


Assuntos
Antineoplásicos , Biflavonoides , Selaginellaceae , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Biflavonoides/química , Extratos Vegetais/farmacologia , Selaginellaceae/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Disponibilidade Biológica
15.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375139

RESUMO

Six compounds including three new benzophenones, selagibenzophenones D-F (1-3), two known selaginellins (4-5) and one known flavonoid (6), were isolated from Selaginella tamariscina. The structures of new compounds were established by 1D-, 2D-NMR and HR-ESI-MS spectral analyses. Compound 1 represents the second example of diarylbenzophenone from natural sources. Compound 2 possesses an unusual biphenyl-bisbenzophenone structure. Their cytotoxicity against human hepatocellular carcinoma HepG2 and SMCC-7721 cells and inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells were evaluated. Compound 2 showed moderate inhibitory activity against HepG2 and SMCC-7721 cells, and compounds 4 and 5 showed moderate inhibitory activity to HepG2 cells. Compounds 2 and 5 also exhibited inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production.


Assuntos
Selaginellaceae , Humanos , Estrutura Molecular , Selaginellaceae/química , Óxido Nítrico , Lipopolissacarídeos/farmacologia , Benzofenonas/farmacologia
16.
Plant Physiol ; 186(1): 782-797, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33620497

RESUMO

Abscisic acid (ABA) can induce rapid stomatal closure in seed plants, but the action of this hormone on the stomata of fern and lycophyte species remains equivocal. Here, ABA-induced stomatal closure, signaling components, guard cell K+ and Ca2+ fluxes, vacuolar and actin cytoskeleton dynamics, and the permeability coefficient of guard cell protoplasts (Pf) were analyzed in species spanning the diversity of vascular land plants including 11 seed plants, 6 ferns, and 1 lycophyte. We found that all 11 seed plants exhibited ABA-induced stomatal closure, but the fern and lycophyte species did not. ABA-induced hydrogen peroxide elevation was observed in all species, but the signaling pathway downstream of nitric oxide production, including ion channel activation, was only observed in seed plants. In the angiosperm faba bean (Vicia faba), ABA application caused large vacuolar compartments to disaggregate, actin filaments to disintegrate into short fragments and Pf to increase. None of these changes was observed in the guard cells of the fern Matteuccia struthiopteris and lycophyte Selaginella moellendorffii treated with ABA, but a hypertonic osmotic solution did induce stomatal closure in fern and the lycophyte. Our results suggest that there is a major difference in the regulation of stomata between the fern and lycophyte plants and the seed plants. Importantly, these findings have uncovered the physiological and biophysical mechanisms that may have been responsible for the evolution of a stomatal response to ABA in the earliest seed plants.


Assuntos
Ácido Abscísico/metabolismo , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Transdução de Sinais , Gleiquênias/anatomia & histologia , Gleiquênias/fisiologia , Selaginellaceae/anatomia & histologia , Selaginellaceae/fisiologia , Vicia faba/anatomia & histologia , Vicia faba/fisiologia
17.
Mol Phylogenet Evol ; 173: 107507, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35589053

RESUMO

Different from the generally conserved plastomes (plastid genomes) of most land plants, the Selaginellaceae plastomes exhibit dynamic structure, high GC content and high substitution rates. Previous plastome analyses identified strong conflict on several clades in Selaginella, however the factors causing the conflictions and the impact on the phylogenetic inference have not been sufficiently investigated. Here, we dissect the distribution of phylogenetic signals and conflicts in Selaginella sanguinolenta group, the plastome of which is DR (direct repeats) structure and with genome-wide RNA editing. We analyzed the data sets including 22 plastomes representing all species of the S. sanguinolenta group, covering the entire geographical distribution from the Himalayas to Siberia and the Russian Far East regions. We recovered four different topologies by applying multispecies coalescent (ASTRAL) and concatenation methods (IQ-TREE and RAxML) on four data sets of PC (protein-coding genes), NC (non-coding sequences), PCN (the concatenated PC and NC), and RC (predicted RNA editing sites "C" were corrected by "T"), respectively. Six monophyletic clades, S. nummularifolia clade, S. rossii clade, S. sajanensis clade, S. sanguinolenta I clade, S. sanguinolenta II clade, and S. sanguinolenta III clade, were consistently resolved and supported by the characteristics of GC content, RNA editing frequency, and gene content. However, the relationships among these clades varied across the four topologies. To explore the underlying causes of the uncertainty, we compared the phylogenetic signals of the four topologies. We identified that the sequence types (coding versus non-coding), outlier genes (genes with extremely high |ΔGLS| values), and C-to-U RNA editing frequency in the protein-coding genes were responsible for the unstable phylogenomic relationship. We further revealed a significant positive correlation between the |ΔGLS| values and the variation coefficient of the RNA editing number. Our results demonstrated that the coalescent method performed better than the concatenation method in overcoming the problems caused by outlier genes and extreme RNA editing events. Our study particularly focused on the importance of exploring the plastid phylogenomic conflicts and suggested conducting concatenated analyses cautiously when adopting organelle genome data.


Assuntos
Genomas de Plastídeos , Selaginellaceae , Evolução Molecular , Filogenia , Plastídeos/genética , Edição de RNA , Selaginellaceae/genética
18.
Mol Phylogenet Evol ; 169: 107410, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031459

RESUMO

As one of the earliest land plant lineages, Selaginella is important for studying land plant evolution. It is the largest genus of lycophytes containing 700-800 species. Some unique characters of Selaginella plastomes have been reported, but based only on 20 species. There have been no plastome phylogenies of Selaginella based on a relatively large sampling, and no efforts have been made to resolve the phylogeny of the enigmatic Sinensis group whose relationships have been unclear based on small datasets. Here we investigated the structures of 59 plastomes representing 51 species covering all six subgenera and 18 sections of Selaginella except two sections and including the intriguing Sinensis group for the first time. Our major results include: (1) the plastome size of Selaginella ranges tremendously from 78,492 bp to 187,632 bp; (2) there are numerous gene losses in Selaginella comparing with other lycophytes, Isoëtaceae and Lycopodiaceae; (3) the gene contents and plastome structures in Selaginella vary lineage-specifically and all infrageneric taxa are well supported in the plastome phylogeny; (4) the ndh gene family tends to lose or pseudogenize in those species with DR structure and without other short or medium repeats; (5) the short and medium repeat regions in SC mediate many conformations causing diverse and complex plastome structures, and six new conformations are discovered; (6) forty-eight species sampled have high GC content (>50%) but three species in the Sinensis group have âˆ¼ 30% GC content in plastomes, similar to most vascular plants; (7) the Sinensis group is monophyletic, includes at least two subgroups, and has the smallest plastomes in land plants except some parasitic plants, and their plastomes do not contain any tRNAs; (8) the younger lineages in Selaginella tend to have higher GC content, whereas the older lineages tend to have lower GC content; and (9) because of incomplete genomic data and abnormal structures or some unknown reasons, even the concatenated plastomes could not well resolve the phylogenetic relationships in Selaginella with confidence, highlighting the difficulty in resolving the phylogeny and evolution of this particularly important land plant lineage.


Assuntos
Genomas de Plastídeos , Selaginellaceae , Composição de Bases , Evolução Molecular , Filogenia , Selaginellaceae/genética
19.
J Exp Bot ; 73(12): 3898-3912, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35312760

RESUMO

While most plants die below a threshold of water content, desiccation-tolerant species display specific responses that allow them to survive extreme dehydration. Some of these responses are activated at critical stages during water loss and could represent the difference between desiccation tolerance (DT) and death. Here, we report the development of a simple and reproducible system to determine DT in Selaginella species. The system is based on exposure of excised tissue to a dehydration agent inside small containers, and subsequent evaluation for tissue viability. We evaluated several methodologies to determine viability upon desiccation including: triphenyltetrazolium chloride (TTC) staining, the quantum efficiency of PSII, antioxidant potential, and relative electrolyte leakage. Our results show that the TTC test is a simple and accurate assay to identify novel desiccation-tolerant Selaginella species, and can also indicate viability in other desiccation-tolerant models (i.e. ferns and mosses). The system we developed is particularly useful to identify critical points during the dehydration process. We found that a desiccation-sensitive Selaginella species shows a change in viability when dehydrated to 40% relative water content, indicating the onset of a critical condition at this water content. Comparative studies at critical stages could provide a better understanding of DT mechanisms and unravel insights into the key responses to survive desiccation.


Assuntos
Gleiquênias , Selaginellaceae , Biomarcadores , Desidratação , Dessecação , Água/fisiologia
20.
Metabolomics ; 19(1): 2, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542160

RESUMO

INTRODUCTION: Selaginellins are specialized metabolites and chemotaxonomic markers for Selaginella species. Despite the growing interest in these compounds as a result of their bioactivities, they are accumulated at low levels in the plant. Hence, their isolation and chemical characterization are often difficult, time consuming, and limiting for biological tests. Elicitation with the phytohormone methyl jasmonate (MeJA) could be a strategy to increase the content of selaginellins addressing their low availability problem, that also impairs pharmacological investigations. MATHERIALS AND METHODS: In this study, we examined MeJA elicitation in Selaginella convoluta plants, a medicinal plant found in northeastern Brazil, by treating them with two different concentrations (MeJA: 50 and 100 µM), followed by chemical profiling after 12, 24 and 48 h after application. Samples were harvested and analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RESULTS AND DISCUSSCION: MeJA treatment significantly impacted the chemical phenotype. Regarding shoots differences in the time-dependent increased accumulation of all metabolites when plants were subjected to 100 µM MeJA were observed while in roots, most metabolites had their concentrations decreased in a time-dependent fashion at the same conditions. Results support organ, MeJA concentration and time post-treatment dependence of specialized metabolite accumulation, mainly the flavonoids and selaginellins. The amount of Selaginellin G in shoots of MeJA-treated specimens increased in 5.63-fold relative to control. The molecular networking approach allowed for the putative annotation of 64 metabolites, among them, the MeJA treatment followed by targeted metabolome analysis also allowed to annotate seven unprecedented selaginellins. Additionally, the in silico bioactive potential of the annotated selaginellins highlighted targets related to neurodegenerative disorders, antiproliferative, and antiparasitic issues. Taken together, data point out MeJA exposure as a strategy to induce potentially bioactive selaginellins accumulation in S. convoluta, this approach could enable a deep investigation about the metabolic function of these metabolites in the genus as well as regarding pharmacological exploration of the undervalued potential.


Assuntos
Selaginellaceae , Selaginellaceae/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA