Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1067-C1079, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314724

RESUMO

Previous work showed that matrix metalloproteinase-7 (MMP-7) regulates colon cancer activities through an interaction with syndecan-2 (SDC-2) and SDC-2-derived peptide that disrupts this interaction and exhibits anticancer activity in colon cancer. Here, to identify potential anticancer agents, a library of 1,379 Food and Drug Administration (FDA)-approved drugs that interact with the MMP-7 prodomain were virtually screened by protein-ligand docking score analysis using the GalaxyDock3 program. Among five candidates selected based on their structures and total energy values for interacting with the MMP-7 prodomain, the known mechanistic target of rapamycin kinase (mTOR) inhibitor, everolimus, showed the highest binding affinity and the strongest ability to disrupt the interaction of the MMP-7 prodomain with the SDC-2 extracellular domain in vitro. Everolimus treatment of the HCT116 human colon cancer cell line did not affect the mRNA expression levels of MMP-7 and SDC-2 but reduced the adhesion of cells to MMP-7 prodomain-coated plates and the cell-surface localization of MMP-7. Thus, everolimus appears to inhibit the interaction between MMP-7 and SDC-2. Everolimus treatment of HCT116 cells also reduced their gelatin-degradation activity and anticancer activities, including colony formation. Interestingly, cells treated with sirolimus, another mTOR inhibitor, triggered less gelatin-degradation activity, suggesting that this inhibitory effect of everolimus was not due to inhibition of the mTOR pathway. Consistently, everolimus inhibited the colony-forming ability of mTOR-resistant HT29 cells. Together, these data suggest that, in addition to inhibiting mTOR signaling, everolimus exerts anticancer activity by interfering with the interaction of MMP-7 and SDC-2, and could be a useful therapeutic anticancer drug for colon cancer.NEW & NOTEWORTHY The utility of cancer therapeutics targeting the proteolytic activities of MMPs is limited because MMPs are widely distributed throughout the body and involved in many different aspects of cell functions. This work specifically targets the activation of MMP-7 through its interaction with syndecan-2. Notably, everolimus, a known mTOR inhibitor, blocked this interaction, demonstrating a novel role for everolimus in inhibiting mTOR signaling and impairing the interaction of MMP-7 with syndecan-2 in colon cancer.


Assuntos
Neoplasias do Colo , Everolimo , Humanos , Everolimo/farmacologia , Sindecana-2/genética , Sindecana-2/metabolismo , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Gelatina , Sirolimo/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Serina-Treonina Quinases TOR
2.
Immunol Cell Biol ; 102(2): 97-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982607

RESUMO

Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.


Assuntos
Glicocálix , Sindecana-1 , Sindecana-1/metabolismo , Glicocálix/metabolismo , Sindecana-3/metabolismo , Sindecana-4/metabolismo , Sindecana-2/metabolismo , Biglicano/metabolismo , Glipicanas/metabolismo , Decorina/metabolismo , Quimiocinas/metabolismo , Anti-Inflamatórios/metabolismo
3.
Blood ; 139(2): 188-204, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34767029

RESUMO

The discovery of novel hematopoietic stem cell (HSC) surface markers can enhance understanding of HSC identity and function. We have discovered a population of primitive bone marrow (BM) HSCs distinguished by their expression of the heparan sulfate proteoglycan Syndecan-2, which serves as both a marker and a regulator of HSC function. Syndecan-2 expression was increased 10-fold in CD150+CD48-CD34-c-Kit+Sca-1+Lineage- cells (long-term HSCs [LT-HSCs]) compared with differentiated hematopoietic cells. Isolation of BM cells based solely on syndecan-2 surface expression produced a 24-fold enrichment for LT-HSCs and sixfold enrichment for α-catulin+c-kit+ HSCs, and yielded HSCs with superior in vivo repopulating capacity compared with CD150+ cells. Competitive repopulation assays revealed the HSC frequency to be 17-fold higher in syndecan-2+CD34-KSL cells compared with syndecan-2-CD34-KSL cells and indistinguishable from CD150+CD34-KSL cells. Syndecan-2 expression also identified nearly all repopulating HSCs within the CD150+CD34-KSL population. Mechanistically, syndecan-2 regulates HSC repopulating capacity through control of expression of Cdkn1c (p57) and HSC quiescence. Loss of syndecan-2 expression caused increased HSC cell cycle entry, downregulation of Cdkn1c, and loss of HSC long-term repopulating capacity. Syndecan-2 is a novel marker of HSCs that regulates HSC repopulating capacity via control of HSC quiescence.


Assuntos
Células-Tronco Hematopoéticas/citologia , Sindecana-2/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Sindecana-2/genética
4.
Biol Res ; 57(1): 66, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285301

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) are essential for the maintenance and initiation of male spermatogenesis. Despite the advances in understanding SSC biology in mouse models, the mechanisms underlying human SSC development remain elusive. RESULTS: Here, we analyzed the signaling pathways involved in SSC regulation by testicular somatic cells using single-cell sequencing data (GEO datasets: GSE149512 and GSE112013) and identified that Leydig cells communicate with SSCs through pleiotrophin (PTN) and its receptor syndecan-2 (SDC2). Immunofluorescence, STRING prediction, and protein immunoprecipitation assays confirmed the interaction between PTN and SDC2 in spermatogonia, but their co-localization was observed only in approximately 50% of the cells. The knockdown of SDC2 in human SSC lines impaired cell proliferation, DNA synthesis, and the expression of PLZF, a key marker for SSC self-renewal. Transcriptome analysis revealed that SDC2 knockdown downregulated the expression of GFRA1, a crucial factor for SSC proliferation and self-renewal, and inhibited the HIF-1 signaling pathway. Exogenous PTN rescued the proliferation and GFRA1 expression in SDC2 knockdown SSC lines. In addition, we found downregulation of PTN and SDC2 as well as altered localization in non-obstructive azoospermia (NOA) patients, suggesting that downregulation of PTN and SDC2 may be associated with impaired spermatogenesis. CONCLUSIONS: Our results uncover a novel mechanism of human SSC regulation by the testicular microenvironment and suggest a potential therapeutic target for male infertility.


Assuntos
Proteínas de Transporte , Proliferação de Células , Citocinas , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Células Intersticiais do Testículo , Sindecana-2 , Masculino , Humanos , Proliferação de Células/fisiologia , Células Intersticiais do Testículo/metabolismo , Citocinas/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Sindecana-2/metabolismo , Sindecana-2/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Sobrevivência Celular/fisiologia , Espermatogônias/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/fisiologia
5.
J Biol Chem ; 298(6): 102029, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35569509

RESUMO

Epidermal growth factor receptor (EGFR) is a causal factor in carcinoma, yet many carcinoma patients are resistant to EGFR inhibitors. Potential insight into this resistance stems from prior work that showed EGFR in normal epithelial cells docks to the extracellular domain of the plasma membrane proteoglycan syndecan-4 (Sdc4) engaged with α3ß1 and α6ß4 integrins. We now report that this receptor complex is modified by the recruitment of syndecan-2 (Sdc2), the Recepteur d'Origine Nantais (RON) tyrosine kinase, and the cellular signaling mediator Abelson murine leukemia viral oncogene homolog 1 (ABL1) in triple-negative breast carcinoma and head and neck squamous cell carcinoma, where it contributes to EGFR kinase-independent proliferation. Treatment with a peptide mimetic of the EGFR docking site in the extracellular domain of Sdc4 (called SSTNEGFR) disrupts the entire complex and causes a rapid, global arrest of the cell cycle. Normal epithelial cells do not recruit these additional receptors to the adhesion mechanism and are not arrested by SSTNEGFR. Although EGFR docking with Sdc4 in the tumor cells is required, cell cycle progression does not depend on EGFR kinase. Instead, progression depends on RON kinase, activated by its incorporation into the complex. RON activates ABL1, which suppresses p38 mitogen-activated protein kinase and prevents a p38-mediated signal that would otherwise arrest the cell cycle. These findings add to the growing list of receptor tyrosine kinases that support tumorigenesis when activated by their association with syndecans at sites of matrix adhesion and identify new potential targets for cancer therapy.


Assuntos
Carcinoma , Ciclo Celular , Receptores ErbB , Receptores Proteína Tirosina Quinases , Sindecana-2 , Sindecana-4 , Carcinoma/patologia , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sindecana-2/metabolismo , Sindecana-4/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Heart Vessels ; 37(6): 1085-1096, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35320391

RESUMO

Atherosclerosis (AS) is the basic lesion underlying the occurrence and development of cerebrovascular diseases. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in AS. We aimed to explore the role of SNHG16 in AS and the molecular mechanism of VSMC involvement in the regulation of AS. The expression levels of SNHG16, miR-30c-5p and SDC2 were detected by qRT-PCR. CCK-8, wound healing and Transwell assays were used to assess ox-LDL-induced VSMC proliferation, migration, and invasion, respectively. Western blot analysis was used to detect SDC2 and MEK/ERK pathway-related protein levels. A dual-luciferase reporter assay confirmed the binding of SNHG16 with miR-30c-5p and miR-30c-5p with SDC2. SNHG16 and SDC2 expression was upregulated in patients with AS and ox-LDL-induced VSMCs, while miR-30c-5p was downregulated. Ox-LDL-induced VSMC proliferation and migration were increased, and the MEK/ERK signalling pathway was activated. MiR-30c-5p was targeted to SNHG16 and SDC2. Downregulating SNHG16 or upregulating miR-30c-5p inhibited ox-LDL-induced VSMC proliferation and migration and inhibited MEK/ERK signalling pathway activation. In contrast, downregulating miR-30c-5p or upregulating SDC2 reversed the effects of downregulating SNHG16 or upregulating miR-30c-5p. Furthermore, downregulating SDC2 inhibited ox-LDL-induced proliferation and migration of VSMCs and inhibited activation of the MEK/ERK signalling pathway, while upregulating lncRNA SNHG16 reversed the effects of downregulating SDC2. Downregulation of SNHG16 inhibited VSMC proliferation and migration in AS by targeting the miR-30c-5p/SDC2 axis. This study provides a possible therapeutic approach to AS.


Assuntos
Aterosclerose , Arteriosclerose Intracraniana , MicroRNAs , RNA Longo não Codificante/genética , Aterosclerose/patologia , Movimento Celular , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo , Humanos , Arteriosclerose Intracraniana/metabolismo , Arteriosclerose Intracraniana/patologia , Lipoproteínas LDL , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Sindecana-2/genética , Sindecana-2/metabolismo , Sindecana-2/farmacologia
7.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682569

RESUMO

We previously showed that a synthetic peptide (S2-P) corresponding to a portion of the human syndecan-2 (SDC2) sequence can bind to the pro-domain of matrix metalloproteinase-7 (MMP-7) to inhibit colon cancer activities. Since S2-P had a relatively weak binding affinity for the MMP-7 pro-domain, we herein modified the amino acid sequence of S2-P to improve the anticancer potential. On the basis of the interaction structure of S2-P and MMP-7, four peptides were generated by replacing amino acids near Tyr 51, which is critical for the interaction. The SDC2-mimetic peptides harboring an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-D) or with an Ala-to-Phe substitution at the N-terminal side of Tyr 51 and an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-FE) showed improved interaction affinities for the MMP-7 pro-domain. Compared to S2-P, S2-FE was better able to inhibit the SDC2-MMP-7 interaction, the cell surface localization of MMP-7, the gelatin degradation activity of MMP-7, and the cancer activities (cell migration, invasion, and colony-forming activity) of human HCT116 colon cancer cells in vitro. In vivo, S2-FE inhibited the primary tumor growth and lung metastasis of CT26 mouse colon cancer cells in a xenograft mouse model. Together, these data suggest that S2-FE could be useful therapeutic anticancer peptides for colon cancer.


Assuntos
Neoplasias do Colo , Sindecana-2 , Animais , Movimento Celular , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Peptídeos/farmacologia , Sindecana-2/metabolismo
8.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1547-1557, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34596215

RESUMO

5-Fluorouracil (5-FU) resistance has been long considered as an obstacle to the efficacy of chemotherapy in colorectal cancer (CRC). In this study, we demonstrated the role of miR-20b-5p-regulated syndecan-2 (SDC2) in 5-FU resistance of CRC cells. 5-FU-resistant SW480 CRC cells were established by treatment of SW480 cells with stepwise increase of 5-FU concentration. The results showed that SDC2 was expressed significantly higher in SW480/5-FU cells than in SW480/WT cells as revealed by quantitative real-time polymerase chain reaction and western blot analysis. MTT assay and BrdU assay showed that SDC2 overexpression led to increased cell survival rate, while SDC2 knockdown reversed the drug resistance of SW480/5-FU cells. Wound healing and transwell invasion assays revealed that knockdown of SDC2 inhibited the migratory and invasive ability of SW480/5-FU cells. Moreover, animal experiments indicated that si-SDC2 plays a suppressive role in tumor growth in vivo. We also confirmed that miR-20b-5p interacted with SDC2, which reversed the effect of SDC2 in SW480/5-FU cells via the c-Jun N-terminal kinase (JNK)/extracellular regulated protein kinases (ERK) signaling pathway. These findings showed that JNK/ERK signaling pathway is involved in miR-20b-5p/SDC2 axis-mediated 5-FU resistance in SW480/5-FU cells, indicating that the miR-20b-5p/SDC2 axis is a potential target for reversing 5-FU resistance in CRC.


Assuntos
Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Fluoruracila/farmacologia , MicroRNAs/genética , Sindecana-2/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Pareamento de Bases , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Survivina/genética , Survivina/metabolismo , Sindecana-2/antagonistas & inibidores , Sindecana-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360683

RESUMO

Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains unknown. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory effects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, comprising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corresponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.


Assuntos
Adesão Celular , Domínios Proteicos , Transdução de Sinais , Sindecana-2/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Sindecana-2/fisiologia , Quinases da Família src/metabolismo
10.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769248

RESUMO

Bacteroides fragilis enterotoxin (BFT) produced by enterotoxigenic B. fragilis (ETBF) causes colonic inflammation. BFT initially contacts intestinal epithelial cells (IECs) and affects the intestinal barrier. Although molecular components of the gut epithelial barrier such as metalloproteinase-7 (MMP-7) and syndecan-2 are known to be associated with inflammation, little has been reported about MMP-7 expression and syndecan-2 shedding in response to ETBF infection. This study explores the role of BFT in MMP-7 induction and syndecan-2 release in IECs. Stimulating IECs with BFT led to the induction of MMP-7 and the activation of transcription factors such as NF-κB and AP-1. MMP-7 upregulation was not affected by NF-κB, but it was related to AP-1 activation. In BFT-exposed IECs, syndecan-2 release was observed in a time- and concentration-dependent manner. MMP-7 suppression was associated with a reduction in syndecan-2 release. In addition, suppression of ERK, one of the mitogen-activated protein kinases (MAPKs), inhibited AP-1 activity and MMP-7 expression. Furthermore, the suppression of AP-1 and ERK activity was related to the attenuation of syndecan-2 release. These results suggest that a signaling cascade comprising ERK and AP-1 activation in IECs is involved in MMP-7 upregulation and syndecan-2 release during exposure to BFT.


Assuntos
Bacteroides fragilis/química , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 7 da Matriz/biossíntese , Metaloendopeptidases/toxicidade , Sindecana-2/metabolismo , Fator de Transcrição AP-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Células HCT116 , Humanos , Metaloendopeptidases/química
11.
Cancer Sci ; 111(3): 857-868, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31930596

RESUMO

Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC.


Assuntos
Vesículas Extracelulares/metabolismo , Herpesvirus Humano 4/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Sindecana-2/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
13.
FASEB J ; 33(10): 11381-11395, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31311305

RESUMO

We previously reported that syndecan-2 expression is increased on the colonic epithelium during chronic inflammation. Here, we report that syndecan-2 exhibits a different pattern of site-specific colonic expression during acute inflammation. Syndecan-2 expression was up-regulated predominantly in the proximal colon of dextran sulfate sodium-induced colitis mice. The colitis-associated up-regulation of syndecan-2 was barely detected in Rag-1-/- (recombination activating gene 1 knockout) mice under colitis-inducing conditions. Increased syndecan-2 expression correlated with increased levels of infiltrated CD4+ IL-17A+ T cells in the proximal colon. Serum levels of IL-17A were increased during the acute inflammatory response in normal mice but not Rag-1-/- mice. IL-17A directly induced IL-17 receptor (IL-17RA) and syndecan-2 expression in ex vivo-cultured proximal colon tissues and adenoma cell lines from proximal colon. IL-17RA knockdown reduced the IL-17A-mediated syndecan-2 expression in SNU1235 cells. No elevation of syndecan-2 or IL-17RA was observed in colonic tissues from IL-17A-/- mice during colitis induction. Finally, increased expression of syndecan-2 and IL-17RA was observed in the proximal colons of cecal ligation and puncture-induced sepsis mice and infectious pan colitis patients. Together, these data suggest that acute inflammation induces syndecan-2 expression predominantly in the proximal colon via IL-17A-IL-17RA signaling during the early stage of the inflammatory response and that proximal colonic syndecan-2 might be a biomarker for acute inflammation.-Hong, H., Song, H.-K., Hwang, E. S., Lee, A. R., Han, D. S., Kim, S.-E., Oh, E.-S. Up-regulation of syndecan-2 in proximal colon correlates with acute inflammation.


Assuntos
Colo/metabolismo , Inflamação/metabolismo , Sindecana-2/metabolismo , Regulação para Cima/fisiologia , Animais , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/metabolismo , Colo/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Humanos , Inflamação/induzido quimicamente , Interleucina-17/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-17/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia
14.
Fish Shellfish Immunol ; 98: 457-465, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982583

RESUMO

Syndecan-2, also known as CD362, is a transmembrane heparan sulfate proteoglycan which regulates cell growth, proliferation, cell adhesion, wound healing, and recruits immune cells. In the present study, we performed bioinformatics, spatial and temporal expression analyses of Hippocampus abdominalis syndecan-2 (HaSDC-2). Additionally, functional assays were conducted. HaSDC-2 has five major domains; an extracellular heparan sulfate attachment domain, a co-receptor binding domain, a transmembrane domain, two conserved domains (C1 domain, C2 domain), and a variable (V) domain. The ectodomain contained a signal peptide and GAG attachment sites. In-silico analysis revealed that HaSDC-2 contained a 798 bp long ORF and protein sequence of 265 amino acid residues. Further analysis of the amino acid sequence predicted a 28.9 kDa molecular weight and a 4.13 theoretical isoelectric point. The spatial expression of HaSDC-2 was ubiquitous in all tested tissues. HaSDC-2 expression in the liver was upregulated 24 h post-injection in response to all stimuli. Further, HaSDC-2 expression in blood cells was upregulated at 12 and 72 h post-injection in response to all the stimuli. HaSDC-2 + pcDNA™3.1(+) transfected cells exhibited significant survival in response to cell stressors such as H2O2 and HED. The ectodomain of recombinant HaSDC-2 treated cells showed significant cell proliferation in a concentration-dependent manner. The scratch wound healing assay showed significant Δ gap closures with increasing concentrations of HaSDC-2. Collectively, these results indicated that syndecan-2 was involved in regulating immune responses and cell stress conditions.


Assuntos
Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Smegmamorpha/metabolismo , Sindecana-2/metabolismo , Cicatrização/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Peixes , Filogenia , Domínios Proteicos , Sindecana-2/genética
15.
Exp Cell Res ; 375(2): 1-9, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641040

RESUMO

We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) on control and TGF-ß1-exposed rat lung fibroblasts to identify proteins differentially expressed between cell populations. A total of 196 proteins were found to be differentially expressed in response to TGF-ß1 treatment. Guided by these results, we next determined whether similar changes in protein expression were detectable in the rat lung after chronic exposure to silica dust. Of the five proteins selected for further analysis, we found that levels of all proteins were markedly increased in the silica-exposed rat lung, including the proteins for the very low density lipoprotein receptor (VLDLR) and the transmembrane (type I) heparin sulfate proteoglycan called syndecan 2 (SDC2). Because VLDLR and SDC2 have not, to our knowledge, been previously linked to the pathobiology of silicosis, we next examined whether knockdown of either gene altered responses to TGF-ß1 in MRC-5 lung fibroblasts. Interestingly, we found knockdown of either VLDLR or SDC2 dramatically reduced collagen production to TGF-ß1, suggesting that both proteins might play a novel role in myofibroblast biology and pathogenesis of silica-induced pulmonary fibrosis. In summary, our findings suggest that performing LC-MS/MS on TGF-ß1 stimulated lung fibroblasts can uncover novel molecular targets of activated myofibroblasts in silica-exposed lung.


Assuntos
Fibroblastos/metabolismo , Silicose/genética , Transcriptoma , Fator de Crescimento Transformador beta/farmacologia , Animais , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptores de LDL/genética , Receptores de LDL/metabolismo , Silicose/metabolismo , Sindecana-2/genética , Sindecana-2/metabolismo
16.
Am J Respir Cell Mol Biol ; 60(6): 659-666, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30562054

RESUMO

Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Sindecana-2/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Animais , Núcleo Celular/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Pulmonares/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos SCID , Invasividade Neoplásica , Sinteninas/metabolismo , Fator de Transcrição RelA/metabolismo , Regulação para Cima/genética
17.
Biochem Biophys Res Commun ; 518(4): 739-745, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31472961

RESUMO

We previously reported that the melanocortin-1 receptor (MC1R), a key regulator of melanogenesis, regulates cell migration; however, the detailed mechanism remained unknown. Since the homo-dimerization of MC1R by four inter-subunit disulfide bonds is known to be functionally important for melanogenesis, we investigated the importance of MC1R dimerization for cell migration. Unlike the wild-type MC1R, the dimerization-defective mutant MC1R in which four critical Cys residues were replaced with Ala residues (Cys35-267-273-275Ala) significantly inhibited melanin synthesis but enhanced cell migration in human MNT-1 and A375 melanoma cells. This suggests that there may be a reverse correlation between melanin synthesis and cell migration. Interestingly, melanoma cells expressing the dimerization-defective mutant exhibited enhanced expression of the cell surface heparan sulfate proteoglycan, syndecan-2, and knockdown of syndecan-2 expression decreased the mutant-mediated cell migration. Consistently, ASIP, an antagonist of MC1R, enhanced syndecan-2 expression and cell migration and reversed the α-melanocyte-stimulating hormone (α-MSH)-mediated inhibition of syndecan-2 expression. Furthermore, α-MSH reduced the cell migration of MNT1 cells expressing wild-type MC1R but not its dimerization-defective mutant. Together, these data strongly suggest that MC1R reversely regulates melanin synthesis and migration via the conformational changes induced by dimerization.


Assuntos
Movimento Celular/fisiologia , Melaninas/biossíntese , Melanoma/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melanoma/genética , Melanoma/patologia , Mutação , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Receptor Tipo 1 de Melanocortina/química , Receptor Tipo 1 de Melanocortina/genética , Sindecana-2/genética , Sindecana-2/metabolismo , alfa-MSH/farmacologia
18.
Am J Respir Cell Mol Biol ; 58(2): 208-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28886261

RESUMO

Radiation-induced pulmonary fibrosis is a severe complication of patients treated with thoracic irradiation. We have previously shown that syndecan-2 reduces fibrosis by exerting alveolar epithelial cytoprotective effects. Here, we investigate whether syndecan-2 attenuates radiation-induced pulmonary fibrosis by inhibiting fibroblast activation. C57BL/6 wild-type mice and transgenic mice that overexpress human syndecan-2 in alveolar macrophages were exposed to 14 Gy whole-thoracic radiation. At 24 weeks after irradiation, lungs were collected for histological, protein, and mRNA evaluation of pulmonary fibrosis, profibrotic gene expression, and α-smooth muscle actin (α-SMA) expression. Mouse lung fibroblasts were activated with transforming growth factor (TGF)-ß1 in the presence or absence of syndecan-2. Cell proliferation, migration, and gel contraction were assessed at different time points. Irradiation resulted in significantly increased mortality and pulmonary fibrosis in wild-type mice that was associated with elevated lung expression of TGF-ß1 downstream target genes and cell death compared with irradiated syndecan-2 transgenic mice. In mouse lung fibroblasts, syndecan-2 inhibited α-SMA expression, cell contraction, proliferation, and migration induced by TGF-ß1. Syndecan-2 attenuated phosphoinositide 3-kinase/serine/threonine kinase/Rho-associated coiled-coil kinase signaling and serum response factor binding to the α-SMA promoter. Syndecan-2 attenuates pulmonary fibrosis in mice exposed to radiation and inhibits TGF-ß1-induced fibroblast-myofibroblast differentiation, migration, and proliferation by down-regulating phosphoinositide 3-kinase/serine/threonine kinase/Rho-associated coiled-coil kinase signaling and blocking serum response factor binding to the α-SMA promoter via CD148. These findings suggest that syndecan-2 has potential as an antifibrotic therapy in radiation-induced lung fibrosis.


Assuntos
Fibrose Pulmonar/patologia , Lesões por Radiação/patologia , Sindecana-2/metabolismo , Animais , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesões por Radiação/mortalidade , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Sindecana-2/genética , Tórax/efeitos da radiação , Fator de Crescimento Transformador beta/metabolismo , Quinases Associadas a rho/metabolismo
19.
J Biol Chem ; 292(39): 16321-16332, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28821612

RESUMO

The syndecan family of heparan sulfate proteoglycans contributes to cell adhesion and communication by serving as co-receptors for cell signaling and extracellular matrix molecules. Syndecan-2 is located at the cell surface, and we previously reported that it induces matrix metalloproteinase-7 (MMP-7) expression in colon cancer cells. However, the underlying regulatory mechanisms are unknown. Here, we report that overexpression of syndecan-2 in HT-29 colon cancer cells increases the phosphorylation of focal adhesion kinase (FAK) and ERK in parallel with up-regulated MMP-7 expression, but a syndecan-2 mutant lacking the cytoplasmic domain showed significant reductions in these effects. Consistent with this observation, FAK inhibition via FAK-related non-kinase expression or inhibition of ERK with the ERK1/2 inhibitor SCH772984 diminished the syndecan-2-mediated up-regulation of MMP-7. Activation of PKC enhanced syndecan-2-mediated MMP-7 expression, whereas inhibition of PKC had the opposite effect. Of note, the exogenous expression of syndecan-2 triggered localization of PKCγ to the membrane. Expression of syndecan-2 harboring a phosphomimetic (S198E) mutation of the variable region of the cytoplasmic domain enhanced MMP-7 expression and FAK phosphorylation. Finally, experimental suppression of shedding of the syndecan-2 extracellular domain did not significantly affect the syndecan-2-mediated up-regulation of MMP-7 in the early period after syndecan-2 overexpression. Taken together, these findings suggest that syndecan-2's cytoplasmic domain up-regulates MMP-7 expression in colon cancer cells via PKCγ-mediated activation of FAK/ERK signaling.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Sindecana-2/metabolismo , Substituição de Aminoácidos , Animais , Carcinoma/tratamento farmacológico , Carcinoma/enzimologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Indução Enzimática/efeitos dos fármacos , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sindecana-2/antagonistas & inibidores , Sindecana-2/química , Sindecana-2/genética
20.
FASEB J ; 31(4): 1516-1530, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28031321

RESUMO

Chronic inflammation is known to be a key causative factor in tumor progression, but we do not yet fully understand the molecular mechanism through which inflammation leads to cancer. Here, we report that the dextran sulfate sodium (DSS)-induced mouse model of chronic colitis is associated with increases in the serum level of IL-1ß and the colonic epithelial expression of the cell-surface heparan sulfate proteoglycan, syndecan-2. We further show that IL-1ß stimulated the transcription of syndecan-2 via NF-κB-dependent FOXO3a activation in CCD841CoN normal colonic epithelial cells and early-stage HT29 colon cancer cells. Inflammatory hypoxia was observed in the colonic epithelia of mice with chronic colitis, suggesting that hypoxic stress is involved in the regulation of syndecan-2 expression. Consistently, experimental inflammatory hypoxia induced hypoxia inducible factor-1α-dependent FOXO3a expression and the p38 MAPK-mediated nuclear localization of FOXO3a. FOXO3a directly mediated syndecan-2 expression in both cell lines and the colonic epithelia of mice with DSS-induced colitis. Moreover, syndecan-2 expression was detected in azoxymethane/DSS-induced colon tumors. Together, these data demonstrate that inflammatory hypoxia up-regulates syndecan-2 via the IL-1ß-NF-κB-FOXO3a pathway. These findings provide new mechanistic insights into inflammatory hypoxia-mediated syndecan-2 expression to connect chronic inflammation and the development of colon cancer.-Choi, S., Chung, H., Hong, H., Kim, S. Y., Kim, S.-E., Seoh, J.-Y., Moon, C. M., Yang, E. G., Oh, E.-S. Inflammatory hypoxia induces syndecan-2 expression through IL-1ß-mediated FOXO3a activation in colonic epithelia.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Proteína Forkhead Box O3/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Oxigênio/metabolismo , Sindecana-2/genética , Animais , Hipóxia Celular , Linhagem Celular , Colo/citologia , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Sindecana-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA