Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.594
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Chem Rev ; 123(5): 2420-2435, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36633446

RESUMO

In recent years, the simple synthesis of artificial humic substances (A-HS) by alkaline hydrothermal processing of waste biomass was described. This A-HS was shown to support water and mineral binding, to change soil structure, to avoid fertilizer mineralization, and to support plant growth. Many of the observed macroscopic effects could, however, not be directly related to the minute amounts of A-HS which have been added, and an A-HS stimulated microbiome was found to be the key for understanding. In this review, we describe such anthropogenic soil in the language of the modern concept of living engineered materials and identify natural and artificial HS as the enabler to set up the interactive microbial system along the interfaces of the mineral grains. In that, old chemical concepts as surface activity, redox mediation, and pH buffering are the base of the system structure build-up and the complex self-adaptability of biological systems. The resulting chemical/biological hybrid system has the potential to address world problems as soil fertility, nutrition of a growing world population, and climate change.


Assuntos
Substâncias Húmicas , Solo , Biomassa , Carbono , Água
2.
BMC Plant Biol ; 24(1): 191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486134

RESUMO

BACKGROUND: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS: The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS: The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).


Assuntos
Benzopiranos , Hordeum , Solo , Solo/química , Substâncias Húmicas/análise , Fertilizantes/análise , Fósforo
3.
BMC Plant Biol ; 24(1): 514, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849739

RESUMO

BACKGROUND: Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS: Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION: The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.


Assuntos
Secas , Substâncias Húmicas , Sorghum , Zea mays , Sorghum/fisiologia , Sorghum/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Estresse Fisiológico , Fotossíntese
4.
Plant Cell Environ ; 47(3): 871-884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164043

RESUMO

Symbiotic nitrogen fixation (SNF) is a crucial process for nitrogen geochemical cycling and plant-microbe interactions. Water-soluble humic acid (WSHM), an active component of soil humus, has been shown to promote SNF in the legume-rhizobial symbiosis, but its molecular mechanism remains largely unknown. To reveal the SNF-promoting mechanism, we conducted transcriptomic analysis on soybean treated with WSHM. Our findings revealed that up- and downregulated differentially expressed genes (DEGs) were mainly involved in plant cell-wall/membrane formation and plant defence/immunity in the early stage, while the late stage was marked by the flavonoid synthesis and ethylene biosynthetic process. Further study on representative DEGs showed that WSHM could inhibit GmBAK1d-mediated immunity and BR signalling, thereby promoting rhizobial colonisation, infection, and nodulation, while not favoring pathogenic bacteria colonisation on the host plant. Additionally, we also found that the ethylene pathway is necessary for promoting the soybean nodulation by WSHM. This study not only provides a significant advance in our understanding of the molecular mechanism of WSHM in promoting SNF, but also provides evidence of the beneficial interactions among the biostimulator, host plant, and soil microbes, which have not been previously reported.


Assuntos
Glycine max , Rhizobium , Nodulação , Substâncias Húmicas , Fixação de Nitrogênio , Etilenos/metabolismo , Imunidade Vegetal , Simbiose , Nódulos Radiculares de Plantas/microbiologia
5.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994377

RESUMO

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Assuntos
Cianobactérias , Fitoplâncton , Lagos/microbiologia , Substâncias Húmicas , Eutrofização , Nutrientes , Fósforo/análise , China
6.
Environ Sci Technol ; 58(2): 1299-1311, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38113523

RESUMO

Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in electronics manufacturing, has caused global contamination due to improper e-waste disposal. Its persistence, bioaccumulation, and potential carcinogenicity drive studies of its transformation and underlying (a)biotic interactions. This study achieved an anaerobic enrichment culture capable of reductively dehalogenating TBBPA to the more bioavailable bisphenol A. 16S rRNA gene amplicon sequencing and quantitative PCR confirmed that successive dehalogenation of four bromide ions from TBBPA was coupled with the growth of both Dehalobacter sp. and Dehalococcoides sp. with growth yields of 5.0 ± 0.4 × 108 and 8.6 ± 4.6 × 108 cells per µmol Br- released (N = 3), respectively. TBBPA dehalogenation was facilitated by solid humin and reduced humin, which possessed the highest organic radical signal intensity and reducing groups -NH2, and maintained the highest dehalogenation rate and dehalogenator copies. Genome-centric metatranscriptomic analyses revealed upregulated putative TBBPA-dehalogenating rdhA (reductive dehalogenase) genes with humin amendment, cprA-like Dhb_rdhA1 gene in Dehalobacter species, and Dhc_rdhA1/Dhc_rdhA2 genes in Dehalococcoides species. The upregulated genes of lactate fermentation, de novo corrinoid biosynthesis, and extracellular electron transport in the humin amended treatment also stimulated TBBPA dehalogenation. This study provided a comprehensive understanding of humin-facilitated organohalide respiration.


Assuntos
Substâncias Húmicas , Bifenil Polibromatos , Anaerobiose , RNA Ribossômico 16S/genética , Biodegradação Ambiental
7.
Environ Sci Technol ; 58(5): 2303-2312, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38263620

RESUMO

Dissimilatory arsenate reduction contributes a large proportion of arsenic flux from flooded paddy soil, which is closely linked to soil organic carbon input and efflux. Humic acid (HA) represents a natural ingredient in soil and is shown to enhance microbial arsenate respiration to promote arsenic mobility. However, the community and function profiles of metabolically active arsenate-respiring bacteria and their interactions with HA in paddy soil remain unclear. To probe this linkage, we performed a genome-centric comparison of potentially active arsenate-respiring bacteria in anaerobic microcosms amended with 13C-lactate and HA by combining stable-isotope probing with genome-resolved metagenomics. Indeed, HA greatly accelerated the microbial reduction of arsenate to arsenite. Enrichment of bacteria that harbor arsenate-respiring reductase genes (arrA) in HA-enriched 13C-DNA was confirmed by metagenomic binning, which are affiliated with Firmicutes (mainly Desulfitobacterium, Bacillus, Brevibacillus, and Clostridia) and Acidobacteria. Characterization of reference extracellular electron transfer (EET)-related genes in these arrA-harboring bacteria supports the presence of EET-like genes, with partial electron-transport chain genes identified. This suggests that Gram-positive Firmicutes- and Acidobacteria-related members may harbor unspecified EET-associated genes involved in metal reduction. Our findings highlight the link between soil HA and potentially active arsenate-respiring bacteria, which can be considered when using HA for arsenic removal.


Assuntos
Arseniatos , Arsênio , Substâncias Húmicas , Solo , Carbono , Bactérias/genética , Microbiologia do Solo
8.
Environ Sci Technol ; 58(22): 9896-9907, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38669322

RESUMO

Efficient use of humic acid (HA) for eco-friendly farming and environmental remediation requires further understanding of how targeted modification of HA affects the chemical structure of HA and thereby its effectiveness in enhancing soil quality. We developed novel selective modifiers (SMs) for extracting HA by codoping sodium and copper elements into the birnessite lattice. The structure of SMs was thoroughly examined, and the HAs extracted using SMs, referred to as SMHs, were subjected to a detailed evaluation of their functional groups, molecular weight, carbon composition, flocculation limits, and effectiveness in saline soil remediation. The results showed that replacing manganese with sodium and copper in SMs alters the valence state and reactive oxygen species. In contrast, SMHs exhibited increased acidic functional groups, a lower molecular weight, and transformed aliphatic carbon. Furthermore, the saline soil was improved through increased salt leaching and an optimized soil aggregate structure by SMHs. This research highlights the importance of targeted modification of HA and demonstrates the potential of these modifiers in improving soil quality for eco-friendly farming and environmental remediation.


Assuntos
Substâncias Húmicas , Solo , Solo/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo
9.
Environ Sci Technol ; 58(17): 7357-7366, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38568220

RESUMO

Although sulfur cycling in acid mine drainage (AMD)-contaminated rice paddy soils is critical to understanding and mitigating the environmental consequences of AMD, potential sources and transformations of organosulfur compounds in such soils are poorly understood. We used sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy to quantify organosulfur compounds in paddy soils from five AMD-contaminated sites and one AMD-uncontaminated reference site near the Dabaoshan sulfide mining area in South China. We also determined the sulfur stable isotope compositions of water-soluble sulfate (δ34SWS), adsorbed sulfate (δ34SAS), fulvic acid sulfur (δ34SFAS), and humic acid sulfur (δ34SHAS) in these samples. Organosulfate was the dominant functional group in humic acid sulfur (HAS) in both AMD-contaminated (46%) and AMD-uncontaminated paddy soils (42%). Thiol/organic monosulfide contributed a significantly lower proportion of HAS in AMD-contaminated paddy soils (8%) compared to that in AMD-uncontaminated paddy soils (21%). Within contaminated soils, the concentration of thiol/organic monosulfide was positively correlated with cation exchange capacity (CEC), moisture content (MC), and total Fe (TFe). δ34SFAS ranged from -6.3 to 2.7‰, similar to δ34SWS (-6.9 to 8.9‰), indicating that fulvic acid sulfur (FAS) was mainly derived from biogenic S-bearing organic compounds produced by assimilatory sulfate reduction. δ34SHAS (-11.0 to -1.6‰) were more negative compared to δ34SWS, indicating that dissimilatory sulfate reduction and abiotic sulfurization of organic matter were the main processes in the formation of HAS.


Assuntos
Mineração , Oryza , Poluentes do Solo , Solo , Solo/química , Oryza/química , Substâncias Húmicas , Enxofre , Compostos de Enxofre
10.
Environ Sci Technol ; 58(13): 5963-5973, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512311

RESUMO

In this study, characteristics of oxidation debris (OD) and its stripping mechanism from graphene oxide (GO) were explored. The results demonstrated that OD contains three components, namely, protein-, fulvic acid-, and humic acid-like substances; among these, protein-like substances with lower molecular weight and higher hydrophilicity were most liable to be stripped from GO and were the primary components stripped from GO at pH < 10, whereas humic acid- and fulvic acid-like substances were stripped from GO at pH > 10. During the stripping of OD, hydrogen bonds from carboxyl and carbonyl were the first to break, followed by hydrogen bonds from epoxy. Subsequently, π-π interactions were broken, and hydrogen bond interactions induced by hydroxyl groups were the hardest to break. After the stripping of OD, the recombination of OD on GO was observed, and regions containing relatively fewer oxygen-containing functional groups were favorable binding sites for the readsorbed OD. The stripping and recombination of OD on GO resulted in an uneven GO surface, which should be considered during the development of GO-based environmental materials and the evaluation of their environmental behavior.


Assuntos
Grafite , Nanoestruturas , Óxidos/química , Substâncias Húmicas/análise , Grafite/química
11.
Environ Sci Technol ; 58(3): 1531-1540, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38118063

RESUMO

Investigating soil organic matter's (SOM) microscale assembly and functionality is challenging due to its complexity. This study constructs comparatively realistic SOM models, including diverse components such as Leonardite humic acid (LHA), lipids, peptides, carbohydrates, and lignin, to unveil their spontaneous self-assembly behavior at the mesoscopic scale through microsecond coarse-grained molecular dynamics simulations. We discovered an ordered SOM aggregation creating a layered phase from its hydrophobic core to the aqueous phase, resulting in an increasing O/C ratio and declining structural amphiphilicity. Notably, the amphiphilic lipids formed a bilayer membrane, partnering with lignin to constitute SOM's hydrophobic core. LHA, despite forming a layer, was embedded within this structure. The formation of such complex architectures was driven by nonbonded interactions between components. Our analysis revealed component-dependent diffusion effects within the SOM system. Lipids, peptides, and lignin showed inhibitory effects on self-diffusion, while carbohydrates facilitated diffusion. This study offers novel insights into the dynamic behavior and assembly of SOM components, introducing an effective approach for studying dynamic SOM mechanisms in aquatic environments.


Assuntos
Simulação de Dinâmica Molecular , Solo , Solo/química , Água/química , Lignina , Substâncias Húmicas , Peptídeos/química , Lipídeos , Carboidratos
12.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696240

RESUMO

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Assuntos
Substâncias Húmicas , Manganês , Oxirredução , Fenóis , Manganês/química , Fenóis/química , Ânions , Compostos de Manganês/química , Óxidos/química , Poluentes Químicos da Água/química
13.
Environ Sci Technol ; 58(8): 4019-4028, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38366980

RESUMO

Humic acid (HA) ubiquitously existing in aquatic environments has been reported to significantly impact permanganate (KMnO4) decontamination processes. However, the underlying mechanism of the KMnO4/HA system remained elusive. In this study, an enhancing effect of HA on the KMnO4 oxidation of diclofenac (DCF) was observed over a wide solution pH range of 5-9. Surprisingly, the mechanism of HA-induced enhancement varied with solution pH. Quenching and chemical probing experiments revealed that manganese intermediates (Mn(III)-HA and MnO2) were responsible for the enhancement under acidic conditions but not under neutral and alkaline conditions. By combining KMnO4 decomposition, galvanic oxidation process experiments, electrochemical tests, and FTIR and XPS analysis, it was interestingly found that HA could effectively mediate the electron transfer from DCF to KMnO4 in neutral and alkaline solutions, which was reported for the first time. The formation of an organic-catalyst complex (i.e., HA-DCF) with lower reduction potential than the parent DCF was proposed to be responsible for the accelerated electron transfer from DCF to KMnO4. This electron transfer likely occurred within the complex molecule formed through the interaction between HA-DCF and KMnO4 (i.e., HA-DCF-KMnO4). These results will help us gain a more comprehensive understanding of the role of HA in the KMnO4 oxidation processes.


Assuntos
Óxidos , Poluentes Químicos da Água , Óxidos/química , Compostos de Manganês/química , Substâncias Húmicas/análise , Diclofenaco/química , Elétrons , Oxirredução , Poluentes Químicos da Água/análise
14.
Environ Sci Technol ; 58(19): 8501-8509, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696244

RESUMO

Iron/chromium hydroxide coprecipitation controls the fate and transport of toxic chromium (Cr) in many natural and engineered systems. Organic coatings on soil and engineered surfaces are ubiquitous; however, mechanistic controls of these organic coatings over Fe/Cr hydroxide coprecipitation are poorly understood. Here, Fe/Cr hydroxide coprecipitation was conducted on model organic coatings of humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA). The organics bonded with SiO2 through ligand exchange with carboxyl (-COOH), and the adsorbed amounts and pKa values of -COOH controlled surface charges of coatings. The adsorbed organic films also had different complexation capacities with Fe/Cr ions and Fe/Cr hydroxide particles, resulting in significant differences in both the amount (on HA > SA(-COOH) ≫ BSA(-NH2)) and composition (Cr/Fe molar ratio: on BSA(-NH2) ≫ HA > SA(-COOH)) of heterogeneous precipitates. Negatively charged -COOH attracted more Fe ions and oligomers of hydrolyzed Fe/Cr species and subsequently promoted heterogeneous precipitation of Fe/Cr hydroxide nanoparticles. Organic coatings containing -NH2 were positively charged at acidic pH because of the high pKa value of the functional group, limiting cation adsorption and formation of coprecipitates. Meanwhile, the higher local pH near the -NH2 coatings promoted the formation of Cr(OH)3. This study advances fundamental understanding of heterogeneous Fe/Cr hydroxide coprecipitation on organics, which is essential for successful Cr remediation and removal in both natural and engineered settings, as well as the synthesis of Cr-doped iron (oxy)hydroxides for material applications.


Assuntos
Cromo , Hidróxidos , Ferro , Hidróxidos/química , Ferro/química , Cromo/química , Soroalbumina Bovina/química , Adsorção , Substâncias Húmicas , Água/química , Precipitação Química , Alginatos/química
15.
Environ Sci Technol ; 58(16): 7186-7195, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598770

RESUMO

Remediation of large and dilute plumes of groundwater contaminated by oxidized pollutants such as chromate is a common and difficult challenge. Herein, we show that in situ formation of FeS nanoparticles (using dissolved Fe(II), S(-II), and natural organic matter as a nucleating template) results in uniform coating of aquifer material to create a regenerable reactive zone that mitigates Cr(VI) migration. Flow-through columns packed with quartz sand are amended first with an Fe2+ solution and then with a HS- solution to form a nano-FeS coating on the sand, which does not hinder permeability. This nano-FeS coating effectively reduces and immobilizes Cr(VI), forming Fe(III)-Cr(III) coprecipitates with negligible detachment from the sand grains. Preconditioning the sand with humic or fulvic acid (used as model natural organic matter (NOM)) further enhances Cr(VI) sequestration, as NOM provides additional binding sites of Fe2+ and mediates both nucleation and growth of FeS nanoparticles, as verified with spectroscopic and microscopic evidence. Reactivity can be easily replenished by repeating the procedures used to form the reactive coating. These findings demonstrate that such enhancement of attenuation capacity can be an effective option to mitigate Cr(VI) plume migration and exposure, particularly when tackling contaminant rebound post source remediation.


Assuntos
Cromo , Água Subterrânea , Oxirredução , Poluentes Químicos da Água , Água Subterrânea/química , Cromo/química , Poluentes Químicos da Água/química , Nanopartículas/química , Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas , Compostos Ferrosos/química , Benzopiranos/química
16.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38849313

RESUMO

AIMS: Understanding the inhibitory effects of natural organic substances on soil-borne pathogenic fungi and the relevant molecular mechanisms are highly important for future development of green prevention and control technology against soil-borne diseases. Our study elucidates the inhibitory effect of the combined application of humic acids (HAs) and chitosan on Alternariasolani and the light on the corresponding mechanism. METHODS AND RESULTS: The effect on A. solani growth by HAs incorporated with chitosan was investigated by plate culture and the corresponding mechanism was revealed using transcriptomics. The colony growth of A. solani was suppressed with the highest inhibition rate 33.33% when swine manure HAs was compounded with chitosan at a ratio of 1:4. Chitosan changed the colony morphology from round to irregularly. RNA-seq in the HAs and chitosan (HC) treatment revealed 239 differentially expressed genes compared with the control. The unigenes associated with enzymes activities related to growth and biological processes closely related to mycelial growth and metabolism were downregulated. RNA-seq also revealed that chitosan altered the expression of genes related to secondary metabolism, fungal cell wall formation and polysaccharide synthesis, and metabolism. Meanwhile, weighted gene co-expression network analysis showed that, genes expression in the module positively correlated with mycelial growth was significantly reduced in the HC treatment; and the results were verified by real-time quantitative polymerase chain reaction. CONCLUSIONS: The co-inhibition effect of HAs and chitosan on A. solani is associated with downregulated genes expression correlated with mycelial growth.


Assuntos
Alternaria , Quitosana , Perfilação da Expressão Gênica , Substâncias Húmicas , Quitosana/farmacologia , Alternaria/efeitos dos fármacos , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Animais , Transcriptoma , Suínos , Esterco/microbiologia , Microbiologia do Solo , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/genética
17.
Environ Res ; 252(Pt 1): 118779, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552825

RESUMO

Numerous application of pyrethroid insecticides has led to their accumulation in the environment, threatening ecological environment and human health. Its fate in the presence of iron-bearing minerals and natural organic matter under light irradiation is still unknown. We found that goethite (Gt) and humic acid (HA) could improve the photodegradation of bifenthrin (BF) in proper concentration under light irradiation. The interaction between Gt and HA may further enhance BF degradation. On one hand, the adsorption of HA on Gt may decrease the photocatalytic activity of HA through decreasing HA content in solution and sequestering the functional groups related with the production of reactive species. On the other hand, HA could improve the photocatalytic activity of Gt through extending light absorption, lowing of bandgap energy, hindering the recombination of photo-generated charges, and promoting the oxidation and reduction reaction on Gt surface. The increased oxygen vacancies on Gt surface along with the reduction of trivalent iron and the nucleophilic attack of hole to surface hydroxyl group contributed to the increasing photocatalytic activity of Gt. Electron paramagnetic resonance and quenching studies demonstrated that both oxidation species, such as hydroxyl radical (•OH) and singlet oxygen (1O2), and reducing species, such as hydrogen atoms (H•) and superoxide anion radical (O2•-), contributed to BF degradation in UV-Gt-HA system. Mass spectrometry, ion chromatography, and toxicity assessment indicated that less toxic C23H22ClF3O3 (OH-BF), C9H10ClF3O (TFP), C14H14O2 (OH-MBP), C14H12O2 (MBP acid), C14H12O3 (OH-MBP acid), and chloride ions were the main degradation products. The production of OH-BF, MPB, and TFP acid through oxidation and the production of MPB and TFP via reduction were the two primary pathways of BF degradation.


Assuntos
Substâncias Húmicas , Compostos de Ferro , Minerais , Oxirredução , Piretrinas , Substâncias Húmicas/análise , Minerais/química , Compostos de Ferro/química , Piretrinas/química , Fotólise , Inseticidas/química
18.
Environ Res ; 252(Pt 4): 119151, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754608

RESUMO

The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.


Assuntos
Compostagem , Eliminação de Resíduos Líquidos , Compostagem/métodos , Eliminação de Resíduos Líquidos/métodos , Microbiologia do Solo , Biodegradação Ambiental , Solo , Actinobacteria , Actinomadura , Streptomyces , Substâncias Húmicas
19.
Environ Res ; 251(Pt 2): 118761, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518914

RESUMO

The high organic matter in river sediment primarily induces black and odorous rebound. Traditional humic-reducing bacteria demonstrate relatively single metabolic functions and restrain the remediation within complex sediment environments. In addition, Ca(NO3)2 is commonly utilized in synergistic with bioremediation to improve the reducing environment of sediments. In this study, a multifunctional bacterial community with humic reduction-denitrification coupled bacteria was domesticated by the step-feeding strategy in an anaerobic baffle reactor (ABR). The performance, remediation effect, and metabolic mechanisms were analyzed. The results indicated that humic-reducing bacteria (HRB) and denitrifying-humic-reducing bacteria (DF/HRB) have quinone-reduction and denitrification capabilities. The synergistic effect of DF/HRBs and Ca(NO3)2 was superior to HRBs and Ca(NO3)2 on the removal of total organic matter(TOM). Microbial community structure analysis revealed an enhanced relative abundance of denitrification and humic-reducing bacteria (e.g., Thauera, Pseudomonas, Sulfurospirillum, Desulfovibrio, Geobacter) in the DF/HRB, resulting in a superior synergistic effect of DF/HRBs with Ca(NO3)2. This work helps to present an innovative approach to domesticate humic-reducing bacteria suited for the remediation environment effectively. It also expands the application of humic-reducing bacteria for in-situ anaerobic remediation of river sediments.


Assuntos
Bactérias , Desnitrificação , Sedimentos Geológicos , Substâncias Húmicas , Sedimentos Geológicos/microbiologia , Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Reatores Biológicos/microbiologia
20.
Environ Res ; 245: 118063, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160975

RESUMO

Priming effect (PE) is recognized as an important potential mechanism for dissolved organic matter (DOM) degradation in aquatic ecosystems. However, the priming effects (PEs) of various priming substances on the degradation of DOM pools in urban lakes along diverse trophic states remain unknown. To address this knowledge gap, the PEs and drivers of glucose and plant leachate of lake water with three trophic states were investigated. We reveal differences in the bioavailability of DOM in lake water, glucose, and plant leachate. The PE of the same priming substance was significantly higher in highly-eutrophic lake water than in mesotrophic lake. The priming intensity induced by glucose was significantly higher when compared to plant leachate. Regarding the addition of glucose, humic-like components (C1 and C3) showed slight PE, while the tyrosine-like component C2 showed negative PE. However, the positive PEs were observed on three components after adding plant leachate. The driver of PE by glucose shifted from nutrients to DOM components with increasing trophic levels. The PEs induced by plant leachate were affected by nutrients, chlorophyll-a (Chl-a), water chemistry, and DOM components in lightly/moderately-eutrophic lake water. This study revealed the intensities, directions, and drivers of PEs, providing essential insights into uncovering the DOM biogeochemical process in urban lakes.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Ecossistema , Água , Glucose , Espectrometria de Fluorescência , China , Substâncias Húmicas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA